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Abstract

After the development of “classical” tricyclic anti-

depressants and monoamine oxidase inhibitors, numerous

other classes of antidepressant drugs have been in-

troduced onto the market. The selective serotonin re-

uptake inhibitor class is the best‐known one, but many

others exist, usually identified by their mechanism of ac-

tivity. In this second part of the review, focused on new‐
generation antidepressants not included among selective

serotonin reuptake inhibitors, the following classes are

considered: noradrenergic and selective serotonergic an-

tidepressants; norepinephrine reuptake inhibitors; ser-

otonin, norepinephrine and dopamine reuptake inhibitors;

melatonergic agonists and selective serotonergic antago-

nists; norepinephrine and dopamine reuptake inhibitors;

and so forth. These different mechanisms underlie toler-

ability and safety profiles that can be very different among

the classes, with each one providing significant advantages

and disadvantages in comparison with others. The main

characteristics of the following antidepressants are de-

scribed: mianserin, mirtazapine, setiptiline, reboxetine,

viloxazine, teniloxazine, atomoxetine, nefazodone, ago-

melatine, bupropion, esketamine, and tianeptine. The pa-

per is focused on their metabolism and interactions, but
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also includes brief notes on analytical methods useful for

their therapeutic drug monitoring.

K E YWORD S

drug‐drug interactions, metabolism, metabolites,

new‐generation antidepressants (NGAs), therapeutic

drug monitoring (TDM)

1 | INTRODUCTION

Major depressive disorder (MDD) is currently considered one of the most important causes of disability worldwide,

especially in late life,1 and its increasing recognition as a severe, life‐threatening disorder is reflected in the rise of

expenditures for its pharmacological treatment.2 This trend is present also in developing countries, underscoring

the acknowledgment of MDD treatment as one of the fundamental healthcare services that should be provided to

the population.3

Effective pharmacological therapies for MDD began in the 1950s with the development of tricyclic anti-

depressants (TCAs) and monoamine oxidase inhibitors (MAOI); these classes are now considered to include the

“classical,” first‐generation antidepressants.4 There is no complete accord on which drugs belong to the second,

third or even fourth generation of antidepressants; however, most scientists agree that different MDD treatment

paradigms have arisen with the introduction of selective serotonin reuptake inhibitors (SSRIs), in the 1980s. SSRIs

and all other agents developed thereafter are usually collectively known as “new‐generation” (or sometimes

“atypical,” by analogy with antipsychotic drug classes) antidepressants (NGAs). 5

Like MAOIs and then SSRIs, other NGA agents are also usually grouped together according to their mechanism of

activity and indicated by the corresponding acronyms, as follows: serotonin and norepinephrine reuptake inhibitors (SNRI);

serotonin modulators and stimulators (SMS); serotonin antagonists and reuptake inhibitors (SARI); noradrenergic and

selective serotonergic antidepressants (NaSSAs); norepinephrine reuptake inhibitors (NRIs); serotonin, norepinephrine and

dopamine reuptake inhibitors (SNDRIs); melatonergic agonists and selective serotonergic antagonists (MASSAs); and

norepinephrine and dopamine reuptake inhibitors (NDRIs). Other drugs still are not included in any of these classes, either

because their mechanism is still debated, or because no clear path to establish a new class has emerged.

Despite their different mechanisms of action and pharmacological profiles, until the introduction of esketamine

and brexanolone (the latter only indicated for postpartum depression) all antidepressant classes were commonly

believed to have delayed onset of effect: antidepressant treatment had a latency of at least 3 to 4 weeks before full

symptom relief would appear; most patients experienced benefits after about 6 to 12 weeks.6 This would suggest

that the immediate pharmacological mechanism is just the starting point for a much more complex, and as yet

unclear, set of adaptive body responses that finally produce the desired effect. These adaptive responses are

currently believed to be linked to the activation of second messenger pathways and transcriptional regulators and/

or the onset of complex interactions between different neurotransmitter systems.7,8 It should be noted, however,

that the common knowledge of the antidepressant delayed onset of action has been disputed for a long time in the

academic community, at least until the 2000s.9

In any case, esketamine and brexanolone (which are delivered intranasally or intravenously) seem to have the

advantage of an almost immediate clinical response, which appears in a matter of hours or days instead of weeks.10

No other antidepressant drug has emerged with similarly fast onset of action, even though many candidates are

currently being developed.11

The huge number of possible choices when beginning a pharmacological antidepressant treatment underscores

the need for deepening the knowledge of mechanisms, pharmacodynamic and pharmacokinetic characteristics,
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and possible interactions of these drugs. Therapy personalization and optimization is a real necessity for the

treatment of such a complex and multifaceted disorder as MDD, one that can really lead to the minimization of the

side effect burden and to increased treatment efficacy.12

Often, patient compliance is low due to the chronic nature of the MDD therapy, to the side effect burden, to

the delayed onset of therapeutic effects and to the hopelessness which is a hallmark of MDD13;

nonresponder patients often need different drug doses or the switch to another drug. All these and other problems

can be tackled effectively through therapy personalization.14 An optimal personalization will be achieved by using a

combination of clinical and genetic factors, a method that has been demonstrated to be cost effective.15

One of the most powerful tools for therapy optimization is therapeutic drug monitoring

(TDM).16‐18 It includes the periodic determination of drug and metabolite plasma levels, together with the use of

chemical‐clinical correlations (i.e., correlations between administered drug dose and plasma levels; between plasma

levels and therapeutic efficacy; and between plasma levels and side and toxic effects).

The information thus obtained represents a sound, rational and objective foundation, on which the clinician can

base its activity using clinical observations to build a safe and effective therapeutic platform.19 TDM can also lead

to reduced healthcare expenses, due to the possibility of better efficacy, increased patient compliance and en-

hanced safety, leading to a reduction in hospitalizations due to unwanted effects or therapy ineffectiveness.20 TDM

is particularly useful in avoiding overdoses and their consequences, as well as in managing drug‐drug interactions

(DDIs)21: Of course, this is particularly important during polypharmacy.

Currently, regarding psychotropic drugs, TDM has been mainly applied to antipsychotics22‐25 with notable success.

Only in the last few years, TDM is becoming widespread in other fields of pharmacopsychiatry and neuropharmacology,

including anxiolytic,26,27 anticonvulsant,28 and antidepressant29 pharmacotherapy. Among antidepressants, TDM is

becoming relatively common especially for TCAs, MAOIs, and SSRIs, which are the best‐known antidepressant drugs,

especially in cases of metabolic anomalies, suspected noncompliance, or polypharmacy.30 TCAs and MAOIs, in parti-

cular, have relatively narrow therapeutic windows, thus avoiding toxicity is one of the main purposes of TDM for these

drugs.31 Non‐SSRI NGAs are less well‐known, and their chemical‐clinical correlations are often not well established; for

this reason, it is important that suitable analytical methods are developed, to try and make their TDM feasible and

reliable and to harvest the large amount of data needed to produce statistically significant chemical‐clinical correla-
tions.29 In particular, some NGAs are not approved in the USA, and this drastically reduces their international scientific

appeal, leading to a dearth of papers detailing their use, interactions, and TDM. Starting in 2004, the German Work-

group for Neuropsychopharmacology and Pharmacopsychiatry (Arbeitsgemeinschaft für Neuropsychopharmakologie

und Pharmakopsychiatrie [AGNP]), has published its TDM Expert Group consensus guidelines,32 which have been

updated in 2011, 2017,33 and 2019 (the last one only in German for now). There, the authors report for each considered

drug a “level of recommendation to use TDM,” which is expressed as a number in the 1 to 4 range: 1 corresponds to the

drugs for which TDM is most recommended (“Strongly recommended”), followed by 2 (“Recommended”), 3 (“Useful”),

and 4 (“Potentially useful”). It should be underscored, and understood, that these recommendation level classes are only

relative to routine TDM use. However, the practice can be very useful for a wide range of purposes, not limited to

routine applications. For example, TDM usefulness includes, but is not limited to, insufficient response, suggested

nonadherence, adverse drug reaction at therapeutic doses, and potential DDIs. This is true even for those drugs whose

TDM recommendation level is low, 3 or 4, and even when chemical‐clinical correlations are unavailable or unclear.

Hence the great clinical and research value of TDM.

In this Part 2 of the review series, the main pharmacodynamic, metabolic, and interaction characteristics will be

described for NaSSA, NRI, SNDRI, MASSA, and NDRIs drugs, and namely: mianserin, mirtazapine, and setiptiline

among NaSSAs; reboxetine, viloxazine, teniloxazine, and atomoxetine among NRIs; nefazodone as an SNDRI;

agomelatine as a MASSA; bupropion as an NDRI; and esketamine and tianeptine outside all other classes. Some

notes are also included, dealing with available analytical methods that can be used for TDM purposes.

In Part 1 of the review series,34 similar information has been reported on SNRI, SMS, and SARI antidepressants.
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2 | METHODS

Electronic searches of the following publication databases were conducted: Scopus35 and PubMed.36 Search results

covered the time span from 2000 to August 2019, to retrieve the most recent and updated information available. If

this information proved to be incomplete on in any way unsatisfactory, the search was extended back in time in

5‐year intervals.
Search terms for the general section of each drug monograph used the following strings: drug name AND

(pharmacology OR metabolism OR pharmacokinetics); drug name AND (mechanism of action). The results for each

drug were then examined in detail, filtering data according to presence in meta‐analysis papers and in double‐blind,
high‐numerosity studies (in this order). All other papers were discarded.

Search terms for the analytical/TDM section of each drug monograph used the same time span and the

following string: drug name AND (HPLC OR LC OR MS OR mass spectrometry OR GC or CE OR electrophoresis OR

immunoassay); drug name AND (TDM OR monitoring). Within these results, exclusively papers on applications to

human blood/plasma/serum or other human biological tissues relevant for TDM purposes were chosen. Only

papers with a clear analytical purpose were chosen; that is, those that included complete or almost complete

analytical method details and performance data.

3 | NORADRENERGIC AND SELECTIVE SEROTONERGIC
ANTIDEPRESSANTS

3.1 | Mianserin

Mianserin ((±)‐2‐methyl‐1,2,3,4,10,14b‐esahydrodibenzo[c,f]pyrazino[1,2‐a]azepine, MSR, Figure 1A) is an anti-

depressant and hypnotic marketed in several countries as Tolvon, Lantanon, and Lerivon; generic formulations are

also commonly available.

It was first approved in France in 1979 with the name Athymil, and then in the UK as Norval. It was also

approved in 1998 in Australia,37 but has never been approved by the US Food and Drug Administration (FDA),

supposedly due to some fraud or unreliability in the clinical trial data treatment.38,39 Consequently, the Drugs.com

database does not list possible MSR interactions. The Drugbank database lists up to 1423 potential interactions,

although there is no indication of their possible respective severity.40

It has a very wide receptor activity spectrum, being an antagonist/inverse agonist at histamine H1, serotonin

5‐HT1D, 5‐HT1F, 5‐HT2A, 5‐HT2B, 5‐HT2C, 5‐HT3, 5‐HT6, and 5‐HT7, adrenergic α1 and α2 receptors, and a NRI as

well (antagonist of the norepinephrine transporter [NET]).41 MSR has maximum affinity toward H1 receptors, and

this explains its strong sedative effects; on the contrary, muscarinic affinity is very low, giving the drug a relatively

low incidence of cardiovascular side effects.42

Recently, it has been found to directly activate κ‐opioid receptors, displaying partial agonist activity in different

cell systems.43 It has also demonstrated to significantly lower withdrawal symptoms and duration in medication‐
supported physical detoxification of opioid‐addicted subjects; however, it also increased the dropout rate leading to

overall worse results.44

The drug is administered as a racemate, although the two enantiomers seem to have significantly different

pharmacological activity: S‐(+)‐MSR is about 2 to 300 times more potent than R‐(−)‐MSR as an antidepressant, but

the two enantiomers have similar sedative properties.45

MSR metabolism includes three main pathways: 8‐hydroxylation, N‐demethylation, and N‐oxidation
(Figure 1B‐D). N‐desmethylMSR and 8‐hydroxyMSR retain antidepressant properties but are less sedating than

mianserin, while mianserin N‐oxide seems to be much less active.43 Koyama et al46 have determined that

8‐hydroxylation of both enantiomers of mianserin is mediated by cytochrome P 450 (CYP) isoform 2D (followed by
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2B6, 3A4, and 1A2), while N‐demethylation of both enantiomers is catalyzed mainly by CYP2B6 (followed by 2C19,

1A2, 3A4, and 2D6). N‐oxidation is catalyzed mainly by CYP1A2 (and 3A4). CYP3A is involved to a certain extent in

each of the stereoselective mianserin pathways. Regarding CYP2D, five CYP2D isoforms (2D1, 2D2, 2D3, 2D4, and

2D6) produce similar levels of 8‐hydroxyMSR. CYP2D3 and 2D4 are the most efficient N‐demethylation agents,

while only CYP2D1 produces MSR N‐oxide (at low levels). 8‐Hydroxy‐N‐desmethylMSR is formed by CYP2D4 and

2D6. 47

CYP2D metabolism is markedly stereoselective, with high specificity towards the R‐(−) enantiomer: by CYP2D1

and 2D4 for the formation of 8‐hydroxyMSR and MSR N‐oxide, and by CYP2D6 for the formation of

N‐desmethylMSR.45

3.1.1 | Mianserin interactions

Clinically relevant data

There is some lack of data from studies on humans regarding MSR interactions. It is known that age, sex, smoking,

and coadministration of benzodiazepines do not significantly alter MSR metabolism.48

Interaction data from animal studies (low or uncertain clinical significance)

DDIs data comes mostly from animal studies, which are known to be hardly translatable to the clinical setting,

especially regarding pharmacokinetic interactions.

Caffeine and sildenafil have been found to increase the effect of MSR in the forced swim49,50 and tail sus-

pension tests47; this interaction is probably not pharmacokinetic in nature, since the brain levels of MSR were not

changed by either compound. On the contrary, traxoprodil has no effect in the efficacy of MSR in the forced

F IGURE 1 Main metabolic pathways of mianserin. CYP, cytochrome P 450
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swimming test, despite its capacity to increase the effect of agomelatine by increasing its brain concentration.51

In rats, although it moderately increases blood pressure, MSR treatment has no effect on the hypotensive effect of

propranolol and enalapril, and significantly enhances the effect of prazosin.52 There is also some clue that MSR

could increase the antinociceptive effect of metamizole and indomethacin (but not morphine) in mice.53

3.1.2 | Therapeutic drug monitoring

According to the ACNP's TDM guidelines, MSR is a “level 3” drug, that is, its TDM can be used to control whether

drug concentrations correspond to reference ranges, for special indications or to solve clinical problems.31 The

reference therapeutic MSR level range at through (Cmin) is 15 to 70 ng/mL, with a laboratory alert level (risk of

toxicity) of 140 ng/mL.31,54

Generally, the number of published analytical methods for the TDM of MSR has been declining over the years,

probably due to a parallel decline in its use in clinical settings.

Liquid chromatography‐tandem mass (LC‐MS/MS) is widely used to measure MSR concentrations in plasma or

serum,55 sometimes with N‐desmethylMSR,56 or with the N‐desmethyl, 8‐hydroxy, and N‐oxide metabolites (using a

monolithic silica column and solid‐phase extraction for sample pretreatment).57 High performance liquid

chromatography‐spectrophotometric detection (HPLC‐UV) is the most frequent alternative.58

A capillary zone electrophoresis (CZE)‐UV method has been proposed for the enantioselective analysis of MSR

in serum, using 2‐hydroxypropyl‐β‐cyclodextrin as the chiral selector.59

A method based on gas chromatography (GC) exists, coupled to surface ionization detection (SID),60 a type of

GC detector particularly suited for the analysis of organic amines.61

3.2 | Mirtazapine

Mirtazapine (1,2,3,4,10,14b‐hexahydro‐2‐methylpyrazino2,1[a]pyrido2,3‐c2‐benzazepine [MRT], Figure 2A) is a

recent SGA approved for this indication by FDA in 1996.62 It is currently also used against anxiety and post‐
traumatic stress disorder.63 A recent study64 suggests that MRT could also be useful in movement impairment, such

as Parkinson's disease or akathisia caused by neuroleptic drugs. Chemically, MRT is a piperazinoazepine compound

similar to MSR. It belongs to the class of “Noradrenergic and Specific Serotonergic Antidepressants” (NaSSA) and its

mechanism of action probably involves the increased release of serotonin and norepinephrine due to the antag-

onism on autoreceptors and α2 adrenergic heteroreceptors; MRT also causes 5‐HT2 and 5‐HT3 blockade65 and H1

antagonism. MRT seems not to interact with cholinergic receptors and does not inhibit neurotransmitter uptake.

This mechanism, which differs from that of most second‐generation antidepressants (SGAs), grants good efficacy in

the treatment of patients who are nonresponder to the latter66 and at the same time a faster onset of the

therapeutic activity.67 In fact, when compared with the SGA paroxetine, a SSRI,68 MRT has shown activity

after only a few weeks of administration and better control of anxiety.65 MRT is available as film‐coated Remeron

tablets.69

MRT is almost totally biotransformed in the liver by action of CYP2D6, 3A4 and 1A2.70,71 The two main

metabolic pathways involve demethylation or oxidation; the most abundant metabolites thus formed are

N‐desmethylMRT (Figure 2B) and 8‐hydroxyMRT (Figure 2C).72 Of these, N‐desmethylMRT has activity similar to

that of the parent drug, but with lower potency73; the activity of 8‐hydroxyMRT has not yet been completely

elucidated. It has been hypothesized that CYP2D6 is responsible for 8‐hydroxylation while CYP3A4 is responsible

for N‐demethylation.74 Seven minor human products of phase I and II metabolism have been reported as well.75

MRT is a chiral compound and stereospecificity has been found in its biotransformation; the drug, however, is sold

as a racemate. The R(−)‐enantiomer shows the longest elimination half‐life from plasma, probably due to the
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formation of a quaternary ammonium glucuronide; the S(+)‐enantiomer is preferentially metabolized into an

8‐hydroxy glucuronide.70

Even though MRT has a wider therapeutic index and better tolerability than traditional TCAs,76 its

administration is not devoid of undesired effects. The main side effects of the drug are appetite increase and body

weight gain,77 somnolence and sedation; less frequent are headache, edema, and hepatic enzyme level increase,

which can evolve into jaundice and thus require treatment interruption.78 Recently, there have been reports of a

possible increase of suicide risk in adolescents treated with SSRI antidepressants or MRT,79 though the association

is not unequivocal.80

3.2.1 | Mirtazapine interactions

Clinically relevant data

MRT does not significantly inhibit or induce the most important CYP subsystems,72 although it could be considered

a weak competitive inhibitor of CYP1A2, CYP2D6, and CYP3A4.68 Thus, MRT does not seem to have a high

potential for pharmacokinetic interactions; it has been verified that it does not interact directly with atypical

antipsychotics such as clozapine, risperidone,81 and olanzapine,82 nor with antidepressants such as venlafaxine.83

Nonetheless, a specific form of pharmacodynamic interaction can occur with MAOIs, with abnormal increase of

serotonin levels and the onset of serotonin syndrome, including agitation, ataxia, diaphoresis, diarrhea, fever,

hyperreflexia, myoclonus, shivering, and changes in mental status.76 The coadministration of alcohol, anxiolytics, or

hypnotics can potentiate the sedative effects of MRT.76

Data with low or uncertain clinical relevance, case reports

Single cases of possible interactions with clozapine84 and risperidone85 have been reported, causing severe side

effects (thromboembolia and rhabdomyolysis). Moreover, MRT augmentation could improve negative and cognitive

F IGURE 2 Main metabolic pathways
of mirtazapine. CYP, cytochrome P 450
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symptoms of schizophrenia during risperidone therapy,86‐89 although this has been disputed.90 The exact

mechanism of this possible interaction is still unknown; it could be based on increased activity at serotonergic

neurons.91 Both MRT and other antidepressants (fluoxetine, sertraline, citalopram, and paroxetine) can seldom

cause restless legs syndrome (RLS)92; episodic findings suggest that combining two of these drugs (viz, MRT

and fluoxetine) could sharply increase the frequency of this uncommon side effect.93 A single case of hyper-

prolactinemia during polypharmacy with quetiapine and MRT has also been reported.94 The authors

hypothesize that MRT could increase quetiapine‐induced D2‐receptor blockade, with subsequent prolactin

secretion; alternatively, the well‐known agonist action of MRT at opioid µ and κ receptors could modulate

D receptor function causing an increase in prolactin release. A single case has been reported of increased

prothrombin time during simultaneous intake of MRT and warfarin; the authors have attributed this effect to

warfarin metabolism saturation, since CYP3A4 is a common metabolic agent for the two drugs,95 although the

low relative concentrations of the drugs (not close to enzyme saturation) make this explanation unlikely.

Similarly, CYP2D6 saturation has been cited as the possible cause of propafenone (an antiarrhythmic) toxicity

during simultaneous administration of MRT,96 with a similar caveat regarding the drug concentrations.

A double pharmacodynamic and pharmacokinetic interaction can occur between MRT and ondansetron

(an antiemetic): both drugs are 5‐HT3 antagonists, however, MRT at antidepressant doses binds to the 5‐HT3

receptor without blocking acute nausea and vomiting, but preventing ondansetron binding.97,98 A case has

been reported of increased levels of both drugs during simultaneous treatment with immunosuppressor

tacrolimus and MRT; significant hypotension arose as a consequence.99

Interaction data from animal studies (low or uncertain clinical significance)

Studies on lab animals have hypothesized that simultaneous treatment with the antihypertensive prazosin can

potentiate the MRT effect of attenuating induction and expression of locomotor sensitization to cocaine.100

In spontaneously hypertensive rats, MRT administration does not interfere with the hypotensive effects of en-

alapril or propranolol.101 A pharmacokinetic interaction can occur between MRT and ritonavir with increased MRT

levels, since in mice the latter binds to CYP2D6 with higher affinity than the former.102

3.2.2 | Therapeutic drug monitoring

According to the most recent AGNP TDM Expert Group consensus guidelines,31 the TDM of MRT is at “level 2”

(recommended), that is, it can be used for dose titration as well as for special indications and problems, and it can

increase the likelihood of response in nonresponders. The reference therapeutic MRT level range at through (Cmin)

is 30 to 80 ng/mL, with a laboratory alert level (risk of toxicity) of 160 ng/mL.31,103

Several methods can be found in the literature for the determination of therapeutic levels of MRT in serum or

plasma.70,104‐114 Most of them also determine the desmethyl metabolite as well as MRT,105‐111 however, only one

simultaneously analyses MRT and both main metabolites.104 Almost all methods are based on HPLC with fluori-

metric (FL),70,102,103,107,108‐111 UV,105,112 or MS104,105 detection. A CZE‐UV115 and a nano‐LC‐MS method116 have

also been published for the enantioselective analysis of MRT and its metabolites.117

3.3 | Setiptiline

Setiptiline (1,2,3,4‐tetrahydro‐2‐methyl‐9H‐dibenzo(3,4‐6,7)cyclohepta(1,2‐C)pyridine [STP], Figure 3) is an anti-

depressant approved in 1989 in Japan, and whose use is mostly limited to this country. It is sold there under the

Tecipul brand name. STP acts as a NRI,118 α2 receptor antagonist,119 serotonin (probably 5‐HT2) receptor

antagonist and H1 receptor inverse agonist.120
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3.3.1 | Interactions

Clinically relevant data

STP does not seem to significantly alter the activity of CYP (1A2, 2C9, 2C19, 2D6, and 3A4) isoenzymes; it has

significant inhibitory activity toward CYP2D6, but it is not clinically significant at therapeutic drug plasma levels.121

3.3.2 | Therapeutic drug monitoring

A therapeutic trough plasma level range has not been defined for STP; however, at doses ranging from 0.04 to

0.16mg/kg, STP produced dose‐corrected plasma levels (DCPLs) in the 36.6 ± 18.2 (ng kg)/(mL mg) range. Elder

patients (>80 years old) had significantly higher DCPLs.122

Due to the drug limited diffusion, analytical methods for the TDM of STP are few and far between, none of

them published after the year 2000. All the methods are based on GC, coupled to MS detection after

trimethylsilylation to increase the compound volatility,120 or to SID.58

4 | NOREPINEPHRINE REUPTAKE INHIBITORS

4.1 | Reboxetine

The first NRI commercially available for major depression was reboxetine, 2‐α‐(2‐ethoxyphenoxy)
phenylmethylmorpholine (RBX, Figure 4A).123 It is currently marketed in several countries around the world, but

not in the USA, as Edronax (UK and Italy), Norebox (Italy), Irenor (Spain), and so forth.124

Unlike TCAs, RBX has only minimal sedative and cardiovascular liabilities, probably due to increased phar-

macological specificity.125 Compared with SSRIs, it has demonstrated to cause less sexual dysfunctions and gas-

trointestinal side effects. 123

RBX represents a valuable therapeutic tool to investigate the role of NE in depression and in antidepressant

therapy and provides a rational alternative for patients resistant to conventional antidepressant therapy

(mainly SSRIs).

RBX is primarily metabolized in the liver by CYP3A4, with the formation of O‐desethylRBX (Figure 4B) as the

main metabolite; minor metabolites are two different phenols at the ethoxyphenoxy ring (Figure 4C,D).126

RBX possesses two chiral centers and is marketed as the mesylate of the racemic mixture of the (+)‐(2S,3S)‐
and (−)‐(2R,3R)‐ enantiomers.127 In vitro and in vivo receptor binding models suggest that the S,S‐enantiomer is the

most potent NRI, although its plasma concentrations are about two times lower than those of the R,R‐enantiomer

after administration of the racemate.128 However, this is evidently not the result of stereoselective metabolism,

F IGURE 3 Chemical structure of setiptiline

1802 | PROTTI ET AL.



since both enantiomers are oxidized to approximately the same degree by the cytochrome isoform CYP3A4 in in

vitro studies.129 This is supported by the fact that the enantiomers show similar elimination half‐lives, regardless of
the route of administration. RBX may be an example of a racemic drug with one clearly active enantiomer, where

accurate definition of the dose‐effect relationship has been obscured by enantioselective disposition.

4.1.1 | Reboxetine interactions

Clinically relevant data

Due to its NRI activity, RBX reduces several effects of methylenedioxymethamphetamine (MDMA), including

excitation, mood elevation, cardiovascular stimulation, and norepinephrine plasma level increase, despite also

causing significant MDMA and metabolite level increases.130 Coadministration of RBX with MRT produced a

significant reduction of the cortisol, ACTH, and prolactin secretion stimulation caused by the former; GH secretion

patterns remained unchanged. It seems that the stimulatory effects of RBX on pituitary hormone secretion via

noradrenergic mechanisms are counteracted in part by the α2‐ and cortisol secretion‐blocking properties of

MRT.131 Although both RBX enantiomers are known as weak in vitro inhibitors of CYP2D6 and 3A4,127 in vivo the

drug has shown no significant effect on these two CYP isoforms,132 nor on CYP2C19, 1A2, 2C9, 2D6, 2E1, or

3A4.124 It has been verified that RBX has no effect on the metabolism of clozapine, risperidone, and their main

metabolites.133

F IGURE 4 Main metabolic pathways of reboxetine. CYP, cytochrome P 450
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Data with low or uncertain clinical relevance, case reports

In a preliminary study, RBX at low doses was effective as an augmentation agent in treating depression in SSRI‐
nonresponder patients. This effect could be due to presynaptic interactions between serotonergic and noradrenergic

systems involving presynaptic α2‐adrenergic auto‐ and heteroreceptors and resulting in the potentiation of the activity

of both systems.134

Interaction data from animal studies (low or uncertain clinical significance)

In a rat model of seizures, RBX did not affect the anticonvulsant activity of valproate, phenobarbital, ethosuximide,

or clonazepam, while also showing some anticonvulsant activity on its own135; in the mouse, it did not alter the

activity or the brain concentrations of valproate, carbamazepine, phenytoin, or phenobarbital.136

4.1.2 | Therapeutic drug monitoring

The most recent AGNP TDM Expert Group consensus guidelines31 list the TDM of RBX is at “level 3” (useful), that

is, it is most useful for special indications and problems. The reference therapeutic RBX level range at through (Cmin)

is 60 to 350 ng/mL, with a laboratory alert level (risk of toxicity) of 300 ng/mL.31,137

Several papers are reported in the literature, which determine reboxetine in biological fluids. HPLC‐FL has been

used for the determination of reboxetine enantiomers in human plasma after derivatization with 9‐fluorenylethyl
chloroformate138,139 or with 7‐flouro‐4‐nitrobenzo‐2‐oxa‐1,3‐diazole.140 Other papers have been published, which

describe the use of HPLC‐UV methods,135,141,142 and also LC‐MS methods for the enantioselective determination of

RBX and its O‐desethylRBX metabolite.143 A multianalyte method by CG‐MS/MS has been published for the de-

termination of reboxetine (as well as fluoxetine, norfluoxetine, and paroxetine) in a miniaturized biological matrix,

namely, dried blood spots.144 Recently, LC‐MS/MS145,146 and ultra‐high performance liquid chromatography

(UHPLC)‐MS/MS147 have become more common than other techniques. Enantioselective methods148,149 have also

been described and HPLC‐UV150 has been used for the quality control of reboxetine in pharmaceutical formulations.

4.2 | Viloxazine

Viloxazine (2‐(2‐ethoxyphenoxy)methylmorpholine [VLX], Figure 5A) is a bicyclic methylmorpholine derivative once

sold under the tradenames Vivalan, Vicilan, Emovit, and Vivarint. It was introduced during the 1970s and was

approved in some European countries. Its commercial success was limited, and it was withdrawn by the manu-

facturer during the 2000s, probably for its low profitability.151 Due to its stimulant effect without apparent

dependence, some trials to repurpose VLX have been made, and in 2017 it was still under development for possible

application to ADHD therapy with the name Catatrol.152

Although VLX possesses a stereogenic center and its (S)‐(−)‐isomer is about five times more active than the

(R)‐(+)‐isomer,153 the drug was sold as a racemic mixture.154 Regarding VLX metabolism, O‐dealkylation, the major

metabolic pathway in the rat (Figure 5B), is not significant in man and the main compound present in plasma at all

times is the parent drug; it seems that no metabolite shows any significant antidepressant activity.155

4.2.1 | Viloxazine interactions

Clinically relevant data

VLX is a potent inducer of CYP1A2, but not of CYP2B6 or CYP3A4.156 For this reason, it could heavily influence the

plasma levels of other drugs metabolized by CYP1A2, such as antidepressants (some tricyclics, fluvoxamine,
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agomelatine, and duloxetine), antipsychotics (clozapine, olanzapine, and haloperidol), xanthines, and some cardio-

vascular drugs (mexiletine, propranolol, and verapamil).157

VLX is known to cause increases in the serum levels of some antiepileptics, such as carbamazepine (by up to

250%)158 and phenytoin (by about 37%),159 but not oxcarbazepine.160 The increase in carbamazepine levels

coincides with a dramatic decrease in VLX levels.

Data with low or uncertain clinical relevance, case reports

A case report confirmed that, as shown by clinical studies, VLX increases carbamazepine serum levels.161

Interaction data from animal studies (low or uncertain clinical significance)

In rats, VLX prevents the anorectic activity of fenfluramine and tiflorex, but not that of mazindol or amphetamine;

this effect has been ascribed to possible 5‐HT receptor blockade by the drug.162

4.2.2 | Therapeutic drug monitoring

Due to its discontinued drug status, VLX is only included in the 2004 edition of the AGNP TDM expert group

consensus guidelines30; in it, the TDM of VLX is at “level 3” (useful), that is, it is most useful for special indications

and problems. The reference therapeutic VLX level range at through (Cmin) is 20 to 500 ng/mL.31,163 Cases of

intoxication with up to 4 g of the drug have been reported, with only mild CNS symptoms or, in some instances,

seizures or extra‐pyramidal symptoms.164

For the same reason, analytical methods for VLX analysis in biological fluids are not recent; most of them only

include VLX for completeness' sake when analyzing toxicological specimens. GC‐nitrogen‐phosphorus detection

(NPD) toxicological methods have been published,165‐167 one of whom includes a performance comparison between

different kinds of solid‐phase extraction sorbents for sample pretreatment163; multianalyte GC‐MS methods have

been also developed.168,169 Multianalyte methods including VLX exploit LC‐MS/MS,170 HPLC‐UV,171 or HPLC‐
photodiode array (PDA) detection172 to analyze several classes of antidepressants. A voltammetric method has

been reportedly applied to VLX analysis in serum.173

4.3 | Teniloxazine

Teniloxazine (2‐2‐(thiophen‐2‐ylmethyl)phenoxymethylmorpholine [TNX], Figure 6), is a methylmorpholine deri-

vative, similar to VLX in structure (it has a thiophen‐2‐ylmethyl residue instead of an ethoxy residue). Also known

as sufoxazine or sulfoxazine, it is approved as an antidepressant in Japan only, and is sold there as Lucelan or

Melatone. It is an NRI, fairly selective over serotonin and dopamine reuptake, and also a 5‐HT2A antagonist.174

F IGURE 5 Main metabolic pathway of viloxazine
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Due to the extremely limited diffusion of this drug, most of its pharmacological characteristics are unclear, and

its DDIs have never been studied in depth.

4.3.1 | Therapeutic drug monitoring

No analytical paper in the literature is devoted to the analysis of TNX. A recent (2016) review of analytical methods

for the determination of NRI antidepressants in biological fluids, which included explicitly TNX, does not report any

analytical method suitable for its TDM.175 A pharmacokinetic study in healthy subjects and patients suffering from

hepatic impairment reports the analytical method used to determine the pharmacokinetic parameters of the drug:

it is an HPLC‐UV method coupled to sample pretreatment by liquid‐liquid extraction.176 Although no clear ther-

apeutic range for TNX plasma levels has been established, trough plasma levels of 17 to 22 ng/mL have been

observed in healthy volunteers at steady state at a 160mg/day dose.175

4.4 | Atomoxetine

Atomoxetine ((3R)‐N‐methyl‐3‐(2‐methylphenoxy)‐3‐phenylpropan‐1‐amine [ATM], Figure 7A) is the first

nonstimulant drug used in the therapy of ADHD. It is included here, since its mechanism of activity is thought

to be similar to that of some antidepressants: the selective reuptake of norepinephrine. It was approved in

2002 in the USA and is currently sold under the Strattera brand name and also as a generic drug (oral capsules

containing 10‐100 mg in both cases).177 The initial dose for ADHD therapy is 40 mg/day divided in one or two

administrations, to be escalated to 80 mg after a few days of therapy, and up to 100 mg/day after 2 to 4 weeks

if symptom control is not optimal. ATM also shares with antidepressants the risk of increasing suicidal

ideation.178

The drug is mainly metabolized in the liver by CYP2D6 to 4’‐hydroxyATM (Figure 7B), which is equipotent to

the parent drug; the metabolite is then glucuronidated to 4'‐hydroxyATM‐O‐glucuronide (Figure 7C), which is

inactive.179 N‐demethylation (Figure 7D) and benzyl oxidation (Figure 7E) are minor metabolic pathways.180,181

CYP2C19, 3A, 1A2, 2A6, and 2E1 are also involved in 4’‐hydroxyATM formation, but at much slower metabolic

rates, while CYP2C19 is the enzyme primarily responsible for the formation of N‐desmethylATM.182

In vitro, in subjects who are poor or intermediate metabolizers for CYP2D6, 4’‐hydroxyATM can also be

formed by CYP2E1 and CYP3A; in the poorest metabolizers, biotransformation to hydroxymethylATM by

CYP2B6 becomes predominant.183 In pediatric patients, ATM metabolism by CYP2D6 is impaired and an

increased production of alternative metabolites (N‐desmethylATM and 2‐hydroxymethylATM) has been

observed in vitro.180

F IGURE 6 Chemical structure of teniloxazine
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4.4.1 | Atomoxetine interactions

Clinically relevant data

As expected from ATM pharmacokinetic profile, any drug which strongly affects CYP2D6 activity has also a

potential for DDI with ATM. Fluvoxamine is a moderate CYP2D6 inhibitor and has only a modest effect on

ATM plasma levels184; the clinical implications are still unclear, but are not expected to be important.

The metabolites of the antidepressant, anti‐ADHD, anti‐obesity, and smoking‐cessation drug bupropion, on

the contrary, are rather effective CYP2D6 inhibitors, and in fact simultaneous administration of bupropion

and ATM cause a five‐fold increase in exposure to the latter and a 1.5‐fold decrease in exposure to

4‐hydroxyATM.185 Paroxetine, another well‐known CYP2D6 inhibitor, has a similar effect.186,187

ATM itself does not have strong CYP‐inhibiting or CYP‐inducing properties; in vivo, at therapeutic levels, it

does not alter significantly the plasma levels of CYP2D6 or CYP3A substrates.188 For example, ATM does not have

significant effects on paroxetine plasma levels.183

Data with low or uncertain clinical relevance, case reports

A case of DDI possibly due to CYP2D6 inhibition by fluoxetine has been reported.189 A case of

takotsubo cardiomyopathy has been reported during coadministration of ATM and fluoxetine; it is

hypothesized that this could be caused by the synergic action of the two drugs on noradrenergic

transmission.190

F IGURE 7 Main metabolic pathways of atomoxetine. CYP, cytochrome P 450
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4.4.2 | Therapeutic drug monitoring

According to the most recent AGNP TDM Expert Group consensus guidelines,31 the TDM of ATX is at “level 3”

(useful), that is, it is particularly suited for special indications and problems. The reference therapeutic ATX

concentration range is reported after 60 to 90minutes from administration (Cmax) due to its short half‐life, and is

200 to 1000 ng/mL, with a laboratory alert level (risk of toxicity) of 2000 ng/mL.31,191 Due to the limited use of this

drug, analytical methods for ATM analysis in biological fluids are not numerous.

An LC‐MS/MS method was applied to the TDM of patients undergoing ATM treatment; this method includes

the determination of two ATM metabolites (4‐hydroxyATM and N‐desmethylATM) and has been validated for

different biological matrices, including urine, oral fluid, sweat patches,192 and hair,193 as well as plasma. Another

LC‐MS/MS method includes three metabolites: 4‐hydroxyATN, N‐desmethylATM, and 4‐hydroxyATM‐O‐
glucuronide in plasma and urine.194 LC‐MS/MS was also used for a pharmacokinetic and pharmacodynamic

study195 and for other TDM‐like applications.196 HPLC‐FL after derivatization with different reagents has been

applied as well for TDM purpose on plasma197‐199 and oral fluid.193 A few HPLC‐UV methods for ATM in plasma

are also available.200,201 GC‐MS202 and GC‐NPD (with MS identity confirmation)203 have been used to quantitate

ATM for forensic purposes; of course, possibility of application to TDM is not assured. A single CZE‐
electrochemiluminescence (ECL) detection method has been published, that includes the drug determination in rat

plasma (no metabolite is included).204

5 | SEROTONIN, NOREPINEPHRINE, AND DOPAMINE REUPTAKE
INHIBITORS

5.1 | Nefazodone

Nefazodone (2‐3‐4‐(3‐chlorophenyl)piperazin‐1‐ylpropyl‐5‐ethyl‐4‐(2‐phenoxyethyl)‐1,2,4‐triazol‐3‐one [NFZ], Figure 8A)

is a phenylpiperazine antidepressant, a triazolone analog of the SARI trazodone and also of the antipsychotic aripiprazole.

Introduced in 1994, it has now been voluntarily discontinued in many countries (in 2003 in most European countries, but

notably not in the USA) due to its increasingly rare use, attributed to competition from other antidepressants and to a

worrying side effect, namely, severe and potentially fatal liver toxicity.205 Due to its complex receptor and transporter

interaction profile, NFZ could be inserted in either the SARI or the SNDRI class.

More than 25 NFZ metabolites are currently known,206 however, just three of these are known to be active:

hydroxyNFZ (Figure 8B), triazoledione (Figure 8C), and m‐chlorophenylpiperazine (mCPP, Figure 8D)207; mCPP is a

psychoactive substance that can cause hallucinations and is also a metabolite of the SARI antidepressant trazo-

done.208 It seems that all of these metabolites are mainly formed in the liver by CYP3A4,209 while CYP2D6 further

transforms mCPP into p‐hydroxy‐mCPP (Figure 8E).210 Triazoledione is much less active than NFZ but reaches

plasma levels up to 10 times higher than its parent drug,211 so its contribution to the clinical effect is still debated.

5.1.1 | Nefazodone interactions

Clinically relevant data

NFZ is a CYP3A4 inhibitor, as well as a substrate.212 For this reason, it can cause plasma level increases of drugs

biotransformed by CYP3A4, such as the antihistamines loratadine and terfenadine; this interaction can produce

clinically significant QT interval prolongation.213 Significant CYP3A4‐mediated metabolism inhibition has been

observed also for methylprednisolone.214 NFZ effects on other CYP3A4 substrates, such as clozapine,215 are

minimal. NFZ does not alter the pharmacokinetics of phenytoin, when the latter is administered in a single dose.216
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NFZ can increase the plasma levels of digoxin217 and haloperidol,218 although clinical parameters do not seem to be

affected by this change; neither drug affects the plasma levels of NFZ. The drug also influences the plasma levels of

some benzodiazepines219 (such as alprazolam,220 triazolam,221 midazolam222), but not all of them; for example,

lorazepam is not affected.223 No pharmacokinetic interaction between NFZ and desipramine224 or lithium225 has

been observed.

Data with low or uncertain clinical relevance, case reports

Single cases have been reported of increased plasma/serum levels of several CYP3A4‐metabolized drugs during

simultaneous NFZ administration: pimozide,226 sirolimus,227 triamcinolone,228 and zopiclone.229 Peculiar interac-

tions can happen between NFZ and the antiepileptic carbamazepine, which is both a substrate and an inducer of

CYP3A4; studies have found increased exposure to carbamazepine210 and greatly reduced exposure to NFZ during

coadministration.230

5.1.2 | Therapeutic drug monitoring

No TDM guidelines for NFZ have been published by the AGNP, although the drug is cited in the 200430 and 2011

editions of their Consensus. However, other sources231 suggest that TDM research could be useful for NFZ due to

its nonlinear kinetics and the presence of active metabolites. At a 600mg/day (therapeutic) dose, patients had NFZ

plasma levels in the 400 to 1000 ng/mL range, with the main metabolites at 180 to 350 ng/mL (hydroxyNFZ) and

40 to 55 ng/mL (m‐CPP).232

Most published methods for NFZ determination in plasma/serum also include the three active metabolites.

A high‐throughput LC‐MS/MS method with direct‐injection on‐line extraction has been published for this

purpose233; other LC‐MS/MS methods also exist.226,234

F IGURE 8 Main metabolic pathways of nefazodone. CYP, cytochrome P 450
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Older papers reported the use of HPLC‐UV235‐237 and HPLC‐electrochemical (EC) coulometric detection238

for NFZ analysis, and include the drug determination in breast milk230 as well as plasma/serum.

6 | MELATONERGIC AGONISTS AND SELECTIVE SEROTONERGIC
ANTAGONISTS

6.1 | Agomelatine

Agomelatine (N‐2‐(7‐methoxynaphthalen‐1‐yl)ethylacetamide [AGT], Figure 9A), the naphthalene analog of mela-

tonin, is currently thought to act through melatonergic MT1 and MT2 receptor agonism and serotonergic 5‐HT2B

and 5‐HT2C receptor antagonism.239 It does not seem to possess relevant affinity for monoamine transporters, nor

for adrenergic, cholinergic, or dopaminergic receptors.240

It has been approved in the EU and Australia between 2009 and 2010 and is sold under the names

Valdoxan or Thymanax.241 It has never been approved in the USA, and its approval procedure has been

stopped in 2011242 due to the unsatisfactory results of a clinical study. Hepatic toxicity of AGT is a concern

and has led to a postauthorization opinion by the European Medicines Agency (EMA) with new

contraindications.243

AGT bioavailability is low, about 5%, due to massive first‐pass metabolism,244 and biotransformation is effected

mainly by CYP1A2, with a small contribution by CYP2C9/19.245 The most important metabolites thus formed are

3‐hydroxyAGT (by CYP1A2; Figure 9B) and O‐desmethylAGT (by CYP2C9; Figure 9C); both metabolites are

inactive and can be further metabolized to 3‐hydroxy‐O‐desmethylAGT (Figure 9D).246 Other metabolic pathways

have been recently reported.247

6.1.1 | Agomelatine interactions

Clinically relevant data

Drugs that interact with CYP1A2 may dramatically change the plasma concentrations of AGT.248 Fluvox-

amine, a potent CYP1A2 and moderate CYP2C9 inhibitor, markedly inhibits the metabolism of agomelatine,

resulting in a 60‐fold increase of AGT exposure. Combination of AGT with estrogens (moderate CYP1A2

inhibitors) results in a several fold increased exposure to AGT, although in trials this did not cause clinically

significant effects.249 Smoking induces CYP1A2 and has been shown to decrease the bioavailability of

AGT.250

Conversely, AGT does not seem to significantly induce any CYP450 isoenzyme.245

Data with low or uncertain clinical relevance, case reports

A case of hyperhidrosis251 and one of akathisia252 have been reported during coadministration of AGT with the

SNRI antidepressant duloxetine. Both have been attributed to a pharmacodynamic DDI with excessive nora-

drenergic stimulation.

Interaction data from animal studies (low or uncertain clinical significance)

In the mouse depression model, caffeine potentiates the effects of AGT without changing its plasma levels.47 In a

mouse depression model, hesperidin (a glycoside typical of Citrus fruits)253 has been found to potentiate the

antidepressant effect of AGT.254
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6.1.2 | Therapeutic drug monitoring

The most recent AGNP TDM expert group consensus guidelines31 recommend the TDM of AGT at “level 4”

(potentially useful), that is, it should be restricted to special cases due to apparent lack of correlation between

plasma levels and activity. However, TDM in a research setting could be useful to further investigate this

phenomenon, as well as for many other purposes, such as compliance control, DDI monitoring, and so forth.

The reference therapeutic AGT level range is reported after 1 to 2 hours (Cmax), due to its rapid elimination.

The range is 7 to 300 ng/mL, with a laboratory alert level (risk of toxicity) of 600 ng/mL (again, after

1‐2 hours).31,255

Due to the recent introduction of AGT, the most frequently used methods for its TDM are LC‐MS/MS256‐260 or

UHPLC‐MS/MS261 ones. An LC‐MS/MS method includes the determination of the two major metabolites.262

A multi‐matrix (oral fluid, plasma, whole blood) method based on HPLC‐FL has been also published.263

F IGURE 9 Main metabolic pathways of agomelatine. CYP, cytochrome P 450
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7 | NOREPINEPHRINE AND DOPAMINE REUPTAKE INHIBITORS

7.1 | Bupropion

Bupropion or amfebutamone (2‐(tert‐butylamino)‐1‐(3‐chlorophenyl)propan‐1‐one [BPR], Figure 10) is a pheny-

lethylamine used for the treatment of depression, also in association with other antidepressants for nonresponder

patients, and as a support to smoking cessation or obesity therapy.264 Its antidepressant activity is thought to be

due to norepinephrine and dopamine reuptake, while its antagonism at nicotinic acetylcholine receptors explains its

usefulness during smoking cessation therapy.265

BPR is available under the brand names Wellbutrin and Zyban. It has been approved for depression during the

1980s in the USA; it was discontinued due to excessive incidence of seizures and then recommercialized at reduced

doses.266

BPR is administered as a racemate but undergoes significantly stereoselective metabolism: (R)‐bupropion
concentrations are higher than (S)‐bupropion ones.267

The biotransformation of BPR is mediated principally by CYP2B6, producing hydroxyBPR (which can then

undergo spontaneous cyclization to the corresponding hemiketals, Figure 10B,C); reduction of the carbonyl group

to alcohol by carbonyl reductases generates erythrohydroBPR (Figure 10D) and threohydroBPR (Figure 10E).268

These metabolites are active, and threohydroBPR and (R)‐hydroxyBPR reach plasma levels much higher than those

of the parent drug, thus they are supposed to contribute significantly to the overall therapeutic effect.269 Recently,

three new metabolites have been discovered: 4′‐hydroxyBPR (Figure 10F), and the respective erythro‐ and

threo‐ 4′‐hydroxyhydroBPR (Figure 10G,H); together, these metabolites are excreted in amounts similar to those of

all the previously known metabolites.270

7.1.1 | Bupropion interactions

Clinically relevant data

Since the main BPR metabolic pathway involves CYP2B6, its inhibition can produce drug level increases; the SSRIs

paroxetine, fluvoxamine, sertraline, norfluoxetine (the main fluoxetine metabolite),271 and venlafaxine272 are all

capable of inhibiting CYP2B6. Some MAOI antidepressants are also CYP2B6 inhibitors, however, their effect seems

to be weak; phenelzine could have an impact on BPR levels, but the likelihood of significant clinical implications is

low.273 The main BPR metabolites are CYP2D6 inhibitors; hydroxyBPR possesses the highest inhibitory activity,

followed by the other metabolites and finally by the parent drug. They seem even able to downregulate CYP2D6

expression.274 Thus, complex pharmacokinetic DDI patterns can appear when administering BPR with other drugs

metabolized by CYP2D6. The clinical DDIs between bupropion and the CYP2D6‐metabolized drugs desipramine

and ATX182 result in marked (up to five‐fold) increases in exposure to both victim drugs.275 Among anticonvulsants,

carbamazepine can decrease exposure to BPR while increasing hydroxyBPR concentrations; BPR can increase

valproate levels in humans.276 Tobacco smoking does not affect the plasma levels of BPR. 277

Data with low or uncertain clinical relevance, case reports

The antiretrovirals ritonavir, efavirenz, and nelfinavir are significant CYP2B6 inhibitors, thus they have the

potential for significant pharmacokinetic interaction with BPR.278 Some cases have been reported of interactions

between BPR and drugs metabolized by CYP2D6, such as venlafaxine, bufuralol, tolterodine, metoprolol,279

imipramine,280 nortriptyline,281 and dextromethorphan.262 Episodic reports of interactions between BPR and al-

cohol have also been published, with increased aggressiveness as the main symptom.282 The pharmacodynamic

interaction between BPR and pseudoephedrine has been reported to cause potentially fatal cardiovascular effects

in the perioperative setting.283 Simultaneous intake of BPR and MDMA (ecstasy) can increase the plasma
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F IGURE 10 Main metabolic pathways of bupropion. CR, carbonyl reductase; CYP, cytochrome P 450
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concentrations of both drugs, with enhanced mood effects but decreased cardiovascular effects.284 A single case

report of decreased cyclosporine levels during polypharmacy with BPR has been also published.285

Interaction data from animal studies (low or uncertain clinical significance)

Another CYP2B6 inhibitor, with effects on BPR plasma levels in animals, is ticlopidine.286

In mice, CYP2D6 inhibition by BPR causes significant increases in risperidone plasma levels.287 BPR can

increase phenytoin levels in the rat.288 Multiple BPR doses can significantly decrease exposure to digoxin in

monkeys, by increasing its renal clearance,289 probably by means of organic anion‐transporting polypeptide 4C1

(OATPC4C1).290 In rats, BPR can increase the plasma levels of carvedilol291 and nebivolol.292

7.1.2 | Therapeutic drug monitoring

The 2017 AGNP TDM expert group consensus guidelines31 suggest carrying out the simultaneous TDM of BPR and

hydroxyBPR, with a recommendation equal to “level 2” (recommended), that is, there are reliable chemical‐clinical
correlations and TDM application could significantly increase the therapy success rate. For BPR therapy, the

reference therapeutic level range at through (Cmin) refers mainly to hydroxyBPR; it is 850 to 1500 ng/mL, with a

laboratory alert level (risk of toxicity) of 2000 ng/mL.31,293

Recently, several LC‐MS/MS methods have been developed for the TDM of BPR294; most of them include at

least the main metabolite hydroxyBPR,295,296 and some of them include more than one metabolite, usually

erythrohydroBPR and threohydroBPR.297‐299 Of course, due to the complex stereoselective metabolism of BPR,

chiral LC‐MS/MS methods are also available,300 sometimes also including glucuronidated metabolites.301 HPLC‐UV
(in papers published before 2010), 302,303 HPLC‐FL after derivatization,304 and turbulent flow chromatography

(TFC)‐MS/MS305 are also represented.

Potentially useful for TDM of pregnant women is the determination of the drug and its main metabolites in

umbilical cord plasma and placental tissue.306

8 | OTHERS

8.1 | Esketamine

Esketamine ((2S)‐2‐(2‐chlorophenyl)‐2‐(methylamino)cyclohexan‐1‐one [ESK], Figure 11A) is the S‐enantiomer of

the well‐known general anesthetic ketamine, which is also a relatively common drug of abuse; compared with the

racemate, ESK is less prone to psychotomimetic side effects, such as derealization and hallucinations.307 ESK is

available as a nasal spray and an intravenous injectable solution under the brand names Ketanest and Spravato and

is currently used as an adjunct to other antidepressants for treatment‐resistant depression.308 As of 2017, it has

been approved in several single EU countries (but not by the EU's EMA)309 and in 2019 has obtained a marketing

authorization from the US's FDA.310 Its main advantage would be the very fast onset of the antidepressant effect,

which could be obtained in many cases in a matter of hours, not weeks as happens with almost all other known

antidepressant agents (racemic ketamine has a similarly fast onset of action but is not approved as an

antidepressant).311

The main antidepressant mechanism of ESK is currently believed to be its antagonism at NMDA glutamatergic

receptors; however, the drug has also strong affinity toward AMPA glutamatergic and opioid receptors. 312

The main metabolite of ESK is norESK (Figure 11B), which seems to be produced by action of CYP2B6 and 3A4;

however, CYP2C9 and 2C19 could also be involved to a lesser extent.313 NorESK appears to have significant

1814 | PROTTI ET AL.



antidepressant activity314 and reaches plasma levels that can be up to 16 times those of the parent drug.315 This

main metabolite is further metabolized to hydroxynorESK (Figure 11C).306

8.1.1 | Esketamine interactions

Clinically relevant data

As expected, the CYP2B6 inhibitor ticlopidine (clinically used as a platelet aggregation inhibitor) can cause

significant increases in ESK plasma levels.316

Data with low or uncertain clinical relevance, case reports

The herbal antidepressant St. John's wort (Hypericum perforatum), a CYP3A4 inducer, strongly decreases exposure

to oral ESK and norESK in terms of AUC and Cmax.
317 However, since ESK is administered parenterally during

antidepressant therapy, the significance of this observation is unclear.

Interaction data from animal studies (low or uncertain clinical significance)

In animal studies, ESK itself has inhibitory effects on CYP2C and 3A, and slight inducing effects on CYP1A2.318

8.1.2 | Therapeutic drug monitoring

Obviously, when monitoring ESK in patients, chiral methods are required to discriminate between ESK and its

enantiomer; nonselective methods used for racemic ketamine are not adequate. No reliable therapeutic plasma

concentration range has been established yet for ESK in depression. However, clinical trials have found a

mean maximum ESK plasma level (Cmax) of about 150 ng/mL after a single 84‐mg intranasal dose (the maximum

suggested dose).319

F IGURE 11 Main metabolic
pathways of esketamine. CYP,

cytochrome P 450
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An LC‐MS/MS method that includes norESK is available.320 An enantioselective supercritical fluid chro-

matography (SFC)‐MS method has been published for the monitoring of both ketamine enantiomers in

human urine, and it could have interesting application also in TDM. It has the noteworthy advantage

of including the enantiomers of three metabolites: norketamine, dehydronorketamine, and (R,R)‐, (S,S)‐
hydroxynorketamine.321

8.2 | Tianeptine

Tianeptine (7‐(3‐chloro‐6‐methyl‐5,5‐dioxo‐11H‐benzoc2,1benzothiazepin‐11‐yl)aminoheptanoic acid [TNP], Figure 12A)

is an “atypical” TCA with a benzothiazepine structure, also active against anxious symptoms. It is sold under the brand

names Stablon and Coaxil in the EU and in other countries around the world, but notably not in most English‐speaking
countries (USA, UK, Canada, Australia, and New Zealand). Differently from “traditional” TCAs, which are nonselective

inhibitors of serotonin and norepinephrine reuptake, TNP seems to act as a functionally selective μ opioid receptor

agonist.322 Although the exact mechanism of activity has not been exactly determined, other, less accredited theories

include serotonin reuptake enhancement323 and inhibition of glutamatergic transmission.324

TNP metabolism occurs by β‐oxidation of the acid side chain,325 and its major metabolites are its pentanoic

acid (Figure 12B) and propionic acid (Figure 12C) derivatives; the former has significant antidepressant activity.326

8.2.1 | Tianeptine interactions

Clinically relevant data

No pharmacokinetic or pharmacodynamic interaction seems to occur between TNP and oxazepam.327 Coadmi-

nistration with alcohol can decrease TNP absorption rate and plasma levels by about 30% but does not affect those

of the pentanoic acid metabolite.328 Clinically, this interaction does not seem to be important.

Data with low or uncertain clinical relevance, case reports

Among cyamemazine, levomepromazine, flunitrazepam, oxazepam, diclofenac, and salicylic acid, only the last drug

is able to displace TNP from plasma protein binding (which is normally about 95%), potentially increasing its

effects.329

F IGURE 12 Main metabolic pathway of tianeptine. CYP, cytochrome P 450
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Interaction data from animal studies (low or uncertain clinical significance)

In the mouse model of epilepsy, TNP enhanced the anticonvulsant action of valproate and carbamazepine, but not

that of phenytoin, without altering the brain concentrations of any of these drugs. On the other hand, TNP

decreased the brain concentration of phenobarbital, but enhanced its anticonvulsant activity.330 In mice, sildenafil

enhances the activity of TNP, probably by increasing its brain concentration.48

8.2.2 | Therapeutic drug monitoring

TNP is present in the most recent AGNP TDM expert group consensus guidelines,31 and its TDM is listed at

“level 3” (useful), that is, chemical‐clinical correlations are tentative and TDM is most useful in particular cases. The

reference therapeutic TNP level range at through (Cmin) is 30 to 80 ng/mL, with a laboratory alert level (risk of

toxicity) of 160 ng/mL.31,331

As usual for drugs not approved in the USA and other English‐speaking countries, published analytical methods

for TNP in human biological fluids are few and far between.

A recent method for TNP TDM exploits LC‐MS/MS and includes the determination of its main active pentanoic

acid metabolite332; another one carries out the determination of TNP alone.333 Oher methods include HPLC‐FL
after derivatization334 and HPLC‐PDA (with simultaneous determination of the pentanoic acid metabolite).335

An old ion‐pair LC‐UV method is also available for the analysis of TNP and the two main metabolites in plasma,

urine and solid tissues.336

9 | CONCLUSION

The sheer number of different antidepressant classes underscores the intrinsic complexity of MDD treatment, its

inherent need for therapy personalization and the current state of incomplete satisfaction with the therapeutic

results obtained in a significant number of patients. Despite the many breakthroughs and promises of “magic

bullets” against MDD that have appeared over the years, the reality is that MDD is still an undertreated illness, one

that continues to cause thousands of deaths and a large amount of suffering and disability all over the world.337

Although NGAs have generally obtained a higher level of safety in comparison with TCAs and MAOIs, efficacy

is still comparable with that of classical antidepressants. None of the currently available antidepressant classes can

be deemed objectively “better” than all the others.338 While this fact is a witness of incomplete success, it is also

proof that each psychiatrist can choose among a wide range of drugs to find the one that best suits the specific

needs of each patient. Such a complex and protean disorder as MDD could conceivably never find a single optimal

therapeutic agent; however, every effort should be made to tailor the therapy by means of evidence‐based opti-

mization and personalization. For this purpose, one of the most interesting options is TDM, which provides ob-

jective tools to base clinical decisions upon. Newer and less‐used SGAs would particularly benefit from TDM, which

would produce data useful to fully understand their chemical‐clinical correlations.
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