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Summary. We consider the estimation of the relative median poverty gap (RMPG) at the level
of Italian provinces by using data from the European Union Survey on Income and Living Con-
ditions.The overall sample size does not allow reliable estimation of income-distribution-related
parameters at the provincial level; therefore, small area estimation techniques must be used.The
specific challenge in estimating the RMPG is that, as it summarizes the income distribution of the
poor, samples for estimating it for small subpopulations are even smaller than those available in
other parameters. We propose a Bayesian strategy where various parameters summarizing the
distribution of income at the provincial level are modelled by means of a multivariate small area
model. To estimate the RMPG, we relate these parameters to a distribution describing income,
namely the generalized beta distribution of the second kind. Posterior draws from the multivari-
ate model are then used to generate draws for the distribution’s area-specific parameters and
then of the RMPG defined as their functional.

Keywords: Complex sample surveys; Generalized beta distribution of the second kind;
Hierarchical Bayes; Income inequality; Poverty

1. Introduction

The relative median at risk of poverty gap is one of the indicators that have been endorsed by
the European Union for the assessment of social cohesion (European Commission, 2004). It
is defined as the median distance of the individual poor equivalized income from a threshold
defined as the 60% of the national median, relative to this threshold. The relative median at
risk of poverty gap is an important complement to the information that is provided by the head
count ratio measure of poverty (at risk of poverty rate) as it offers an insight on how deep is the
poverty that is experienced by the median poor, regardless of how many live below the poverty
line.

At risk of poverty rates (relative median poverty gaps (RMPGs)), as well as many other poverty
and income inequality measures are annually calculated by Eurostat for most European Union
(EU) member states by using data from the European Union Survey on Income and Living
Conditions (EU SILC), conducted under harmonized guidelines (see Atkinson and Marlier
(2010) for a general introduction). Estimates of these parameters are published also for large
regions or social groups within countries. This paper is about estimating RMPGs in small areas,
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i.e. for a collection of population subsets (‘areas’) for which the subset-specific sample sizes are
not sufficiently large to obtain decent precision from ordinary survey-weighted estimators (that
are labelled as direct estimators in the small area literature).

We note that the problem of sample sizes that are not sufficiently large is more severe for
the RMPG than for other summaries of the income distribution as it is a (scaled) quan-
tile of the poor income distribution whose direct estimation is based only on those who are
poor: usually a minority of the sample units. For instance, if the prevalence of the poor ranges
from 5% to 33% the expected area-specific sample sizes that are available to estimate the sam-
ple mean will be from three to 20 times larger than those available for the estimation of the
RMPG.

Specifically, we consider the problem of estimating the RMPG for Italian administrative
provinces by using data from the Italian section of the EU SILC. In Italy there are 110 provinces
corresponding to the Eurostat nomenclature of territorial units for statistics level 3 (Eurostat,
2019). Provincial administrations play an important role in implementing policies that are
decided at higher levels (national or regional) and in co-ordinating the activities of lower
administrative levels (municipalities and health districts). We consider data from the 2013
wave of the EU SILC and auxiliary information known at the provincial level obtained from
various sources, including fiscal archives of the Italian Ministry of Finance and population
registers.

Small area estimation is about complementing the insufficient information that is provided
by area-specific samples with auxiliary information known from external sources (censuses,
administrative archives,: : :). The complementing is typically achieved by using models that can
be specified at either the area or the unit level (Pfeffermann, 2013).

In this paper we consider area level models (Rao and Molina (2015), chapter 5). These models
are less demanding in terms of required information as only direct estimates, associated measures
of uncertainty and summaries at the area level of the auxiliary variables are needed. They can
represent the only viable strategy for the secondary data analysis that does not have access to
the details of the sampling design and relevant unit level information. Moreover, some typical
problems that are met when using unit level models, such as possible inconsistencies in definitions
and measurement techniques for auxiliary variables between the sample survey and the auxiliary
source, are sidestepped. See Tarozzi and Deaton (2009) and Tzavidis et al. (2018) for more general
discussions of these topics. In our application, we have limited access to some information on the
sampling design and dispose only of area level summary statistics for the auxiliary information
that we consider in the models.

As it relies on area level models, this research is different from previous literature on small
area estimation of the RMPG (Molina and Rao, 2010; Molina et al., 2014) that focuses on unit
level modelling.

The inputs of an effective area level model are

(a) a set of area level approximately unbiased estimates endowed with reliable sampling vari-
ability measures and

(b) a vector of area level auxiliary information with good predictive power for the parameter
in question.

If we denote ηd the RMPG in area d, η̂d its direct estimate and xd a vector of area level
auxiliary information, a typical area level model is not a viable strategy as direct estimators of
the RMPG are biased (as the median is) and very imprecise in small samples (see results in the
on-line appendix 1); moreover auxiliary variables with good predictive power are difficult to find
for ηd .
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Estimation of the Relative Median Poverty Gap 1275

Our alternative strategy can be summarized as follows. We consider θd : a vector of additional
small area parameters for which approximately unbiased direct estimators and predictive aux-
iliary information are available. As they are not of direct interest, we label θd as nuisance small
area parameters. We specify a small area model for θd . The components of θd can be related
functionally to each other via ξd , a vector of parameters characterizing a distribution that we
assume for income in area d, so that θd =θ.ξd/. The solution in ξd of this system of equations
can then be used to estimate ηd = η.ξd/ functionally under the distribution that is assumed to
describe income.

A few technical comments are in order.

(a) We consider five nuisance small area parameters θkd so that θd ={θkd}, k =1, : : : , 5; they
include three head count ratios based on different thresholds, a concentration index and
the mean of the log-income; their choice is aimed at providing a description of the whole
income distribution at the area level. More details will be given in Section 2.2.

(b) We specify a multivariate small area model for θd . Multivariate models have a long tradi-
tion in small area estimation dating back at least to Ghosh et al. (1996) and they usually
lead to more efficient estimators as they exploit the correlation between parameters.

(c) The parametric distribution that we consider for income is the generalized beta distri-
bution of the second kind (known as the ‘GB2’ distribution) (McDonald, 1984) that is
widely used in the literature. We also consider three distribution that are special cases
of GB2 (Dagum, Singh–Maddala (SM) and the beta distribution of the second kind)
that depend on three parameters. The recourse to these special cases is motivated by
computational sustainability; more details on this point will be given in Sections 4.2 and
5.

(d) The number of nuisance parameters is larger than the size of ξ characterizing GB2: this
entails a solution of the system θd =θ.ξd/ based on the minimization of a loss function
that allows more flexible and numerically stable solutions.

The core of this methodology, i.e. the estimation of ξ by solving θd =θ.ξd/, was introduced in
Graf and Nedyalkova (2014). Here we apply it to a small area estimation problem in the frame-
work of a hierarchical Bayesian model. Specifically, we approximate posterior distributions of
θd by means of Markov chain Monte Carlo (MCMC) algorithms. By solving θd =θ.ξd/ for
each MCMC draw we obtain Markov chains for the parameters characterizing the assumed
income distribution at the area level. The ηd = η.ξd/ can be exploited to generate a Markov
chain converging to the posterior of the target parameter ηd.

Predictors of nuisance parameters are design consistent (see Section 3), i.e. their point
predictors converge to area-specific population descriptive quantities regardless of misspeci-
fications of the multivariate model. Asymptotically the estimator of ηd converges to the func-
tional of these population quantities that depends on the assumption of GB2-distributed
income in the area. As a consequence, the dependence on the assumption of these distribu-
tions remains, but the estimator is robust with respect to misspecifications of the multivariate
small area model.

The rest of the paper is organized as follows. Section 2 introduces the data set that we consider
in this application and direct estimation of the small area parameters that are involved in the
study. In Section 3 we introduce the multivariate small area estimation model that provides
the basis for the estimation of the RMPG. Section 4 includes a short review of GB2 and its
special cases and an illustration of our functional estimation methodology. The estimation of
the RMPG at the level of Italian provinces is illustrated in Section 5, with some discussion. As
the method is rather complex, we explore the frequentist properties of the proposed estimators
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by means of a simulation exercise, based on the same sample data (Section 6). Concluding
remarks are provided in Section 7.

2. The data and direct estimation of small area parameters

2.1. The data
We analyse data from the 2013 wave of the EU SILC. The survey is conducted in many countries
across the EU by the relevant national institutes of statistics by using harmonized question-
naires and survey methodologies. Although following common guidelines, sampling designs
can differ from country to country. In Italy, the EU SILC is a rotating panel survey with 75%
overlap of samples in successive years. The fresh part of the sample is drawn according to a
stratified two-stage sample design, where municipalities (local authority unit level 2; see Euro-
stat (2019)) are the primary sampling units, whereas households are the secondary sampling
units. The primary sampling units are divided into strata according to their population size and
the secondary sampling units are selected by systematic sampling in each primary sampling
unit.

We target administrative provinces. The 110 Italian provinces have largely different popula-
tions ranging from the 4.3 million inhabitants of Rome, down to less than 0.1 million (Medio
Campidano, Isernia and Ogliastra). Provinces are unplanned domains for the EU SILC. For the
2013 wave that we consider in this paper, province-specific sample sizes range from 6 up to 882 in
terms of households and from 10 to 2018 in terms of individuals. The median province-specific
sample size is 115 households (274 individuals).

2.2. Direct estimation
Consider a population P of size N and a partition of it into D small areas {P1, : : : , Pd , : : : , PD}
of size Nd , ΣD

d=1Nd =N. A sample of overall size n is drawn from the population according to
a complex design such as the stratified multistage design with a rotating panel component used
in the EU SILC.

Area-specific samples sizes are denoted nd so that ΣD
d=1nd = n. A survey weight wdj is as-

sociated with each unit in the sample (j = 1, : : : , nd ; d = 1, : : : , D), reflecting both inclusion
probabilities and non-response corrections. We target a variable y, the equivalized disposable
income, defined as the total disposable household income divided by the equivalized house-
hold size calculated according to the modified Organisation for Economic Co-operation and
Development scale (see Fusco et al. (2010)).

Although our ultimate focus is the estimation of the RMPG, we consider several population
descriptive quantities at the area level that we label small area parameters. To avoid confusion,
we denote the RMPG at the area level with ηd and the vector of nuisance small area parameters
as θd = {θkd} with k = 1, : : : , 5. Whenever nd > 0 these parameters can be estimated by using
area-specific samples using Hàjek type (Hàjek, 1958) or other design-based estimators that we
can assume are approximately unbiased. We label these estimators as direct and denote them
η̂d and θ̂kd .

The RMPG is defined as η= {pt1 − Mep.y/}=pt1, where Mep.y/ is the median income of
the poor, i.e. Mep.y/= Me.y|y � pt1/ and pt1 is the national poverty threshold, defined in the
EU SILC framework as 60% of the national median of equivalized income. A survey weighted
estimator of ηd is given by

η̂d = pt1 − m̂pd

pt1
.1/
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Estimation of the Relative Median Poverty Gap 1277

where

m̂pd =

⎧⎪⎪⎨⎪⎪⎩
1
2 .y.jd/ +y.j+1,d// if

j∑
i=1

w.i/ =0:5
ndp∑
i=1

w.i/,

y.j+1,d/ if
j∑

i=1
w.i/ < 0:5

ndp∑
i=1

w.i/ <
j+1∑
i=1

w.i/,

ndp �nd is the number of poor in the sample specific to domain d and y.i/ �y.i+1/, i=1, : : : , ndp,
is the non-decreasing sequence of poor incomes. η̂d is likely to be more imprecise than θ̂kd as it
is based on the income of only those below pt1 in the sample: typically a minority. Moreover,
in very small samples it can be substantially biased. A small design-based simulation exercise,
based on EU SILC data and reported in the on-line appendix 1, explores the size of bias and
variance of this estimator in small samples.

The nuisance parameters that we consider in this application are

(a) the at risk of poverty rate θ1 =E{1.y �pt1/}, a poverty count based on the threshold pt1
and that represents the most popular poverty measure in the EU,

(b) the proportion of people living with an equivalized income below the national median,
θ2 =E[1{y �Me.y/}],

(c) an affluence rate defined as the proportion of individuals for which y > pt3 where pt3 is
some high threshold, that we fix at twice the national sample median in line with Peichl
et al. (2010), θ3 =E{1.y> pt3/} (affluence rates are useful to describe the right-hand tail
of the y-distribution at the area level),

(d) the Gini concentration index, which can be defined as θ4 =Δ{2E.y/}−1 where Δ=E{|ys −
yt|} with ys and yt identically distributed as y, and

(e) the mean of the log-income, i.e. θ5 =E{log.y/}.

We now present direct estimators for the nuisance parameters θkd . For k = 1, 2 they can be
written as

θ̂kd =

nd∑
j=1

wdj1.ydj < ptk/

nd∑
j=1

wdj

: .2/

When k = 1, we have the at risk of poverty rate whereas for k = 2 we define pt2 = Me.y/, i.e.
pt1 = 0:6pt2. We note that, when estimated at the whole population level, θ̂2: = 0:5, in specific
domains it can be read as a departure of the local median from that of the entire population.
The direct estimator of θ3d is defined as

θ̂3d =

nd∑
j=1

wdj1.ydj > pt3/

nd∑
j=1

wdj

: .3/

We note that pt1, pt2 and pt3 rely on the estimated national median of the equivalized income.
As this estimate is based on a very large national sample, we shall overlook the uncertainty that
is associated with these thresholds and treat them as fixed constants.

The most popular direct estimators of θ4, for instance the estimator that was considered in
Alfons and Templ (2013), are biased in small samples. In line with Fabrizi and Trivisano (2016)
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we consider a nearly unbiased direct estimator that accounts also for the fact that individuals
in the same household share the same income:

θ̂4d = 1

2 ˆ̄Yd

nd∑
j=1

nd∑
k=1

wdjwdk|ydj −ydk|

N̂
2
d −

md∑
h=1

w̃2
dh

, .4/

where ˆ̄Yd = N̂
−1
d Σnd

j=1wdjydj and N̂d =Σnd

j=1wdj is the Horwitz–Thompson estimator of the do-
main size; moreover, md is the number of households sampled in domain d and w̃dh =Σnh

j=1wdj

is the sum of weights associated with the nh individuals living in household h (h=1, : : : , md).
An approximately unbiased estimator of θ5 can be defined as

θ̂5d =

nd∑
j=1

wdj log.ydj/

nd∑
j=1

wdj

: .5/

The direct estimators θ̂kd are nearly unbiased but their variance can be large when nd is small.
In the case of the EU SILC, their variances will be larger than those which we would have
obtained with simple random samples of the same number of individuals. In the first place, the
same equivalized income is shared by all individuals in the same household (perfect intracluster
correlation). Moreover, the design effect of the EU SILC survey for Italy is larger than 1 even
considering variables at the household level; although the design is stratified at the first stage,
clustering of households within municipalities, unequal selection probabilities and weighting
corrections to counter non-response cause losses of efficiency (see Clemenceau and Museux
(2007) and Goedemé (2013) for more details).

To estimate the variances of θ̂kd we consider a two-step approach: first a bootstrap algo-
rithm, described in Fabrizi et al. (2011), is used to obtain preliminary variance estimates.
These raw variances are then used to estimate design effects and other parameters of vari-
ance smoothing models that will be described in Section 5. We note that the bootstrap
algorithm does not incorporate all details of the EU SILC sample design for Italy, because
of limited access to municipality level clustering and longitudinal tracking information; on
the basis of previous literature (see Goedemé (2013) and Biewen and Jenskins (2006)) we
assume that once essential features of the designs have been accounted for (stratification,
clustering at the household level, unequal selection probabilities and weighting), good ap-
proximations to actual sampling variances can be obtained. As pointed out in Tzavidis et al.
(2018), variance smoothing is a delicate step in building an area level model, so special
attention will be devoted to the assessment and quality of fit of these smoothing models in
Section 5.

3. A multivariate small area model for parameters related to equivalized income
distribution

In this section we describe a multivariate model for θkd , k = 1, : : : , 5. In line with the typical
specification of small area models, ours has two levels:

(a) a sampling model that provides a likelihood for the direct estimators and relates them to
the underlying population parameters;
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Estimation of the Relative Median Poverty Gap 1279

(b) a linking model that relates the small area parameters to auxiliary information and to each
other by means of exchangeable random effects according to the principle of borrowing
strength.

The recourse to a multivariate model is motivated by the fact that the five parameters represent
different aspects of the area level distribution of the target variable y. The estimates θ̂kd represent
summaries of the same area-specific samples, so it is natural to assume that they are correlated,
and to specify a multivariate sampling model. We do this by means of a Gaussian copula
function in line with Fabrizi et al. (2016). See Souza and Moura (2016) for other applications of
copula functions in the small area context. We present the sampling model in two steps: first, we
introduce the marginal sampling models; then the copula function is used to account for their
dependence structure.

For the rates θkd , k = 1, 2, 3, in line with Fabrizi et al. (2016), we specify a zero-inflated beta
sampling model to account for the fact that rates range in the .0, 1/ interval and that, when md

is small, the direct estimate can be 0, i.e. θ̂kd =0 even if it is assumed, as we do, that θkd > 0:

f.θ̂kd |θÅkd , φ̂kd/= .1−θÅkd/md 1.θ̂kd =0/+{1− .1−θÅkd/md }dbeta.Akd , Bkd/1.θ̂kd > 0/ .6/

where Akd =θÅkd.φ̂kd −1/ and Bkd = .1−θÅkd/.φ̂kd −1/. See Ospina and Ferrari (2012) and Wiec-
zorek and Hawala (2011) for alternative specifications of zero-inflated beta regression allowing
also for θkd =0.

The quantities φ̂kd can be interpreted as an effective sample size in terms of individuals and are
estimated by using variance smoothing models. See Section 5 for more details on these models
and estimation leading to φ̂kd . The parameter θÅkd is defined as θÅkd =E.θ̂kd |θ̂kd > 0, θkd , φ̂kd/ so
the parameter that we are actually interested in is given by

θkd =θÅkd{1− .1−θÅkd/md }=E.θ̂kd |θÅkd , φ̂kd/:

Note that in equation (6) we assume that P.θ̂kd = 0/ depends explicitly on the underlying rate
θÅkd and the number md of households sampled from domain d.

The sampling model for the Gini concentration coefficient is based on a beta likelihood, with
a parameterization that we take from Fabrizi and Trivisano (2016):

θ̂4d ∼beta

(
2φ̂4d

1+θ4d
−θ4d ,

2φ̂4d −θ4d.1+θ4d/

1+θ4d

1−θ4d

θ4d

)
: .7/

As a consequence E.θ̂4d |φ̂4d/=θ4d and V.θ̂4d |φ̂4d/=θ2
4d.1−θ2

4d/.2φ̂
−1
4d /. See Section 5 for details

on the variance model that was used to obtain the quantities φ̂4d , which will be treated as
known.

The sampling model for the mean of the log-incomes θ̂5d is a normal Fay–Herriot model:

θ̂5d ∼N.θ5d , φ̂
−1
5d /: .8/

Variances φ̂
−1
5d are estimated by using the bootstrap algorithm that was discussed in Fabrizi et al.

(2016). The assumption of known variances for normal small area models is in line with most
literature (see Rao and Molina (2015), chapter 5). It is also consistent with expressions (6) and (7)
as we consider a two-parameter distribution where one of the two parameters is assumed known.

The Gaussian copula (Clemen and Reilly, 1999) that was used to model the direct estimators’
dependence structure is parameterized in terms of the correlation matrix R of a Gaussian
multivariate distribution. In detail, we assume that
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1280 E. Fabrizi, M. R. Ferrante and C. Trivisano

f.θ̂1d , : : : , θ̂kd/= g1.θ̂1d/× : : :×gk.θ̂kd/

|R|1=2 = exp
{

−1
2

zT
k .R−1 − Ik/zk

}
.9/

with zT
k = .Φ−1{F1.θ̂1d/}, : : : , Φ−1{F5.θ̂kd/}/; the marginal densities fk.θ̂kd/, k = 1, : : : , 5, are

defined in expressions (6)–(8) and Fk.θ̂kd/ are the associated cumulative distribution functions.
The matrix R is to be estimated from the data. For the specific application that we consider in
this paper, the estimation procedure will be outlined in Section 5.

The linking models for the three rates and the Gini coefficients are based on a logit link,

logit.θkd/=xT
kdβk +vkd .10/

(k =1, : : : , 4), whereas an identity link is considered for θ5d :

θ5d =xT
5dβ5 +v5d: .11/

The vector xkd contains for each parameter and each area auxiliary information known at the
area level. Note that xkd and βk may vary with k; but the first element of xkd is 1 in all cases.

The multivariate relationship between the population parameters θkd is incorporated in the
distributional assumption for vd = .vkd/, k =1, : : : , 5:

vd ∼MVN.0,Σv/ .12/

where MVN denotes the multivariate normal distribution. For Σv we specify a prior within
the family that was proposed by Huang and Wand (2013) with the purpose of keeping the
analytical and computational tractability of the inverse Wishart distribution but improving the
non-informativity properties:

Σv|a1, : : : , ak ∼ Inv-Wishart{ν+1, 2ν diag.a−1
1 , : : : , a−1

k /},

ak ∼ Inv-Gamma
(1

2
,

1
Ak

)
, k =1, : : : , 5:

.13/

This prior marginally induces σk ∼half-t.ν, Ak/. The choice ν=2 allows for a diffuse prior, close
to the popular half-Cauchy(ν= 1) prior; moreover it induces a marginal uniform prior on the
correlations between the random effects. We choose Ak = 1 after careful consideration of the
scale of the parameters’ distribution and some sensitivity analysis.

For all parameters the point predictor of the small area mean is obtained summarizing the
posterior distribution of θkd by using quadratic loss, so that θ̃kd = E.θkd |d/, k = 1, : : : , 5, and
where short cut notation d is used for the data.

It can be shown that, conditionally on Σv, θ̃kd , k =1, : : : , 5, is design consistent provided that
θ̂kd are. For the definition of design consistency we refer to Fuller (2009), page 41. For a proof
of this design consistency property see the on-line appendix 2.

4. The proposed estimation strategy for the relative median poverty gap

4.1. The generalized beta distribution of the second kind and its special cases
GB2 (McDonald, 1984) is a four-parameter distribution which is acknowledged as an excellent
descriptor of income distributions (Dastrup et al., 2007; Jenkins, 2009; Graf and Nedyalkova,
2011). The GB2 density can be written as

f.x; a, b, p, q/= a

bB.p, q/

.x=b/ap−1

{1+ .x=b/a}p+q
1.x> 0/ .14/
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Estimation of the Relative Median Poverty Gap 1281

where a, b, p, q > 0 and B.p, q/ is the beta function. With the exception of b, which is a scale
parameter, the other three parameters are all shape parameters: a can be interpreted as an
overall shape parameter and p rules the right-hand tail whereas q the left-hand tail. For a
general description of the properties of GB2 see Kleiber and Kotz (2003), chapter 6.1, and Graf
et al. (2011).

In the economy of this study we are interested in the expression of the small area parameters
ηd and θd that were introduced in Section 2.2 when the equivalized income variable is assumed
to be GB2 distributed. We use the notation θkd|GB2 and ηd|GB2 to denote the expression of θkd

under the GB2 assumption:

θ1d|GB2 =F.pt1, ad , bd , pd , qd/, .15/

θ2d|GB2 =F.pt2, ad , bd , pd , qd/, .16/

θ3d|GB2 =1−F.pt3, ad , bd , pd , qd/, .17/

θ4d|GB2 = B.2pd +1=ad , 2qd −1=ad/

B.pd +1=ad , 2qd −1=ad/

×{p−1
d G1.ad , pd , qd/+ .pd +1=ad/−1G2.ad , pd , qd/}, .18/

θ5d|GB2 = ψ.pd/−ψ.qd/

ad
+ log.bd/, .19/

ηd|GB2 =1− F−1.θ1d|GB2=2, ad , bd , pd , qd/

F−1.θ1d|GB2, ad , bd , pd , qd/
: .20/

Note that F in equations (15)–(17) is the cumulative distribution function whereas in expression
(19) G1.·/ and G2.·/ are generalized hypergeometric series (see McDonald (1984) for a detailed
definition) depending on all the distribution parameters except the scale bd whereas ψ.·/ in
equation (20) is the digamma function.

GB2 encompasses several special cases. In this research we consider the beta of the second
kind (known as ‘B2’) distribution (a=1), the Dagum distribution (q=1) and the SM distribution
(p = 1). For these special cases expressions (15)–(20) are simpler and notably so for the Gini
coefficient (19) that reduces to

θ4d|B2 = B.2pd , 2qd −1/

2pB2.pd , qd/
, .21/

θ4d|Dagum = Γ.pd/Γ.2pd +1=ad/

Γ.2pd/Γ.pd +1=ad/
, .22/

θ4d|SM =1− Γ.qd/Γ.2qd −1=ad/

Γ.2qd/Γ.qd −1=ad/
.23/

where Γ.·/ is the gamma function. The considered special cases of GB2 are also those identified
by McDonald et al. (2013) as those characterized by skewness–kurtosis spaces encompassing
the largest portion of the income data set in their cross-country analysis of the Luxembourg
income study database. Kakamu (2016), using a simulation study based on data generated from
GB2, characterized parameter regions in which the fit of the Dagum distribution is superior
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to that of the SM distribution and vice versa. Intuitively, data with a heavy right-hand tail
should be better fitted by an SM distribution and those with a more moderate skewness by the
Dagum distribution. Kleiber (1996) expected the Dagum distribution to fit better than the SM
distribution in most real data sets; actually its skweness–kurtosis space includes that of the SM
distribution in the direction of more moderate and even negative skewness. B2 is considered
especially for its popularity in the literature (Chotikapanich et al., 2012).

4.2. Indirect estimation of the relative median poverty gap
Let ξd = .ad , bd , pd , qd/ denote the parameters of GB2 that we assume to describe the income
distribution in area d. As areas are many, this description would imply a very large set of param-
eters to be estimated; this cannot be done by using area-specific samples, as they are typically
small. We use the multivariate model to accomplish this task. Under this GB2 assumption,

θd =θ.ξd/

according to formulae (15)–(20). Using the multivariate model of Section 3 we can draw from
p.θd |d/. For each draw θrd , r =1, : : : , R, we can solve θrd =θ.ξrd/ in ξrd , thus obtaining a draw
from p.ξd |d/. We can then use

ηd =η.ξd/

defined according to equation (21) to simulate from p{ηd =η.ξd/|d}, by drawing ηrd =η.ξrd/.
Several technical details about the implementation of this approach now follow. We note that

p.θkd |d/ depends on the way that we modelled the direct estimators θ̂kd but not on the GB2 that
we assume for the income distribution in the areas. If the size of θd and ξd were the same, a
solution to the system θd =θ.ξd/ can be slow or even impossible to find with numeric methods.
In line with Graf and Nedyalkova (2014), section 5, we use a vector θd of five elements to solve
for the four parameters characterizing GB2 by minimizing a relative quadratic loss function:

L.θrd , ξrd/=
5∑

k=1

{
θkrd −θkrd|GB2.ξrd/

θkrd

}2

: .24/

With respect to Graf and Nedyalkova (2014) we select a different set of nuisance parameters,
namely the θkd , k =1, : : : , 5, that were discussed in Section 3. Except for θ5d all parameters have
approximately the same scale (as they range between 0 and 1), whereas θ5d is much bigger in
scale. For this reason when solving the system we consider the scaled values θÅr5d =θr5d − log.K/

where K is a suitably chosen constant that makes scales of all parameters more homogeneous.
The solution of the system with the original set of parameters ξrd = .ard , brd , prd , qrd/ can be
obtained from ξÅ

rd = .ard , bÅ
rd , prd , qrd/ by using a property of GB2 as brd =KbÅ

rd . In line with Graf
et al. (2011) and Graf and Nedyalkova (2014) we set the constraints ardprd > 1 and ardqrd > 2
which ensure that the implicitly defined Xrd ∼GB2.ard , brd , prd , qrd/ are such that E.X−1

rd /<∞
and E.X2

rd/<∞.
The minimum is searched for by using numerical methods and namely the popular Levenberg–

Marquardt algorithm. Theoretical properties and efficient implementations of this algorithm
have been studied in many papers (e.g. Moré (1978)). Kanzow et al. (2004) showed global
convergence properties of the algorithm when the constraints set is a convex set as in our
problem.

Because of the mathematical complexity of expression (19) the solution leading to the indirect
estimation of the GB2 parameters can be slow to find, making the whole method impractical.
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For this reason we consider three special cases of GB2: B2, Dagum and SM distributions,
characterized by three parameters and much simpler formulae for the Gini coefficient (see
equations (21), (22) and (23). We keep the same set of five small area parameters and a loss
function analogous to equation (25), i.e. L.i/.θrd , ξrd/, i= 1, 2, 3, for the indirect estimation of
the three distribution parameters.

For each draw θrkd , r =1, : : : , R, we estimate three parallel non-linear systems: one for each of
the three special cases of GB2, thus generating separate chains for the three sets of distribution
parameters. Although the three systems are solved instead of one, this strategy is computation-
ally much more efficient than that based on GB2. If we denote by ξ̂rd a solution to equation
(25) the distribution that minimizes ΣR

r=1L.i/.θrd , ξ̂rd/ in i is chosen, separately for each area,
as the income distribution model. As a consequence, we adapt possibly different models to the
data from different areas.

A point predictor for ηd can be obtained summarizing the posterior distribution p.ηd |d/; if
quadratic loss is adopted it will be given by the posterior mean η̃d =E.ηd |d/.

The small area estimator that is obtained in this way is not design consistent as it depends on
assuming GB2 as a description of income within the areas even in large samples. Nonetheless
it is robust with respect to misspecifications of the small area model as θ̃d is design consistent
and thus converging to θd regardless of model misspecifications. Asymptotically the posterior
distribution p.ηd |d/ will collapse on the solution of ηd = η.ξd/: the dependence on GB2 does
remain, but that on the multivariate model does not.

5. An application to Italian European Union Survey on Income and Living
Conditions data: estimation of relative median poverty gap in Italian provinces

In this section we illustrate the estimation of the RMPG ηd and the nuisance parameters θkd for
the Italian administrative provinces. Input data come from the 2013 EU SILC survey sample
for Italy and consist of .θ̂kd , φ̂kd , R/, k = 1, : : : , 5, d = 1, : : : , D. We obtain an estimate of R
starting from Spearman correlations ρr.·, ·/ among the θ̂kd . Rough estimates of ρr.θ̂kd , θ̂k′d/

can be obtained by using the bootstrap algorithm output (see Section 2.2). We denote these
estimates as corboot.θ̂kd , θ̂k′d/. As most of the areas are small, to obtain stable estimates, we first
assume that correlations ρr.θ̂kd , θ̂k′d/ are constant across areas, i.e. ρr.θ̂kd , θ̂k′d/=ρr.θ̂k, θ̂k′/, and
propose averaged estimates

ρ̂r.θ̂k, θ̂k′/=
(

D∑
d=1

wd

)−1 D∑
d=1

wd corboot.θ̂kd , θ̂k′d/

with wd =nd . To obtain even more stable results, we then restrict the average to the set of the
largest areas and namely to those with a sample size above the median, thus assuming that wd =
nd1{nd >Me.nd/}. As the matrix R describes the dependence structure of θ̂kd on a transformed
scale, we finally exploit the invariance of Spearman correlation under non-decreasing monotone
transformations and the sine transformation to switch from Spearman to Pearson correlations
(see Elfadaly and Garthwaite (2017) for details).

The parameters φ̂kd are estimated by using variance smoothing models. Specifically, for the
rates θ̂kd , k =1, 2, 3, the variances that are estimated by using the bootstrap algorithm vboot.θ̂kd/

are smoothed by using the models

θ̂kd.1− θ̂kd/

vboot.θ̂kd/
=νknd + ekd
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where, for the residuals ekd , we assume that E.ekd/=0 and V.ekd/=�k. For the Gini concentra-
tion coefficient, a different smoothing model is adopted:

θ̂
2
4d.1− θ̂

2
4d/

vboot.θ̂4d/
=ν4nd + e4d:

See Fabrizi and Trivisano (2016) for a motivation of this model. The least squares estimators
ν̂k are then used to compute φ̂kd = νknd , k = 1, : : : , 4. For our data the squared correlations
describing the fit of these models equal 0.82, 0.95, 0.78 and 0.78 for k =1, : : : , 4 respectively.

These data are complemented by auxiliary information from administrative archives. A de-
scription of auxiliary variables, defined at the provincial level, can be found in the on-line
appendix 3. The candidate auxiliary variables are many; some are highly correlated with each
other, so selection is needed. Although the model is multivariate, we selected covariates to be
used in equations (10) and (11) from the univariate models. Auxiliary variable selection is based
on the methodology that was introduced in George and McCulloch (1993). Details on the
variable-selection process can be found in appendix 3 as well.

All code used in the estimation exercise was written in R. Posterior distributions for the
multivariate model are based on a Metropolis–Hastings type of MCMC algorithms. Specifically
we used the software jags called through the R package rjags (Plummer et al., 2016). For
all the parameters single Markov chains of length 50000 were run. To assess the convergence
of each chain, beside visual inspection of the chains, we use Heidelberg–Welch diagnostics
(Heidelberg and Welch, 1983; Cowles and Carlin, 1996) that reduce to testing the null hypothesis
of a stationary path by using the Cramer–von Mises statistic. A conservative burn-in of 10000
is used before calculating these statistics. The Heidelberg–Welch diagnostics are based on a
single chain; a multichain approach was not advisable in our problem as a careful setting of
the initial value is needed to speed up the convergence. In the overwhelming majority of chains
the p-value that is associated with the Heidelberg–Welch diagnostics is above 0.05; for the chains
of the parameters θ1d , θ2d , θ4d and θ5d in more than 98% of the cases and for θ3d slightly more
than 95% of the cases. In calculating posterior summaries, one every 30th draw was kept. This
severe thinning of the chains is partly motivated by their relatively poor mixing; this depends
on the fact that nuisance parameters are strongly correlated, as they are all summaries of the
same distributions. Moreover, we want to keep the posterior sample size small as its size defines
the number of times that the non-linear system discussed in Section 4.2 needs to be solved. The
overall sample from the posterior is of size R=3000.

Each draw from the posterior distribution of θkd , k =1, : : : , 5, is used to solve the constrained
non-linear system that was discussed in Section 4.2. Specifically we work with the Levenberg–
Marquardt non-linear least-squares algorithm as implemented in the nlsLM function of the R
package minpack.lm (Elzhov et al., 2016). Initial values were set by solving the system on
the ensemble of the posterior means E.θkd |d/ with a precision 1:0×10−10, whereas a precision
of 1:0 × 10−5 was used to assess convergence of solutions for the systems based on individual
draws.

The application ran in about 2 h by using a four-cores 5500u processor (2.44 GHz; 8 Gbytes
random-access memory). We tried to run the same application by using GB2 instead of its special
cases as the reference distribution: the computing times rose to about 40 h. This motivates our
choice of considering a solution based on the three-parameters special cases of GB2.

A special case of GB2 is chosen separately for each area according to the methodology that
was illustrated in Section 4.2. The Dagum distribution was chosen in the large majority of areas
(95 times), the SM distribution for 14 areas and B2 in only one area. This result is in line with
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expectations from the literature (Kleiber, 1996; McDonald et al., 2013) as discussed in Section
4.1. For the analysis of this data set the methodology could then be simplified and only the
Dagum distribution considered. Nonetheless this may depend on specific features of our data
and it is not necessarily a general result (see Kakamu (2016)).

Markov chains for ηd (RMPG) were generated from those of the parameters of the chosen
distributions. The Heidelberg–Welch diagnostics that were computed for the chains ηd result in
a p-value that was greater than 0.05 in 96% of the cases. As this percentage is in line with the
type I error of the test, we can conclude that the convergence is satisfying also for these chains.

As a further check we applied the functional approach that was used to generate posterior
chains for ηd to the nuisance parameters θkd and compared the posterior that was obtained in
this way with those directly obtained from the multivariate model that was described in Section
3. We focus our comparisons on posterior means and standard deviations, calculating ratios of
the posterior summaries that were obtained according to the two methods. These ratios show
some variation across areas. For posterior means we have that for all parameters and all areas
the difference is less than 5% with the exception of θ4 (the Gini concentration coefficient) for
which the difference is between 5% and 10% in 20% of the areas; posterior means obtained with
the functional were slightly smaller (3% on average). For all parameters, posterior standard
deviations are very close on average (less than 2%) with the exception of θ4 and θ5 for which
the posterior standard deviations based on the functional approach are 5% larger on average.
In the large majority of areas the difference is less than 10% and for θ1, θ2 and θ3 less than 5%.

In Table 1 we present how efficient our approach is in reducing the standard errors that are
associated with the estimators. We define

ser.ηd/= sd.ηd |d/

se.η̂d/
.25/

where se.η̂d/ is computed according to the bootstrap algorithm of Fabrizi et al. (2011). We cal-
culate also ser.θkd/ that are defined similarly; se.θ̂kd/ is calculated according to the methodology
that was illustrated in Section 2.2. We recognize that this comparison involves two quantities
that are logically different as the numerator is a posterior standard deviation and the denomina-
tor a standard error with respect to the randomization distribution that is induced by sampling.
Nonetheless this type of comparisons is common in the small area literature.

The improvement in precision that is enabled by η̃d with respect to η̂d is dramatic; on average
the posterior standard deviation is slightly more than a quarter of that of the direct estimator.

Table 1. Distribution of the standard error reduction (serkd )
defined in equation (25) across the 110 provinces (areas)†

Parameter η θ1: θ2: θ3: θ4: θ5:

Minimum 0.064 0.102 0.113 0.122 0.078 0.169
1st quartile 0.168 0.380 0.413 0.303 0.303 0.549
Median 0.265 0.482 0.493 0.398 0.362 0.627
Mean 0.284 0.483 0.511 0.414 0.383 0.627
3rd quartile 0.358 0.586 0.601 0.506 0.467 0.745
Maximum 0.711 0.904 0.93 0.885 0.831 0.926

†η is the RMPG, θ1 the at risk of poverty rate, θ2 the share of
population with income below the median, θ3 the affluence rate, θ4
the Gini concentration coefficient and θ5 the mean of log-income.

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/article/183/3/1273/7056441 by guest on 27 M

ay 2024



1286 E. Fabrizi, M. R. Ferrante and C. Trivisano

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0123456

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0123456

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0123

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0123456

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0123456

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0123456

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

F
ig

.
1.

H
is

to
gr

am
s

of
th

e
po

st
er

io
r

C
V

s
ov

er
th

e
11

0
pr

ov
in

ce
s

(t
he

br
ea

ks
in

th
e

hi
st

og
ra

m
s

pl
ot

co
in

ci
de

w
ith

th
os

e
su

gg
es

te
d

by
S

ta
tis

tic
s

C
an

ad
a

(2
00

7)
):

(a
)

C
V

.θ
1
jd

/;
(b

)
C

V
.θ

2
jd

/;
(c

)
C

V
.θ

3
jd

/;
(d

)
C

V
.θ

4
jd

/;
(e

)
C

V
.θ

5
jd

/;
(f

)
C

V
.η

jd
/

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/article/183/3/1273/7056441 by guest on 27 M

ay 2024



Estimation of the Relative Median Poverty Gap 1287

Only in large areas, and especially so if in the south of the country where the prevalence of
poverty is higher, sd.ηd |d/ is more than a half of se.η̂d/. The posterior standard deviations
sd.θkd |d/ are on average half the size of the standard error se.θ̂kd/ of direct estimators; different
levels of reduction in different areas can be explained by different area-specific sample sizes.

Statistics Canada (2007) suggested that estimates whose associated coefficient of variation
(CV) is less than 16.6% are sufficiently reliable for general use and those with a CV between
16.6% and 33.3% can be published but accompanied by a warning to users whereas those with
an even larger CV should be deemed completely unreliable and not published. In Fig. 1 we
plot the histograms of CV.ηkd |d/ and CV.θkd |d/, using the thresholds that were suggested by
Statistics Canada (2007). We note that, although popular, these criteria can be too exigent for
the estimation of small proportions when a high CV can be the effect of a small estimate; in
this case, which encompasses our θ1 and θ3, alternative criteria in terms of standard errors can
be used (see European Commission (2013), page 13). We keep the Statistics Canada criteria as,
from Fig. 1, it is apparent that for all parameters the small area estimates that we produce are
suitable for publication with few problematic cases for the affluence rate θ3, attributable to the
low point estimates. Notably the posterior CVs are acceptable in all cases for the RMPG.

6. A simulation exercise

The methodology that we have presented for the estimation of the RMPG is complex as it
involves a multivariate hierarchical Bayesian model and, for each MCMC draw, the solution
of a non-linear system based on a parametric assumption on the distribution of equivalized
income in the areas. The good performances in terms of posterior CV that appear in Fig. 1
can be misleading if the point estimates were heavily biased. In this section, we introduce a
simulation study to assess the frequentist properties of the RMPG predictor. Specifically we
focus on the bias, mean-square error and frequentist coverage of probability intervals based
on posterior quantiles. These properties will be evaluated also for the predictors of nuisance
parameters θkd .

The simulation exercise is based on the same EU SILC sample as considered in our applica-
tion. We assume it as a synthetic population, from which we repeatedly draw stratified samples
and estimate the small area parameters for areas that are larger than those considered in the
application. As the synthetic population is held fixed, the simulation can be labelled as design
based.

We target administrative regions as areas of interest: a higher level administrative body with
respect to the provinces that were considered in the application; each region includes sev-
eral provinces; the two exceptions, Valle d’Aosta and Molise, that include only one and two
provinces respectively, have been excluded from the synthetic population. Administrative re-
gions are planned domains of the EU SILC survey in Italy. We draw stratified samples from
the synthetic population with strata defined by these regions. The size of the 18 administrative
regions in the synthetic population ranges, in terms of households, from 386 to 1846 with a
median size of 998. Stratified samples, drawn without replacement, are allocated proportionally
with a sampling rate of 0.115, chosen so that the median size of region-specific samples in the
simulation matches the median of the province-specific samples in the application. With respect
to the application, sample sizes are less variable as they range from 44 to 212 (and not from 6
to 882 as in the case of province-specific samples in the application).

For each of the S =1000 samples that were drawn from the synthetic population we replicate
the methodology that was illustrated in Section 5; also the details related to MCMC computation
and the non-linear system remain the same.
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Denote by Pθd and Pηd the synthetic population target parameters, where Pθd ={Pθkd}, k =
1, : : : , 5, whereas the Bayes estimators based on quadratic loss are denoted as sθ̃d =E.Pθd |ds/

and sη̃d =E.Pηd |ds/ where ds denotes the data from the sth replicated sample. If we use the short
cut :θ̃kd to denote the Bayes estimator for θkd when averaged over the S replications we can define

RRMSE.θ̃kd/= 1
S

S∑
s=1

√{.sθ̃kd −Pθkd/2}
Pθkd

, .26/

RBIAS.θ̃kd/= 1
S

S∑
s=1

sθ̃kd −Pθkd

Pθkd
, .27/

COV.θ̃kd ; 1−α/= 1
S

S∑
s=1

1.sqα=2 �s θkd �s q1−α=2/ .28/

where sqα=2 and sq1−α=2 are the α- and .1−α/-quantiles of p.Pθkd |ds/. Specifically we consider
α=0:05. Definitions for RRMSE.η̃d/, RBIAS.η̃d/ and COV.η̃d , 1−α/ follow accordingly.

In Table 2 we present results for the indicators (26)–(28): we show the three quartiles (Q1,
Me, Q3) of the distribution of these three indicators across the 18 regions that were considered
in the simulation.

The relative root-mean-squared error RRMSE that is associated with the RMPG has the
same magnitude as those of the at risk of poverty rate θ̃1d and affluence rate θ̃3d , which is a good
result if we interpret it considering the little information that the direct estimation of the RMPG
provides. Smaller RRMSEs can be either attributed to a size effect (θ̃2d has a mean-squared
error that is similar to that of θ̃1d but a larger denominator) or to the more power that auxiliary
variables have for some parameters (specifically this is so for the mean of the log-incomes θ̃5d).
The relative bias is, in all cases, when averaged across areas, close to 0, i.e. the shrinkage does not

Table 2. First and third quartiles and median of RRMSE, RBIAS and COV.�, 0:95/ with respect
to the 18 regions considered in the simulation†

Quartile θ1 θ2 θ3 θ4 θ5 η

Direct estimators
RBIAS Q1 −0:005 −0:002 −0:006 −0:005 0.000 0.016

Me −0:002 0.000 −0:001 −0:003 0.000 0.035
Q3 0.003 0.002 0.007 −0:002 0.000 0.123

RRMSE Q1 0.205 0.090 0.250 0.072 0.005 0.320
Me 0.257 0.116 0.329 0.081 0.006 0.426
Q3 0.283 0.124 0.486 0.092 0.009 0.466

Bayesian estimators
RBIAS Q1 −0:057 −0:023 −0:046 −0:029 −0:002 −0:054

Me 0.019 0.003 0.073 −0:004 0.000 0.012
Q3 0.101 0.027 0.108 0.028 0.002 0.101

RRMSE Q1 0.093 0.043 0.139 0.034 0.002 0.108
Me 0.115 0.055 0.156 0.041 0.003 0.141
Q3 0.160 0.074 0.241 0.066 0.006 0.205

COV.·, 0:95/ Q1 0.904 0.880 0.933 0.871 0.904 0.911
Me 0.977 0.983 0.975 0.985 0.955 0.937
Q3 0.987 0.985 0.986 0.995 0.979 0.953

†θ1 is the at risk of poverty rate, θ2 the share of population with income below the median, θ3 the
affluence rate, θ4 the Gini concentration coefficient, θ5 the mean of log-income and η the RMPG.
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imply a systematic tendency to overestimate or to underestimate the corresponding population
parameters. As far as the RMPG is concerned, the relative biases are, despite their indirect
estimation, small in most of the areas. Negative or positive biases on individual areas are due
to a shrinkage effect that is more pronounced when the sample size is small.

Interval estimates based on posterior quantiles (qα=2, q1−α=2) usually have an approximate
1−α frequentist coverage if the bias of the posterior mean is small and the posterior standard
deviation is close to the frequentist standard error. Table 2 shows that in some cases the coverage
is below the frequentist nominal level; these cases are those characterized by relatively higher
bias levels. In some other cases we have a coverage above the nominal (frequentist) level; this
is due to a tendency of posterior standard deviations to be slightly larger than the frequentist
standard errors (we can estimate from Monte Carlo replications).

To complete the comparison, for ηd , we simulated also an estimator that is associated with a
standard Fay–Herriot type of model assuming approximate normality of η̂d , var.η̂d/, as known
and set equal to their actual values resulting from Monte Carlo replications. We selected auxiliary
variables from those described in the on-line appendix 3 and namely the variables x1, the antilogit
of x6 and x9 that proved to be those providing the best fit. The average RRMSE result was equal
to 0.249 and the average RBIAS to 0.059. The average COV(0.95) is very close (slightly above)
the nominal level; nonetheless some of the intervals are so wide that the lower bound is negative.
This estimator is therefore effective in improving the efficiency of the direct estimator but clearly
inferior to η̃d . This finding is in line with our expectation: not only are the η̂d very unreliable
but it is difficult to obtain auxiliary variables with a good predictive power.

7. Conclusions

In this research we focused on the estimation of the RMPG, which is a popular measure of the
severity of poverty, motivated by the need to estimate it at the small area level by using Italian
data from the EU SILC.

We present a small area estimation method based on area level modelling, which requires
only survey-based direct estimators and area level summaries from auxiliary sources. Area level
modelling is therefore less data demanding with respect to unit level models that, when applied
to the estimation of the non-linear functional of the target variable population values, require
knowledge of individual level values of the auxiliary variables: a requirement that implies non-
trivial data quality and disclosure problems.

The specific nature of the RMPG, for which direct estimators are in most cases completely
unreliable, led us to consider a functional estimation method. We built on a method of using
summary statistics to estimate parameters of an underlying income distribution due to Graf
and Nedyalkova (2014), applied it within the framework of MCMC-sampling-based Bayesian
inference and used it in the opposite direction to estimate the RMPG (i.e. using estimated income
distribution parameters to obtain an estimate of a population descriptive quantity).

Our methodology implies various choices, some of them driven by computational reasons.
Specifically we propose to use three-parameter special cases of GB2 to describe the income
distribution in the small area as this choice reduced computational times by a factor of 20. This
computational gain was crucial, especially in view of the simulation exercise that we introduced
in Section 6, to assess frequentist properties of the Bayesian predictors introduced.

Simulation results confirm that the method that we propose can produce reliable small area
estimates of the RMPG. The methodology proposed can be applied to the estimation of other
parameters with problems that are similar to those of the RMPG, such as the quintile share
ratio. More details on the estimation of this parameter can be found in the on-line appendix 4.
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