
This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

A. Capotondi, M. Rusci, M. Fariselli and L. Benini, "CMix-NN: Mixed Low-Precision
CNN Library for Memory-Constrained Edge Devices," in IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 67, no. 5, pp. 871-875, May 2020

The final published version is available online at:
http://dx.doi.org/10.1109%2FTCSII.2020.2983648

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1109%2FTCSII.2020.2983648

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II, VOL. XX, NO. XX, AUGUST XXX 1

CMix-NN: Mixed Low-Precision CNN Library for
Memory-Constrained Edge Devices

Alessandro Capotondi, Member, IEEE, Manuele Rusci, Marco Fariselli, and Luca Benini, Fellow, IEEE

Abstract—Low-precision integer arithmetic is a necessary
ingredient for enabling Deep Learning inference on tiny and
resource-constrained IoT edge devices. This work presents CMix-
NN, a flexible open-source1 mixed low-precision (independent
tensors quantization of weight and activations at 8, 4, 2 bits)
inference library for low bitwidth Quantized Networks. CMix-NN
efficiently supports both Per-Layer and Per-Channel quantization
strategies of weights and activations. Thanks to CMix-NN, we
deploy on an STM32H7 microcontroller a set of Mobilenet family
networks with the largest input resolutions (224x224) and higher
accuracies (up to 68% Top1) when compressed with a mixed low
precision technique, achieving up to +8% accuracy improvement
concerning any other published solution for MCU devices.

Index Terms—Artificial neural networks; Inference Mecha-
nisms; Microcontrollers; TinyML; Edge Computing;

I. INTRODUCTION

RUNNING inference tasks at the edge of the sensing
infrastructure minimizes the user’s network bandwidth

and improves the response time [?]. When envisioning battery-
powered IoT devices with smart capabilities, the limited
energy budget puts constraints on the design of computing
platforms for edge computing. Microcontroller Units (MCUs),
which dominate the low-power spectrum of the computing
platforms, typically feature limited memory resources (up to
few MB of FLASH and below 1 MB of on-chip RAM) and
lack floating-point hardware support. Hence, the deployment
of high computational and memory requirements of deep
learning workloads [?] on edge devices results exceptionally
challenging.

Quantization methods aim at compressing deep network
parameters and temporary values to either fit the memory
constraints and lower the execution latency by exploiting
SIMD vector instructions. It is well understood that 8 bits
quantization can be achieved at almost-zero accuracy degra-
dation, even without a retraining process [?], [?]. However,
such kind of quantization level results not sufficient when
addressing complex problems requiring deep inference mod-
els. As an example, the memory requirement of the most
accurate 8-bit MobilenetV1 (70.1% on Imagenet) is higher
than the memory footprint of an STM32H7 microcontroller. To

A. Capotondi was with the Department of Physics, Mathematics and
Informatics, University of Modena and Reggio-Emilia, 41125 Modena, Italy.
E-mail: alessandro.capotondi@unimore.it.

M. Rusci, M. Fariselli, and L. Benini are with DEI, University of
Bologna, Bologna 40126, Italy. E-mail: manuele.rusci, luca.benini@unibo.it,
marco.fariselli@unibo.it

L. Benini is also with IIS, ETH Zürich, 8092 Zürich, Switzerland. Email:
lbenini@iis.ethz.ch

Manuscript received XX YY, 20XX; revised XX YY, 20XX.
1CMix-NN is available at https://github.com/EEESlab/CMix-NN

increase the compression rate while paying a limited accuracy
drop, several works exploit sub-byte, i.e., less than 8 bits,
quantization based on retraining flows [?], [?], [?], [?], [?].
This class of work focuses on homogeneous quantization,
in which the same number of bits is used for both weights
and activations, and does not consider implementation aspects
on resource-constrained devices. To close the gap between
model compression and deployment, some works proposed a
lossless threshold-based compressor, to convert the output of
the integer convolution into the quantized input of the next
convolutional layer [?], [?], [?]. In contrast, [?] proposed a
compact integer-only 8-bit quantization methodology, requir-
ing less memory footprint than threshold-based approaches by
performing the folding of batch normalization parameters into
convolutional weights before applying Per-Layer quantization.
The approach described in [?] leveraged heterogeneous mixed-
precision to deploy deep inference networks on tiny MCUs.
The proposed technique aims at cutting the number of bits
of individual weight or activation tensors below 8 bits up
to fit the memory constraints and, at the same time, paying
a limited accuracy drop if compared to the full-precision
network. However, despite the numerous works addressing
quantization on the server-side, no solution is provided for
the deployment phase, especially if considering the mixed-
precision sub-byte scenario.

To tackle this problem, we present CMix-NN, an open-
source mixed-precision library for quantized neural networks
deployment on microcontroller targets. Differently, from state-
of-the-art deployment solutions available for MCUs, our li-
brary supports convolutional kernels with any bit precision in
the set of 8, 4 and 2 bits, for any of the convolution operands.
Thanks to our library, our work describes, for the very first
time, the deployment of a MobilenetV1 capable to achieve up
to 68% Top-1 accuracy for the Imagenet classification task
on an STM32 MCU device. The result is 8% better than the
highest accuracy reported so far in the literature.

This work: i) Describe a methodology to turn a Mixed
Low-Precision network, quantized according to the state-of-
the-art approaches, into an integer-only deployment network;
ii) Expose the CMix-NN library for Mixed Low-Precision con-
volutional, discussing our optimized software implementation
and giving insights on the proposed solution; iii) Provide a
quantitative analysis of the impact of different quantization
strategies on different MobilenetV1 models running on ARM
Cortex-M7.

https://github.com/EEESlab/CMix-NN

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II, VOL. XX, NO. XX, AUGUST XXX 2

II. RELATED WORK

Concerning the deployment of deep inference networks,
several works introduced frameworks, software stacks, and
hardware solutions optimized in terms of latency and energy
consumption [?], [?], [?], [?], [?], [?]. When targeting mid-
high processors, such as ARM Cortex-A cores, optimized
software backends rely on a DSP-oriented implementation to
accelerate the basic computational kernel for deep learning
workloads: the matrix multiplication [?], [?], [?]. However,
these libraries are tailored for cores featuring an energy
consumption exceeding the requirement of battery-operated
systems and do not support sub-bytes data-type compressed
operands, hence lacking computation support for ultra low-
precision quantized models. To deploy these networks on
ARM Cortex-A cores, some works rely on bit-serial imple-
mentations [?], [?], [?]. These software stacks, decompose
low-bitwidth convolutions into bitwise operations. If looking
at processing units strongly optimized in terms of power
consumption, i.e., the MCU world, current software stacks still
lacks in terms of software support for DL model deployments,
mainly due to the severe computational and memory limita-
tions. To fill this gap, STMicroelectronics released X-CUBE-
AI, an expansion pack for automating the deployment of 32-bit
floating point and 8-bit quantized DL high-level models into
low-end STM32 microcontrollers [?]. CMSIS-NN [?], which
is the current state-of-the-art software stack for inference on
ARM Cortex-M devices, operates convolution operators on 8,
16 bits data. Unfortunately, the usage of the library has been
demonstrated only for tiny models, limited to less than ten
classes classification, hence not requiring aggressive quantiza-
tion fine-tuning [?], [?]. CMix-NN enables easy and effective
deployment on tiny MCU devices of arbitrarily quantized
CNN models, whose topologies would never meet the typical
memory requirements if utilizing state-of-the-art inference
libraries. To speed up the inference phase on parallel RISC-
V architectures, PULP-NN kernels [?] exploit 4x8 bits SIMD
MAC instructions and bit-wise extension to gain benefits in
case of bit-precision lower than 8 bits. However, this library
provides support only for homogeneous quantization, hence
not addressing mixed-precision, and is optimized for data
residing in L1 memory, which prevents the application on large
and complex models, such as Imagenet MobilenetV1.

III. CMIX-NN: MIXED-PRECISION INFERENCE LIBRARY

CMix-NN is a flexible inference framework targeting ar-
bitrarily mixed-precision inference. The library is optimized
for the ARM instruction set with vector arithmetic extensions
tailored for ARMv7-M ISA (ARM Cortex-M4 and Cortex-
M7). The core of the library is composed of a complete set of
convolutional kernels featuring a mixed low-bitwidth for the
weights, input and output activations. Any combination of 8, 4,
2 bitwidth is supported, and different quantization strategies.

A. Integer-Only Quantized Networks

The quantization of weights and activations values maps
every real value parameter into one of the 2Q discrete levels,
where Q is the target number of bits. In case of uniform

Figure 1. (a) Fake-Quantized Graph. (b) Quantized Convolutional Layer.
Dataflow model for generic forward derived from a fake-quantized sub-graph.

Table I
QUANTIZATION COMPRESSION FACTORS

Quantization Compressor

PL+FB [?] M = SxS̃w
Sy

∈ R+ M0 ∈ [0.5, 1) N0 ∈ Z
PL+ICN [?] M = SxSw

Sy

γ
σ
∈ Rn M0 ∈ [−1, 1) N0 ∈ Zn

PC+ICN [?] M = SxSw
Sy

γ
σ
∈ Rn M0 ∈ [−1, 1) N0 ∈ Zn

Note that n equals to the number of output features.

Table II
MEMORY REQUIREMENTS OF A QUANTIZED CONVOLUTIONAL LAYER

Quant ZxZxZx/ZyZyZy Weights ZwZwZw BqBqBq M0M0M0 N0N0N0

Bits 8 Qw 8/16 32 32 8

PL+FB 1 OF · kw · kh · IF 1 OF 1 1
PL+ICN 1 OF · kw · kh · IF 1 OF OF OF
PC+ICN 1 OF · kw · kh · IF OF OF OF OF

quantization, every tensor t, either representing weights or
activations or only a subset of them, can be quantized across
the numeric range [TL, TH] with a given number of bits Q [?],
such as:

tq = quant(t) = round(
clamp(t, TL, TH)

St
) · St = Tq · St

(1)
where Tq is an integer tensor and St = TH−TL

2Q−1
is a

real scaling factor. Moreover, Equation (1) can be applied
layer-wise or feature-wise on the output-feature dimension,
depending if (TL, TH) parameters are computed Per-Layer (PL
in the text) or Per-Channel (PC). The additional parameters of
the Per-Channel quantization are justified by a higher precision
of the quantized inference network [?], [?]. To turn a typical
subgraph including a convolutional layer followed by a batch
normalization layer (Figure 1a) into an integer-only represen-
tation, the parameters of batch normalization can be folded
into the convolutional weights before the quantization step [?],
[?]. We indicate this solution as FB in text. However, due to
the high accuracy drop caused by the folding process in case
of low-bitwidth weights, the Integer-Channel Normalization
(ICN) technique aims at folding the extra non-convolutional
parameters into the activation function itself [?].

Thanks to these strategies, every fake-quantized sub-graph
of a network can be mapped into a basic building block,
namely the Quantized Convolutional Layer (QCL). Figure 1b
graphically illustrates the QCL internal components. Red
boxes represent the memory requirements while the blue
box describes the computational dataflow that implements
the transfer function of a low-precision convolutional layer.
Concerning this latter block, the low-precision MAC unit is

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II, VOL. XX, NO. XX, AUGUST XXX 3

Figure 2. Generic CMix-NN Quantized Convolutional Layer Pseudocode.

the key module, aiming at accumulating the convolution result
over a temporary high precision variable Ω, INT-32 in our
case. To lower the latency, the ISA of MCU architectures
typically provides vectorized MAC operations (e.g., ARMv7-
M includes 2x 16 bit SIMD MAC instructions). The Unpack
block uncompress and cast, or simply load, the operands of
the convolution. Moreover, in case of asymmetric quantization
of weights, an additive offset −Zw applies to the loaded
parameter values to transpose them into the custom asym-
metric domain. Once the integer convolution is executed, the
Compressor unit operates the final compression on the high-
precision accumulation Ω through a set of parameters TA,
whose nature varies depending on the applied quantization
flavor. In general, the compressor can be expressed as:

Yq = Zy + clamp
(⌊
M0 · 2N0(Ω +Bq)

⌋
, YL, YH

)
(2)

where Ω =
∑

(X − Zx) · (W − Zw) is the integer high-
precision accumulation and Bq is the integer bias vector,
with high-precision format. Based on the chosen quantization
flavor and integer transformation, some extra-parameters M
can be derived as detailed in Table I. M0 and N0 param-
eters in Equation (2) express the factors M as M0 · 2N0 ,
with abs(M0) ∈ [0.5, 1). If batch normalization is folded
into convolutional weights within the scenario of Per-Layer
quantization (PL+FB), M0 and N0 are scalars. Instead, when
relying on ICN, M0 and N0 are vectors of cardinality equal
to the channel-feature dimension and M0 values can be either
positive or negative because of the folding of the batch
normalization γ parameter.

Table II reports the memory requirements (in terms of
the amount of data and bit precision) of permanent (fixed)
parameters for every QCL function, depending on the used
quantization flavor.

B. CMix-NN Convolutional Layer Execution Model

Figure 2 shows the pseudocode of the generic Quantized
Convolutional Layer (QCL). A mixed-precision QCL work-
load, like CMSIS-NN [?], splits the convolution between a
im2col phase and a MatMul loop, which returns two features

Figure 3. UnpackQ pseudocode for upacking a 32-bit vector of 4-bit
tensors to 2x16-bit vector. In case of 4-bit datatype, each 32-bit contains
eight tensors. We extract each couple of them into four 2x16-bit vectors. The
extraction of each couple of 4-bit tensors require three instructions: ROR, a
register right rotate; AND, a logical AND for the bitmask; UXTB16, extend
two 8-bit values to two 16-bit values.

of two consecutive output pixels for any loop iteration. The
im2col function, realized through the function im2colQ, loads
Q bits input data from tensorIn and copy them to temporary
buffers ptrBuff0 and ptrBuff1 after casting to 2x16 bits vec-
tors. Due to the output-stationary nature of the kernel, the
majority of the computation time is spent on the inner loop
of this MatMul phase, named as AccLoop. Inside this loop,
the UnpackQ function uncompresses 32 bits packed weight
data, tensorW, from original Q-bits format to 2x16-bit vectors
w[i], as requested by the MAC unit (in the ARMv7-M case,
vectorized SIMD 2x16 MAC instructions are used). Depending
on the weight bit precision Qw, 4 or 8 or 16 elements
(parametrized by K in the pseudocode) are uncompressed
from a single 32 bits word loaded from the packed tensorW
if the number of bits is, respectively, 8 or 4 or 2 bits. Once
the operations of the inner loop complete, accumulation value
are compressed back to Qy bits and stored back to memory
into the packed array tensorOut. The CompressQ function can
implement all the compression techniques detailed in Table I
and generalized by Equation 2.

In the case of 4-bit data type, each 32-bit contains eight
elements. The UnpackQ extracts 2-by-2 elements into four
2x16-bit vectors (see Figure 3). The operation requires three
instructions: a right rotate; a logical AND for bit masking; and
a 2x8-bit to 2x16-bit extension. Using unsigned datatypes, the
unpack requires 1.5 instructions per element, instead of 2 as
proposed by [?].

C. CMix-NN Quantization Flavors

For any combination of bitwidth between input, output, and
weights, CMix-NN supports Per-Layer (PL) and Per-Channel
(PC) with ICN or FB (PL only) compression rules. In contrast
to CMSIS-NN, CMix-NN targets asymmetric quantization
for convolutional kernels. Considering the output-stationary
dataflow of the QCL, it is convenient to apply additive offset
on the input data within the im2col phase. Weights offsets are
handled differently according to the type of quantization. If
using Per-Layer quantization (one single Zw offset per layer),
a cumulative offset value is computed at runtime and added
to the convolution bias, according to:

Ω =
∑

Xq · (W − Zw) =
∑

Xq ·W −
∑

Xq · Zw (3)

This expedient lightens the inner loop in which the Zw

subtractions are no more needed. In total, we hence have
only one subtraction for each element of ptrBuff compared
to one subtraction for each MAC operation required by the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II, VOL. XX, NO. XX, AUGUST XXX 4

0

4

8

12

16

w8a8 w4a8 w2a8

La
te

nc
y

(M
cy

cl
es

)

0

4

8

12

16

w8a8 w4a8 w2a8

La
te

nc
y

(M
cy

cl
es

)

Layer 3 – Mobilenet 192_0.5 Layer 27 – Mobilenet 192_0.5

0

4

8

w8a8 w8a4 w8a2

La
te

nc
y

(M
cy

cl
es

)

AccLoop Compressor im2col

0

4

8

w8a8 w8a4 w8a2

La
te

nc
y

(M
cy

cl
es

)

AccLoop Compressor im2col

12

16

12

16

Figure 4. Latency breakdown of MobilenetV1 Pointwise Convolutional
layers using different bitwidths. Left, the measured latencies, expressed in
millions on CPU Cycles (MCycles) for AccLoop, Compressor, and Im2col
on the MobilenetV1 Layer #3 for different weight (w) and activation (a)
bitwidths. Right, the same analysis for Layer #27.

general algorithm (see Figure 2). In the MobilenetV1 specific
case, this optimization leads to an overall latency reduction
of 5.4% in the 160 0.25 model and 8.8% in the 192 0.25.
When Per-Channel quantization is applied, however, due to
the larger number of Zw (one for each output feature) and the
memory limitation of MCU devices, this optimization cannot
be applied, and Zw must be applied in the MatMul inner loop.

IV. EXPERIMENTAL RESULTS

The experimental results aim to quantify latency-accuracy
tradeoff of different quantization low-bitwidth mixed-precision
strategies supported by CMix-NN focusing on the state-of-the-
art DL models of the MobilenetV1 family. All the different
configuration of the Mobilenet are quantized using a training-
aware quantization scheme and converted into a ”only-integer”
forward model as described in [?]. All the experiments execute
on an STM32H743 SoC, which is an ARM Cortex-M7 based
MCU, running at 480 MHz, equipped with 2 MB of FLASH,
512KB of SRAM.

A. CMix-NN Low-Bitwith Characterization

We profile the first (MobilenetV1 Layer #3) and the last
(MobilenetV1 Layer #27) pointwise layers of a MobilenetV1
192 0.5. The first case is representative of a layer with a
low number of channels and a significant spatial dimension,
while the opposite scenario is analyzed within the second
case. The four charts of Figure 4 show the latency breakdown
for the im2col extraction, the AccLoop and Compression
respectively, on different bitwidths. The two histograms at
the left show the time spent in millions of cycles in the case
of a 32 elements im2col (MobilenetV1 Layer #3). The other
histograms at the right refer to the case of 1K elements im2col
size (MobilenetV1 Layer #27). We can observe that AccLoop
computation is sensitive only to the weight quantization (upper

figures). These overheads (up to 14% in case of fixed 8-bit
activations) are due to the extraction operations for UnpackQ
when low-bitwidth types are used for weights quantization. On
the contrary, reducing the number of activation bits impact
the im2col execution time (lower figures). When im2col is
small, the unpacking of the activation tensor takes ≈10% of
the whole layer execution time. Passing from a8 to a2 can
double the time for the tensor extraction. These overheads
can increase the execution time of the whole convolutional
layer up to 8%. Instead, when the im2col size increases, the
impact dramatically goes below 1%, as shown in the chart at
the bottom right. In this case, the quantization of the activation
becomes free of overheads.

B. CMix-NN Network-Level Comparison
We use the mixed-precision configurations of the Mo-

bilenetV1 family networks provided by Rusci et al. [?],
setting the memory constraints MRO = 2MB and MRW =
512kB, corresponding with the memory characteristics of
the STM32H7 device, used in this work. Table III compares
latency, accuracy, MAC/Cycles, and Energy consumption on
a set of different MobilenetV1 networks implemented through
CMix-NN to the other state-of-the-art deployments when 2MB
memory constraints are considered. CMix-NN enables the
deployment of a much bigger models (224 α) compared
to homogeneous state-of-the-art inference libraries (192 0.5
X-CUBE-AI, 192 0.5 CMSIS-NN) achieving up to up to
68% (PC+ICN), and 67% (PL+ICN) Top-1 accuracy on the
Imagenet problem. These scores surpass by 23% the score
achieved by X-CUBE-AI in FP32, and by 8% the score
obtainable by the 8-bit uniform quantization supported by
CMSIS-NN or X-CUBE-AI. Focusing on the latency and
efficiency, CMix-NN provides up to 2× MAC/Cycle com-
pared to floating-point backend exploiting 2x16-bit SIMD
operations. PC+ICN efficiency peak, measured in 224 0.75,
is 0.36 MAC/Cycle, which is ≈24% less than the maximum
MAC/Cycle measured in X-CUBE-AI (0.52) and PL+ICN
(0.48). The mixed precision results up to 1.6x faster than ho-
mogeneous 4-bit implementation (w4a4), also showing much
lower Top-1 accuracy. Also, the 160 0.5 PC+ICN model
features nearly the same latency as the 192 0.5 with CMSIS-
NN and X-CUBE-AI, but we measure a +1.75% higher
accuracy. Latency and Accuracy highlighted results on the
Table III belong to the Pareto front when the accuracy is
higher than 60% Top-1. All of those points are obtained by
the CMix-NN inference library. Finally, applying the mixed-
precision quantization method presented by [?] to the recent
MobilenetV2 224 1.0 we archived only 54% Top-1 accuracy,
probably due to the aggressive quantization required on some
critical layers (i.e. tensors of the first inverted residual blocks
feature 2 bit of precision). Meanwhile, this is not the main
contribution of this paper, we can conclude that the selection
of the best topologies for edge devices is very critical when
quantization is applied [?].

V. CONCLUSION

In this work, we presented CMix-NN, an open-source,
flexible inference library for MCU-based edge devices. CMix-

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II, VOL. XX, NO. XX, AUGUST XXX 5

Table III
COMPARISON WITH STATE-OF-THE ART IMAGENET MOBILENET ON A STM32H7 FITTING 2MB ROM AND 512KB R/W MEMORY

X-CUBE-AI CMSIS-NN CMix-NN (our)

Network Mob-V1 Mob-V1 Mob-V1 Mob-V1 Mob-V1 Mob-V1 Mob-V1 Mob-V1 Mob-V1 Mob-V2
128 0.25 192 0.5 192 0.5 224 0.75 224 0.75 224 0.75 192 0.5 160 0.50 128 0.25 224 1.0

Quantization — PL PL PC+ICN PL+ICN PL+ICN PC+ICN PC+ICN PC+ICN PC+ICN
Tensor Type FP32 INT81 INT82 w4a4 mixed w8a8 w8a8 w8a8 mixed

Avg Act. Bits 32 8 8 4 6.72 6.72 8 8 8 5.35
Avg Wgt. Bits 32 8 8 4 5.99 5.99 8 8 8 4.61

Model Size (MB) 1.88 1.37 1.37 0.98 1.97 1.97 1.37 1.37 0.49 1.95

Latency (s) 0.206 0.437 0.510 2.290 1.86 1.419 0.677 0.460 0.110 2.013
MAC/Cycle 0.14 0.52 0.45 0.30 0.36 0.48 0.33 0.35 0.26 0.30

Accuracy Top-1 45.0% 59.5% 59.5%3 60.5% 68.2% 67.0% 62.9% 61.25% 44.6% 54.0%
Energy (µJ) 54.40 115.40 134.64 604.69 491.15 374.70 178.77 121.46 29.05 531.55

1 Tensorflow Quantization-Aware training to INT8 datatypes for weights and activations.
2 Post-Training Quantization to INT8 datatypes for weights and activations.
3 Literature does not provide MobilenetV1 implementations. We optimistically report the score from Tensorflow Lite.

NN provides an optimized backend to deploy state-of-the-art
mixed low-precision deep neural networks on ARM Cortex-
M processors. CMix-NN enables end-to-end deployment large
MobilenetV1 topologies achieving up to 68% Top1 accuracy
on the Imagenet problem fitting 2 MB memory. The max accu-
racy achieved is respectively 8%, and 23% more accurate than
state-of-the-art 8-bit, and FP32 models fitting 2 MB memory.
Low-bitwidth mixed-precision latency effects are dominated
by the lack of sub-byte and mixed-precision SIMD operations
at MCU-class ISA. Near-to-future ISA extensions will fill this
gap, enabling memory and latency efficient deployment of
mixed low-bitwidth deep neural networks.

