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Summary. We propose a novel method for simulating the effects of gene silencing. Our ap-
proach combines relevant subject matter information provided by biological pathways with gene
expression levels measured in regular conditions to predict the behaviour of the system after
one of the genes has been silenced.We achieve this by modelling gene silencing as an external
intervention in a causal graphical model. To account for the uncertainty that is associated with
the structure learning of the graphical model, we adopt a bootstrap approach. We illustrate our
proposal on a Drosophila melanogaster gene silencing experiment.
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1. Motivation

Motivation for this work comes from the field of ribonucleic acid (RNA) interference, which is
a biological process in which RNA molecules suppress or inhibit gene expression, causing the
targeted gene to be turned off. Discovery of this process and its regulatory potential by Fire et al.
(1998) opened up previously inaccessible areas of research. RNA interference can be introduced
experimentally to silence genes of interest: a process named gene silencing. Scientists routinely
use this powerful method to study functions of specific genes by analysing phenotypic effects
of their silencing, also in view of potential development of new therapeutic agents. Not sooner
than in August 2018 did US regulators approve the first therapy based on RNA interference
(Ledford, 2018). This approval is likely to jump-start further efforts in RNA-interference-based
research.

Despite this potential, some questions regarding the design and application of RNA interfer-
ence, as both a research tool and a therapeutic strategy, still remain. Experiments are expensive
and time consuming and the design of silencing experiments, which are optimal with respect to
specific targeting, might require complex adaptive procedures. Considerable savings could be
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made if potential effects of silencing could be investigated before physically performing it, to
engineer experiments in an optimal way. This is the pressing motivation for the current work.

We argue that predicting the effects of gene silencing is, in some circumstances, possible by
using careful statistical modelling. In this work, we propose a novel combination of consolidated
and new statistical tools aimed at anticipating the output of a gene silencing experiment. The
ingredients that have been combined share some common elements with tools that are used in
causal inference and with approaches that are used in the field of structure learning of biological
networks.

The outline of the paper is as follows. In Section 2, we cover the rationale behind our proposal.
In Section 3, we introduce some background material on the biological knowledge that is used
in the modelling process. In Section 4, we describe the statistical framework for gene silencing,
and in Section 5 we outline our proposed approach. In Section 6, we validate our proposal by
analysing data from the Drosophila melanogaster experiment of gene silencing. In Section 7,
we illustrate some of the practical difficulties that are encountered in the experimental process
of gene silencing and we show how our method can be used to signal the presence of some of
the undesired experimental artefacts. Some tentative conclusions, limitations and directions for
future research are discussed in Section 8.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/14679876/series-
c-datasets.

2. The rationale

Gene silencing experiments are employed by researchers for studying gene function, and for the
development of therapeutics for diseases such as cancer, infectious diseases and neurodegen-
erative disorders. Evidence deriving from gene silencing experiments, the so-called intervention
data, offer causal explanations (Moffatt, 2016); in some cases, it is used along with observational
data to infer gene regulatory processes (Hauser and Bühlmann, 2012; Rau et al., 2013; Cho et al.,
2016).

Questions that motivate gene silencing experiments resemble questions that are asked in
most studies in the health, social and behavioural sciences. For example, studying the effect of
lowering the level of a gene on a given phenotype pursues aims that are similar to those related
to exploring the efficacy of a given drug in a given population. In both cases, a causal question
is seeking an answer. Differently from experimental research, in empirical research, answers to
these questions are more complex to give: they cannot be based on data alone but require some
knowledge of the data-generating process. Despite these difficulties, the conceptual framework
and algorithmic tools that are needed for addressing such questions are well established (see,
for example, Pearl (2000) for a comprehensive overview).

We argue that tools to address causal questions in empirical research could be put into
practical use also in the context of gene silencing experiments with the aim of simulating, i.e.
predicting at an observational level, the results of an experiment without physically performing
it. Such predictions could find natural application in planning future gene silencing experiments.
Moreover, they could provide challenging information in active learning of biological networks
(Sverchkov and Craven, 2017), where additional data, usually coming from ad hoc experiments,
are collected to improve models under construction. But many other uses of such information
are easy to foresee.
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To predict the effects of silencing, we propose to combine relevant biological knowledge with
the gene expression data that are measured in controls, which, in our case, are the observational
data. In principle, biological knowledge comes in various forms, but in this work we focus on the
information that is stored in biological pathways. Biological pathways are elaborate schematic
representations of cellular processes (Fig. 1). We translate the structural information of the
pathway into a directed acyclic graph (DAG), which depicts functional relationships between
genes under study. Gene silencing can then be modelled as an external intervention in a graphical
model (Pearl, 2000; Lauritzen, 2001). Nevertheless, numerous processes taking place in a cell
at any given moment activate different pathways and, as a result, a DAG based on a single
pathway is typically not a sufficiently good model for this purpose. For this reason, we use the
observational expression data to find a DAG that better describes the gene set under study. In
particular, we extract the information on the topological ordering of genes from the pathway
DAG, and then we infer the graphical structure from the observational data under the imposed
ordering. Finally, we use the bootstrap to assess the uncertainty arising from the fact that the
intervention analysis is based on an estimated, rather than fixed, graphical model.

3. The biological knowledge

Fig. 1 represents an example of a biological pathway, the WNT signalling pathway in Drosophila
melanogaster, retrieved from the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
repository (Kanehisa and Goto, 2000). It is composed of edges and nodes with the following
meaning. Rectangles represent gene products, mostly proteins, but also RNA and complexes.
The edges between rectangles represent functional interactions. Circles represent other types of
molecules, mostly chemical compounds, whereas the large white rectangles are links to other
pathways. See https://www.genome.jp/kegg/ for a more detailed description.

Pathways show sequences of interactions ensuring maintenance and control of the flow of
information, energy and biochemical compounds in a cell. They are considered the best repre-
sentation of the experimentally validated knowledge regarding cellular processes. In fact, the
annotation of a biological pathway is the result of an extensive effort of hundreds of researchers
who manually codify their experimental findings about a specific biological process into a graph-
ical representation.

Incorporating structural information that is provided by pathways in the statistical analysis is
common in the third generation of pathway analysis methods, namely, topology-based pathway
enrichment analysis, and it has been considered by several popular approaches to detecting
differentially expressed genes between two conditions (see for instance Shojaie and Michai-
lidis (2009), Vaske et al. (2010) and Haynes et al. (2013)). The key hypothesis is that including
such external information can improve the power and interpretability of an employed statistical
procedure. Following the same line, we consider pathways as the source of subject matter infor-
mation to be used together with the observational data when building a model for predicting
the effects of gene silencing.

4. Gene silencing from a statistical perspective

Let V be a set of p genes under study, and let XV denote the associated expression levels. Let
f denote the distribution of XV and assume that there is a DAG G= .V , E/, E⊂V ×V , such
that f is Markov with respect to G, i.e. f can be factorized as

f.xV /= ∏

v∈V

f.xv|xpa.v//,
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where pa.v/ is a set of parents of v in G (we refer readers who are less familiar with graph
terminology to Lauritzen (1996)).

Gene silencing can be perceived as an external intervention on XV that forces the expression
of a targeted gene towards a desired value. Intuitively, we expect this intervention to affect the
distribution of XV . The nature and the extent of this effect are in general impossible to predict
when the causal relationships between variables are unknown. We can, however, say more about
the distribution of the system after the intervention if we further assume that G is causal for V .
The graph G is said to be causal for XV , if XV is Markov with respect ot G, and it further holds
for any A⊂V that

f.xV\A‖xÅ
A/= ∏

v∈V\A
f.xv|xpa.v//

∣
∣
∣
∣
∣
xA=xÅ

A

= f.xV /
∏

a∈A f.xÅ
a |xpa.a//

∣
∣
∣
∣
∣
xA=xÅ

A

, .1/

where the notation f.x‖xÅ
A/ denotes the post-interventional distribution, i.e. the distribution of

X after manipulating XA, forcing it to assume the value xÅ
A. Formula (1) is usually referred to

as the intervention formula and can be found in various forms in Pearl (2000) and Spirtes et al.
(2000). This is one possible definition of a causal DAG; see Spirtes et al. (2000) for a definition
in terms of direct causes.

It is important to stress the difference between two types of conditioning featured in expression
(1). Conditioning by intervention, f.xu‖xÅ

v /, describes how the distribution of Xu should be
modified if Xv has been modified by external forces and set to xÅ

v . This is different from the
conventional conditioning by observation, f.xu|xÅ

v /, which describes how the distribution of
Xu should be modified if the value of Xv has been observed and equals xÅ

v . The difference is
best illustrated on a simple example; assume that the causal DAG for Xu and Xv is u→v. Then
an external intervention on Xv has no influence on Xu and thus f.xu‖xÅ

v /=f.xu/; in contrast,
when there is no external intervention, observing the value of Xv gives us information about Xu

and thus modifies the distribution of Xu according to f.xu|xÅ
v /=f.xu, xÅ

v /=f.xÅ
v /.

The value of the intervention formula becomes clear once we understand that it provides a
recipe for determining the effects of interventions by expressing the post-intervention distribu-
tion of the system in terms of the preintervention distribution. In expression (1), the intervention
manipulates a target variable and sets its value to a constant; the intervention formula can be
easily adapted to more general types of interventions, including so-called soft interventions
(Markowetz et al., 2005).

5. Pipeline for simulating gene silencing

Within the framework that was described in the previous section, the ingredients that are needed
for predicting the effects of gene silencing are two: qualitative information provided by G and
quantitative information provided by f . We estimate these quantities by using pathway infor-
mation together with the observational expression data and then perform intervention analysis.
Our approach can be summarized in the following three steps:

step 1, retrieval of the pathway information;
step 2, guided structure learning and estimation of the statistical model;
step 3, intervention analysis.

In what follows we discuss a possible way of performing these steps in a real data analysis.

5.1. Retrieval of the pathway information
Predicting the effects of gene silencing when the underlying DAG is known is straightforward:
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we can use the observational data to estimate the preintervention distribution of the set of genes
and then obtain the post-intervention distribution from the intervention formula (see Section
5.3 for details). The underlying DAG is typically constructed from subject matter knowledge.
In this case, we can exploit information that is stored in repositories such as the KEEG. Often,
information that is stored in the KEEG does not allow immediate extraction of a directed graph,
as annotation foresees, for example, different types of relationships between variables and even
loops. We refer readers to Djordjilović et al. (2015), who discussed the most critical issues related
to conversion of pathways into graphical models. Here, we limit ourselves to the observation
that it is always possible to convert pathways into DAGs. For this, some simple steps can be
taken: since the edges ending with a bar represent inhibition, they can be interpreted as arrows,
whereas the arrows annotated with +p and −p can be considered as undirected edges. Then,
Wikipathways (Slenter et al., 2017) can be used to derive the orientation of all undirected edges.
Most of this preliminary work can be performed by the R package graphite (Sales et al.,
2018), which transforms KEGG pathways into graph objects.

5.2. Guided structure learning and the estimation of the statistical model
DAGs that are obtained by simple pathway conversion do not always fit the data particularly
well. Indeed, biological links between gene products do not necessarily correspond to statisti-
cally significant associations between the corresponding variables, whereas latent factors might
induce associations that are not depicted in the pathway. As an example of the latter instance,
consider compound-mediated interactions, i.e. interactions between two nodes for which an-
other node, a chemical compound, acts as a bridge. As data for chemical compounds are not
usually available, they are typically removed from the network. Removal is performed to avoid
interruptions of the biological signal passing through the nodes, but graphs resulting from these
manipulations do not necessarily reflect statistical properties of the distribution of the observed
variables. An illustration is given in Fig. 2.

Suppose that data are generated according to the DAG in Fig. 2(a) and that compounds
are not observed, so that pathway conversion calls for elimination of compounds. Routine
conversion would lead to the DAG in Fig. 2(b). Such DAGs, however, would not offer an
accurate representation of the observed quantities. In fact, according to the DAG in Fig. 2(b),
B is independent of C given A. However, the distribution of the observed variables .A, B, C/

will, because of the unobserved compounds, show an association between B and C even after
conditioning on A, i.e. the DAG representing the distribution of .A, B, C/ should include a link
between B and C, or between C and B.

As in this work we aim at generating predictions at a measurable level, DAGs that are obtained
by pathway conversion need to undergo a refinement. A radical solution would be to discard the
pathway DAG and to estimate the graphical structure from data (see, for example, Maathuis et al.
(2009, 2010)). However, it is widely recognized that this estimation problem, which is also known
as structure learning, represents an extremely challenging statistical task. In such situations,
including even vague prior information can significantly improve the estimation accuracy (Ideker
et al., 2011). Ma et al. (2016) pursued constrained network estimation where data are combined
with the information that is provided by pathways. Following a similar strategy, which was
first outlined in Djordjilović et al. (2017), we restrict attention to a topological ordering of the
variables that are retrieved from the pathway DAG and reconstruct the network from the data
on the basis of only such information. We denote this topological ordering by a p-dimensional
vector o, such that ok gives the kth node in the chosen topological ordering.

In graphical terminology, a topological ordering is a linear ordering of the nodes of G such
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Fig. 2. Example of (a) compound-mediated interactions and (b) the DAG resulting from their elimination

that, for every directed edge u→v, node u comes before v in the ordering. In general, topological
ordering is not unique since a DAG induces only a partial ordering. When there are multiple
orderings, none of which can be preferred on the basis of pathway or other relevant external
information, we suggest considering different alternative orderings and simulate gene silencing
under these alternative settings.

Given a single, fixed topological ordering, we propose to perform guided learning of the
structure of the model, along the lines of the K2 algorithm (Cooper and Herskovits, 1992). By
specifying the topological ordering, we respect the flow of relationships between genes, but we
leave the data to highlight the significant associations.

The K2 algorithm belongs to the family of score-based structure learning algorithms, which
search for a DAG that maximizes a given score function. The original K2 algorithm employs the
greedy search strategy to find, among all DAGs with a given topological ordering, the DAG that
maximizes the K2 score: a new scoring function proposed by Cooper and Herskovits (1992).
The K2 score is defined for categorical variables, whereas gene expression is usually measured
on a continuous scale. To avoid the loss of information that is associated with discretization
of continuous measurements, we modified the K2 algorithm to allow for multivariate normal
data. We refer to this proposal as CK2; see Appendix A for details.

After applying the CK2 algorithm, and obtaining an estimate of the underlying graph, Ĝ,
we pursue an estimate of the parameters of the joint distribution f . We exploit a definition of
DAGs in terms of structural equations (Pearl, 2000):

Xv=αv+βT
v Xpa.v/+ εv, v∈V , .2/

where εv∼N.0, σ2
v/ is the random disturbance, βv is the vector of regression coefficients, αv

is the intercept and pa.v/ is the set of parents of v in Ĝ. We estimate model parameters by
estimating p nodewise linear models relating each node to the set of its parents. Typically, the
size of the parent set is small, so βv can be estimated by maximum likelihood. When the sample
size is too small to allow for maximum likelihood estimation, the structure learning within CK2
and the estimation of the final DAG might call for some sort of regularization. In principle,
various approaches can be employed for this. In Section 6, we describe a practical solution that
we adopted in our study, which seems particularly convenient in the context at hand.

5.3. Intervention analysis
Let X=Xo denote the vector of expression levels of the genes in V , where genes are ordered
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according to the topological ordering o fixed in step 1. The matrix representation of model (2)
is then

X=α+BX+ ε,

where α= .αv/′v∈V and ε= .εv/′v∈V are vectors that are ordered according to the same topological
ordering, and each row of a p×p upper triangular matrix B contains a corresponding vector
of parameters βv from model (2). This model representation is particularly useful when inves-
tigating effects of interventions. The effect of silencing of gene v on gene u can be summarized
by the causal effect δu (Maathuis et al., 2009):

δu=E.Xu‖Xv=α+1/−E.Xu‖Xv=α/

comparing the expected level of Xu if the intervention had set the value of Xv to α+1 instead
of α. Since we assume a multivariate normal distribution, δu is independent of α. If node v is
kth in the given topological ordering, the vector of causal effects can be easily found through
matrix algebra to be given by the kth row of the matrix L= .I−B/−1. To obtain estimates of
causal effects, it is sufficient to replace B by its estimate B̂ that is obtained in step 2.

To assess the variability of the causal effect estimator, we resort to a bootstrap strategy. We
sample with replacement a large number of samples of the size of the original sample and apply
the CK2 algorithm to learn the graphical structure. We then estimate the matrix B conditionally
on the learned structure. Finally, we compute the causal effect estimates at each bootstrap
replication. As a result, we obtain the bootstrap distribution of the causal effect estimator that
takes into account not only uncertainty related to parameter estimation—i.e. matrix B—but
also the uncertainty that is related to the estimation of the graphical structure. The bootstrap
distribution of silencing effects is a mixture of two components: one corresponding to a random
variable degenerate at zero and the other to a random variable with a non-zero mean. The
degenerate component of the distribution corresponds to the bootstrap replications in which
no direct path between the silenced gene and the gene under consideration is estimated. In these
cases, the silencing has no effect on the gene.

6. Biological validation: Drosophila melanogaster experiment

In this section, we apply the proposed approach for the prediction of effects of gene silencing to
the data from the Drosophila melanogaster experiment. In this experiment run by the Department
of Biology of the University of Padova (Italy), the naked cuticle gene nkd in a fruit fly (Drosophila
melanogaster) was silenced. Data before and after silencing were measured on a number of
statistical units with realtime polymerase chain reaction, which is a technology for detection and
quantification of the messenger RNA expression that is typically considered a gold standard
thanks to its control of the inherent noise. We refer the interested reader to Djordjilović (2015)
for a description of the protocol of the experiment.

This experiment provides an ideal opportunity to access the performance of our approach,
since it offers the possibility of comparing model-based predictions with observed effects of
gene silencing. To do that, we build a statistical model using only observations from the control
group and then compare our predictions with the actually observed changes that are seen in the
knock-down group.

6.1. Data
The data consist of two sets of 14 observations of 12 genes participating in the WNT pathway:
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Table 1. Selected genes involved in the WNT pathway

Gene Annotation Description

dally CG4974 Division abnormally delayed
por CG6205 Porcupine
daam CG14622 Dishevelled associated activator of

morphogenesis
fz CG16785 Frizzled 3
rho1 CG8416 Ras homologue gene family, member A
dco CG2048 Discs overgrown or casein kinase 1, "
rok CG9774 ρ-associated kinase
sgg CG2621 Shaggy or glycogen synthase kinase 3 β
arm CG11579 Armadillo or catenin β 1
pont CG4003 RuvB-like protein 1 (pontin 52)
nkd CG11614 Naked cuticle

the first set corresponding to the treatment (silenced) group and the second set corresponding
to the control (wild type) group. Genes that are involved in the pathway are listed in Table 1.
The silenced gene is the naked cuticle gene nkd.

6.2. Retrieval of the pathway information
We started from a DAG, representing a subset of the WNT pathway, manually curated by
biologists on the basis of Fig. 1. We refer to this DAG as pathway DAG (Fig. 3(a)).

6.3. Guided structural learning
We found a topological ordering of this DAG, using the topological.sort function of the
igraph R package (Csardi and Nepusz, 2006). We pass the ordering obtained along with gene
expression data of the control group to the CK2 algorithm.

As the sample size was limited, when estimating the parameters of the candidate models
within CK2 we adopted the shrinking procedure of Schäfer and Strimmer (2005). We briefly
review the procedure for the benefit of readers. Let R be the empirical correlation matrix for the
set V of genes under study. We shrank R towards an identity matrix

RÅ=λRI+ .1−λR/R,

where I is the p×p diagonal matrix and λR is the regularization parameter whose estimated
optimal value is available analytically. We also shrank the p-dimensional vector of gene-specific
variances towards the median empirical variance, so that the regularized estimate of the variance
of gene v becomes

sÅv =λvs̃+ .1−λv/sv,

where s̃=median{sz}z∈V is the median empirical variance across p genes and sv is the empirical
variance of gene v. The optimal shrinkage intensity is also in this case estimated analytically
(Opgen-Rhein and Strimmer, 2007). Estimates of the variance vector and the correlation matrix
were combined to provide a regularized estimate of the variance matrix

VÅ=diag{√sÅv }v∈V RÅdiag{√sÅv }v∈V :

The procedures applied are available in the corpcor R package (Schafer et al., 2017).
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We used the regularized estimate VÅ to estimate the parameters of the candidate models
within CK2. When considering a parent set S for the node v, to estimate the parameter βv,S
in

Xv=αv,S+βT
v,SXS+ εv,S ,

we replaced the empirical covariance with its regularized version VÅ to obtain

β̂v,S= .VÅ
S,S/−1VÅ

S,v,

where VÅ
A,B denotes a submatrix of VÅ given by subsets A, B⊂V . This estimate is then used to

compute the fitted values and the scoring criterion.
We opted for this shrinkage procedure as opposed to regularization strategies based on

penalized regression for two reasons. Firstly, with regard to the tuning of the regularization
parameter, shrinking the covariance matrix is computationally fast and inexpensive because
of the closed form expression for the shrinkage intensity. Secondly, shrinking the covariance
matrix globally, as opposed to applying penalization in the local nodewise models, means
that all the variables are treated on an equal footing and subjected to the same amount of
penalization.

The resulting network is shown in Fig. 3(b). It is worth noting that the estimated graph appears
quite different from the pathway DAG. This output, although compatible with a learning process
in a noisy context with limited data, might also signal possible inaccuracies in the representation
of molecular pathways. In this study, for example, a participant of the WNT pathway, dally,
is itself regulated by the WNT pathway, so there is a feedback loop that is not depicted in
the pathway DAG and not even admissible by our modelling framework. Such a violation
is solved by the learning strategy by acting on the outward and inward edges of the node
involved.

6.4. Intervention analysis
We estimated causal effects as described in Section 5.3. To obtain the distribution of the esti-
mator, we considered 2000 bootstrap samples: to each of them we applied the CK2 algorithm,
followed by parameter estimation and intervention calculus. The results are reported in Table 2.
Here, we summarize the main results with respect to the goodness of predictions that were
obtained by our strategy.

(a) According to our procedure, the percentage of samples in which the estimated causal
effect was zero indicates that there are two genes with a non-zero estimated effect, i.e. fz
and por, of which only the former is stably deemed in the bootstrap analysis. The sign
and the size of the effects, if compared with that observed in the silenced group, appear
to have been predicted well.

(b) Results of a two-sample t-test comparing the mean of each gene in the control condi-
tion with its mean after silencing (the last column of Table 2) show that dally, fz and
pont were most affected by the intervention. Out of these three genes, model predictions
capture well the effect on fz. For dally and pont, predictions of silencing effects did not
correspond to that actually observed in the experiment: the size of the zero component
of the bootstrap distribution, %.δv= 0/, is high; moreover, the actually observed effect
dv is outside the interval that is given by the quantiles of the non-zero component of the
bootstrap distribution. This might reflect the feedback mechanisms that were previously
discussed.
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Table 2. Results of the procedure for simulating the effects of
silencing the nkd gene†

Gene %(δv=0) q0:025 q0:975 dv p-value

dally 81.15 −2:09 −0:69 −10:27 1:07×10−11

por 26.90 −0:98 −0:15 −0:02 9:10×10−1

daam 68.90 −6:43 −1:83 1.21 3:13×10−1

fz 4.30 −0:98 −0:14 −0:37 5:88×10−4

rho1 79.10 −71:36 15.83 −3:45 8:16×10−1

dco 79.80 −5:36 1.57 0.48 7:25×10−1

rok 68.95 −4:92 −1:04 −2:13 2:51×10−2

sgg 77.40 −6:03 −0:26 2.07 2:70×10−1

arm 69.00 −45:56 −7:05 −0:48 9:58×10−1

pont 32.50 −1:46 −0:09 −2:89 2:25×10−8

†The name of the gene is given in the first column, the percentage
of bootstrap samples in which the estimated causal effect was zero in
the second column, the 2.5% and the 97.5% quantile of the non-zero
component of the bootstrap distribution of the causal effect estimate
in the third and fourth columns, the actually observed causal effect in
the fifth column and the p-value for the test of equality of the mean
expression in the silenced and the control condition in the last column.

7. The ideal experiment

Provided that the topological ordering correctly grasps the hierarchy of relationships between the
variables of interest, a major strength of our approach is its ability to reproduce results that would
be observed if an ideal silencing were performed. By ideal silencing we intend an experimental
silencing that affects directly only its target and leaves the mechanism governing the distribution
of the remaining genes unaltered. In practice, many technical artefacts might influence the
specificity of the silencing experiment. Most notably, short interfering RNA designated to match
and destroy the target gene transcript might match more than one gene and, as a consequence,
induce undesired off-target effects. Several studies (see, for example, Jackson and Linsley (2004))
have reported experimental findings of non-specificity of RNA interference gene silencing. Qiu
et al. (2005) reported that the probability of off-target effects can be considerable (from 5%
to 80% across organisms), which prompted researchers to invest further efforts into increasing
RNA interference specificity (Pei and Tuschl, 2006; Cullen, 2006).

When gene silencing is weakly specific and acts off target, the evidence resulting from the
experiment is affected by spurious effects. We illustrate this point through a worked exam-
ple focusing on the cAMP response element binding protein (CREB) knock-down in myeloid
leukaemia cell lines.

Data from this study (which are available from the Gene Expression Omnibus portal as
GS12056) contain measurements of 22410 genes in 10 samples from the control condition
and 10 samples from the knock-down condition. For illustration, we selected a subset of genes
pertaining to the KEGG prostate cancer pathway. Pathway DAG, which is shown in Fig. 4,
contains 85 genes. CREB is represented by a dark grey node labelled 1385 (in this study Entrez
identifiers are used instead of gene symbols). Fig. 4 suggests that, in the CREB experiment,
specificity of the knock-down is in question. In Fig. 4, genes with a Bonferroni adjusted p-value
for the two-sample Wilcoxon test (control versus knock-down) below α=0:05 are highlighted.
These can be considered to be significantly affected by the knock-down. In this example, four of
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Fig. 4. DAG representing a prostate cancer pathway: , knock-down target; , genes affected by the
knock-down according to the two-sample Wilcoxon test comparing the control with the knock-down condition
(Bonferroni adjusted p-value below 0.05)

the affected genes are ancestors of CREB (2932, 3480, 3479 and 5154). Nonetheless, according
to the principles of intervention analysis, genes that precede the target in the pathway DAG
cannot be affected by the intervention. This effect may be brought about by either feedback
loops or off-target silencing effects.

To explore specificity of this knock-down further, we considered the expression of the target,
i.e. CREB, and of one of the genes that is associated with it, namely gene 2033. In Fig. 5(a),
grey points represent the expression levels of CREB and of gene 2033 in the control condition.
Although CREB should, according to the pathway annotation, inhibit gene 2033, the association
between the two is positive. Disregarding the pathway annotation and looking only at their
relationship in the control condition, it appears that an ideal knock-down of CREB should
lower the mean expression of gene 2033. Instead, the mean of gene 2033 after knock-down has
indeed increased, as shown by the cloud of black points, picturing the expression of CREB and
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Fig. 5. Expression of knock-down targets and selected genes in (a) the CREB and in (b) the nkd knock-down:
, , linear fit added for reference: , control; , knock-down

gene 2033 in the knock-down condition. Note that the association between the two remains
positive also in the knock-down condition. This behaviour can be contrasted with the nkd
knock-down that was considered earlier. Fig. 5(b) shows the expression of nkd and fz in the
Drosophila melanogaster experiment. The knock-down seems to have been more successful in
this case—consistently lower expression of nkd in the knock-down condition—and, although
the mean of fz does not lie on the line representing the linear relationship in the control condition,
it seems to be quite close to it.
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Table 3. Results of the procedure for simulating the effects of CREB silencing†

Gene Gene symbol %(δv=0) q0:025 q0:975 dv p-value

148327 CREB3L4 91.1 −4:39 3.19 −0:20 3:15×10−1

1499 CTNNB1 30.4 0.13 0.65 0.11 2:32×10−2

2033 EP300 15.6 0.27 2.01 −0:97 1:08×10−5

369 ARAF 67.8 −0:35 0.53 −0:12 1:65×10−1

51176 LEF1 50.4 −0:55 0.78 0.12 1:90×10−1

5604 MAP2K1 22.2 −1:38 0.10 −0:06 5:79×10−1

5605 MAP2K2 27 −0:44 0.38 0.11 3:55×10−2

6932 TCF7 11.4 −0:13 1.46 −0:39 1:50×10−3

6934 TCF7L2 19.3 −0:34 0.76 −0:27 1:50×10−3

83439 TCF7L1 8.2 −0:36 1.23 0.07 6:84×10−1

898 CCNE1 20.8 −0:53 0.32 −0:14 2:32×10−2

9134 CCNE2 10.8 −0:05 3.30 −0:27 6:31×10−1

4792 NFKBIA 18.9 −0:46 0.99 −0:01 3:93×10−1

595 CCND1 8.5 −0:21 1.11 −0:72 4:33×10−5

1017 CDK2 18 −0:72 0.11 0.13 2:32×10−2

1387 CREBBP 8.1 −0:39 0.59 −0:31 4:33×10−5

5594 MAPK1 11.6 −0:38 0.13 −0:13 1:50×10−3

5595 MAPK3 5.2 −0:48 −0:01 0.04 7:53×10−2

5925 RB1 5.4 −0:18 0.92 −0:27 5:20×10−3

7157 TP53 9.9 −0:07 0.68 0.01 7:39×10−1

367 AR 16.3 −0:93 0.76 −0:66 1:08×10−5

354 KLK3 4.5 −0:60 0.71 0.15 6:30×10−2

†The gene identifier is given in the first column, the percentage of bootstrap samples
in which the estimated causal effect was zero in the second column, the 2.5% and
the 97.5% quantile of the non-zero component of the bootstrap distribution of
the causal effect estimate in the third and fourth columns, the actually observed
causal effect in the fifth column and the p-value for the test of equality of the mean
expression in the silenced and the control condition in the last column.

To evaluate the effects of the CREB knock-down in an ideal experimental setting, we applied
our approach to the data from the control condition. In step 1, we obtained a topological
ordering of the pathway DAG. The target gene occupied position 63. We restricted our attention
to the portion of the pathway DAG containing the target gene, its only parent (2932) and all the
genes following the target gene in the topological ordering (genes ranked from 64 to 85). The
results are shown in Table 3.

Although there are some genes for which the zero component in the bootstrap distribution was
low, e.g. 83438, 595 and 1387, for most of them the associated bootstrap interval for the causal
effect contained zero, i.e. the change after CREB silencing was not significant. In two cases—
genes 2033 and 5595—the associated bootstrap intervals did not contain zero. Remarkably, in
these cases, the predicted sign of the silencing effect was different from the effects that were
actually observed in the knock-down group, but coherent with the evidence derived by the
analysis of the control condition. For example, going back to gene 2033 that was considered
earlier, a lowering of its mean level is predicted by our approach, demonstrating its ability to
indicate the presence of an off-target effect.

8. Discussion

We have described a model-based technique that can be used as a simulation tool for predicting
the effects of gene silencing at any node in a DAG. It provides a rapid and inexpensive way to
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foresee effects of gene silencing that can be usefully employed for constructing appropriately
tuned designs of gene silencing experiments.

Our approach is different from an apparently similar approach of Maathuis et al. (2009)
called ‘IDA’ (intervention calculus when a DAG is absent), which has recently been generalized
by Nandy et al. (2017). The aim of IDA is to identify the most promising targets to be silenced to
produce the largest effect on the phenotype of interest; the aim of our approach is to identify the
genes that are mostly affected by an intervention on a given target. In the former case, therefore,
the focus is on intervention development; in the latter on intervention evaluation. Although
slight, this distinction justifies different methodological solutions chosen in the two cases, most
notably regarding the causal effect estimation. In IDA, the estimated DAG is used locally, since
the causal effect of gene Xv on gene Xu is taken to be the coefficient of Xv in the linear model for
Xu adjusted for the set of parents of Xv, i.e. the coefficient of Xv in the model Xu∼Xv+Xpa.v/

in the formula syntax that is used by the statistical software R. By contrast, in our approach the
graphical structure is used globally when estimating the matrix B from which the causal effect
estimates are obtained. In practice, this means that the causal effect of Xv on Xu will be zero in
our approach whenever there is no direct path between the associated nodes, whereas in IDA
this will occur only if Xu is a parent of Xv.

Our approach relies on a guided structure learning of the DAG and intervention calculus,
coupled with a bootstrap analysis. Guiding the learning of the DAG by defining a topolog-
ical ordering and letting the data identify a structure that is compatible with such a flow of
relationships is, in our view, a fair compromise

‘between the ability to describe phenomena at the conceptual level and the ability to generate predictions
at a measurable level’

(Shmueli, 2010). A side effect of this strategy is that possible conflicts between biological knowl-
edge and data-driven information can serve as pointers to where in a pathway and/or in a DAG
further analysis is required. The next step is to understand, within the context of the specific
problem under analysis, the reasons for the observed inconsistencies.

As far as the learning strategy is concerned, two aspects are crucial when considering a learning
strategy: the computational cost and the quality of the structure that it returns. The search
strategy on which our proposal is based, the so-called greedy search, is particularly attractive
for three main reasons. First, being heuristic, it enables dealing with the enormous size of the
space of the DAGs (Robinson, 1977). Secondly, it is easy to implement and the evaluation
of single-edge additions is computationally inexpensive. As an illustration, in the Drosophila
melanogaster experiment, the complete analysis including estimation for 2000 bootstrap samples
took just under 1 min on a personal computer. Similarly, the analysis for the CREB knock-down
took under 2 min. Finally, it is justified by the asymptotic theory (Chickering and Meek, 2002;
Chickering, 2003) and numerous empirical studies (see, for example, Aliferis and Cooper (1994)).

As suggested by one of the reviewers, one could, instead of relying on a greedy search, learn
the graphical structure by solving a series of independent, possibly regularized, regression prob-
lems. Indeed, the problem of finding the optimal parent set for a given node could be seen
as the problem of identifying variables with non-zero regression coefficients in a linear model
containing all potential parents. If the number of potential parents is small, all possible sub-
sets of parents for each node could be ranked according to some scoring criterion. When the
number of potential parents is medium to large, such a search rapidly becomes computationally
prohibitive. A simple strategy would consist of considering the restricted set of models that is
obtained as solutions of a lasso problem (Tibshirani, 1996) for different values of the tuning
parameter. To choose the optimal model among them (and thus the optimal value of the tuning
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parameter), one could employ the extended Bayesian information criterion (Chen and Chen,
2008), which accounts for both the number of unknown parameters and the complexity of the
model space. It is, however, unclear to what extent this approach can be useful in settings with a
very low sample size, like those typically considered in the applications of interest for this paper.
We leave this issue for future research.

The bootstrap strategy enables accounting for uncertainty in the predictions. Constructing
the bootstrap distribution of silencing effects is, in our view, particularly informative. Indeed, it
offers two distinct and equally interesting pieces of information: the percentage of cases when
no effect was found, and the interval for the predicted mean when the effect was observed.
As we employ simple non-parametric resampling, in small sample size settings some problems
might occur if many resamples have sample values that are repeated many times. In that case
it is advisable to control the composition of the resamples. It is also worth mentioning that in
the case of very small sample sizes one might resort to algorithms for exact computation of
non-parametric bootstrap estimates (Fisher and Hall, 1991).

Instead of constructing the bootstrap distribution of silencing effects, an alternative strategy
could be employed. Specifically, one could first learn an ensemble of DAGs based on bootstrap
resamples and then derive an aggregate DAG by some consensus measure. For example, Wang
and Peng (2014) minimized the overall distance to the entire ensemble measured in terms of
the structural Hamming distance. The overall distance to the pathway DAG could also be
considered. In our study, such a strategy led to the same substantive conclusions as were reached
by our approach.

There are still practical and theoretical considerations that require further investigation. The
multiplicity of topological orderings and its effect on predictions is one such issue. Different
topological orderings might lead to different estimated DAGs, i.e. to alternative tools to generate
predictions of gene silencing. We do not perceive this as a limitation of our method. Indeed, in a
predictive perspective—that does not need to exploit the exact role of each variable in terms of
an underlying causal structure—different models might provide equally valid predictions. Our
feeling was supported by findings in the Drosophila melanogaster experiment, where different
topological orderings led to estimated DAGs with the same descendants (fz and por) for the
intervened gene (nkd) and comparable predictions of silencing effects (the results are reported in
Appendix A). An alternative solution to the problem of multiple orderings would be to pursue a
generalization of the method proposed that takes as an input a partial, rather than a complete,
topological ordering.

Another issue of concern arising when sets of genes are modelled by DAGs is the dynamic
nature of gene networks characterized by feedback loops. Obviously, feedback loops correspond
to cycles and cannot be modelled by DAGs. A possible solution to this problem is offered by
dynamic DAGs that unfold loops in time, but methodological research in this direction has been
hindered by both technological and biological issues. Experiments with repeated measurements
of gene expression are still an exception, rather than a rule and, moreover, since events within
a cell exhibit great variation in terms of the amount of time that they require, determining an
appropriate distribution of points in time when gene expression is to be measured is a challeng-
ing task. With reference to the method that is proposed here, these limitations imply that the
predicted effects of gene silencing refer to an instantaneous reaction of the system to an external
intervention, which might be modified with time through various feedback mechanisms.
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Appendix A

A.1. CK2 algorithm
The CK2 algorithm is an adaptation of a score-based greedy search algorithm for structure learning: the
K2 algorithm (Cooper and Herskovits, 1992). In the K2 algorithm, variables are ordered according to
the prespecified topological ordering and parent sets for all nodes are initially empty. For each node, the
algorithm then searches, among potential parents, i.e. variables preceding the given node in the topological
ordering, for the variable that increases the chosen score the most and adds it to the parent set. This
procedure is repeated until either the score cannot be improved any further or the maximum prespecified
number of parents has been reached. The pseudocode is given in Table 4.

To apply the K2 algorithm to continuous data we modified the scoring function by considering criteria
that are applicable to continuous data. We opted for a simple solution that is offered by the Bayesian
information criterion (BIC). If we assume that n independent realizations of XV have been observed, then
the BIC score of a DAG G is

BIC.G/=n{log |K̂|− tr.SK̂/}− log.n/
∑

v∈V

card{pa.v/},

where S is the sample covariance matrix, K̂ is the maximum likelihood estimate of the concentration matrix
(constrained by the conditional independence relationships that are encoded in G), ‘| · |’ denotes a matrix
determinant, tr.·/ denotes a trace and card.A/ denotes the cardinality of the set A.

The BIC belongs to the Bayesian scoring metrics family and can be seen as an asymptotic approxima-
tion of the posterior probability of the structure, i.e. the approximation of the full posterior probability
integrated over all possible parameterizations of the conditional densities for the given structure. Further-
more, Haughton (1988) showed that the BIC is a consistent scoring criterion. We recall the definition of
consistency of a scoring criterion.

Definition 1 (consistency of a scoring criterion). Assume that data are generated by some distribution
fÅ whose underlying DAG is GÅ (in other words, the set of conditional independence relationships that
hold in fÅ coincides with the set of conditional independence relationships that are implied by GÅ). We
say that a scoring function is consistent if the following properties hold as the number of observations goes
to∞, with probability that approaches 1:

(a) the structure GÅ will maximize the score;
(b) all structures that are not equivalent to GÅ will have strictly lower score.

Table 4. Algorithm 1: the K2 algorithm (Cooper and Herskovits, 1992)

Input: n observations of p variables X1, : : : , Xp, a topological ordering, an upper bound
for the number of parents u

for i=0 to p do
pai←∅
Pold←g.i, pai/ g is the chosen scoring criterion
OKToProceed← true
while OKToProceed and |pai|<u do

let z be the node in Pred.xi/\pai that maximizes g.i, pai∪{z}/
Pnew←g.i, pai∪{z}/
if Pnew >Pold then

Pnew←Pold
pai←pai∪{z}

else OKToProceed←false
end if

end while
print ‘parents of the node:’, xi, ‘are’, pai

end for
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Table 5. Results of the procedure for simulating the effects of silencing
the nkd gene for eight alternative topological orderings compatible with the
pathway DAG†

Ordering Results for por Results for fz

%(δv=0) q0:025 q0:975 %(δv=0) q0:025 q0:975

1 36.20 −2:16 −0:10 4.85 −1:07 −0:13
2 73.10 −3:34 −0:55 13.60 −1:14 −0:26
3 57.80 −2:97 0.40 11.00 −1:16 −0:11
4 36.20 −2:16 −0:10 4.85 −1:07 −0:13
5 26.90 −0:98 −0:15 4.30 −0:98 −0:14
6 26.90 −0:98 −0:15 4.30 −0:98 −0:14
7 36.20 −2:16 −0:10 4.85 −1:07 −0:13
8 26.90 −0:98 −0:15 4.30 −0:98 −0:14

†Only the effect on the two most affected genes, por and fz, are reported. For
each gene, %.δv=0/ is the frequency with which the estimated causal effect was
zero in the bootstrap distribution, whereas q0:025 and q0:975 denote the 2.5%
and 97.5% quantile of the non-zero component of the bootstrap distribution
of the causal effect.

Chickering and Meek (2002) and Chickering (2003) derived optimality results stating that the greedy
search used in conjunction with any consistent scoring criterion will, as the number of observations goes
to∞, identify the true structure up to an equivalence class. This, together with the fact that CK2 uses the
specified topological ordering, ensures its consistency.

A.2. Alternative topological orderings
Our proposed approach relies on a topological ordering that is obtained from the pathway DAG. In general,
there are many such orderings and predictions that are obtained might depend on a particular choice. To
investigate this issue in our experiment, we considered an additional eight topological orderings in line
with the pathway DAG. We predicted the effect of silencing under each of them, and the results for the two
most affected genes are reported in Table 5. In all of the orderings considered, the silenced gene was the
first, so all remaining genes could be potentially affected. For each ordering, the same 2000 bootstrapped
data sets were generated, so that the observed variation can be assigned only to the topological ordering.
Indeed, it can be seen that, for instance, orderings 5, 6 and 8 lead to identical results. More importantly,
results under different orderings seem to be consistent, and in this case lead to the conclusion that fz gene
is the only gene that can be reliably expected to be affected by the silencing of nkd.
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