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Abstract 12 

Many studies have shown that geographic origin is one of the most influencing factors in 13 

consumers’ choice of olive oil. To avoid misleading consumers, European regulation has 14 

established specific rules to report the geographical origin of extra virgin (EVOOs) and virgin olive 15 

oils (VOOs) on the product label, even if an official analytical procedure to verify the origin has not 16 

been yet defined. In this work, a flash gas chromatography (FGC) untargeted approach based on 17 

volatile compounds, followed by a chemometric data analysis, is proposed for discrimination of 18 

EVOOs and VOOs according to their geographical origin (EU and extra-EU). A set of 210 samples 19 

was analyzed and two different classification techniques were used, one linear (Partial Least 20 

Square-Discriminant Analysis, PLS-DA) and one non-linear (Artificial Neural Network, ANN). 21 

The two models were also validated using an external data set. Satisfactory results were obtained 22 

for both chemometric approaches: with PLS-DA, 89% and 81% of EU and extra-EU samples, 23 

respectively, were correctly classified; for ANN, the percentages were 92% and 88%, respectively. 24 

These results confirm the reliability of the method as a rapid approach to discriminate EVOOs and 25 

VOOs according to their geographical provenance.  26 

 27 

Key words 28 

Virgin olive oil; Geographical origin; Chemometric analysis; Flash Gas Chromatography; Volatile 29 

compounds.  30 
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1. Introduction 31 

Over the last 40 years many investigations have focused on understanding what attributes are 32 

important determinants in consumer choice, which have highlighted that geographic origin is one of 33 

the most influencing factors for olive oil (Dekhili, Sirieix, & Cohen, 2011; Del Giudice, Cavallo, 34 

Caracciolo, & Cicia, 2015). In order to ensure that consumers are not misled, the fourth article of 35 

the EU Reg. 29/2012 establishes that “Extra virgin and virgin olive oil shall bear a designation of 36 

origin on the labelling”. This means that for extra virgin (EVOOs) and virgin olive oils (VOOs) 37 

commercialized within the EU, it is mandatory to specify the geographical provenance of the 38 

product on the label following specific rules. If an oil comes from an EU Member State or third 39 

country, a reference to the EU Member State, to the EU, or to the third country must to be reported. 40 

In the case of blends of oils originating from more than one EU Member State or third country, one 41 

of the following phrases must be used: ‘blend of olive oils of European Union origin’ or a reference 42 

to the EU; ‘blend of olive oils not of European Union origin’ or a reference to origin outside the 43 

EU; ‘blend of olive oils of European Union origin and not of European Union origin’ or a reference 44 

to origin within the EU and outside the EU. An exception is the case where the olives were 45 

harvested in an EU Member State or third country other than that in which the mill where the oil 46 

was extracted is located. In this case, the designation of origin shall contain the following wording: 47 

‘(extra) virgin olive oil obtained in (the Union or the name of the Member State concerned) from 48 

olives harvested in (the Union or the name of the Member State or third country concerned)’.  49 

However, the regulation does not specify an official analytical procedure to verify the conformity of 50 

the label-declared geographical origin, and this has raised the interest of researchers to develop a 51 

reliable and effective method for the purposes of authentication (Conte et al., 2019). During recent 52 

years, different analytical techniques have been applied in order to find potentially useful markers 53 

and efficient instrumental approaches that are able to discriminate olive oils according to their 54 

geographical origin.  55 
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In this regard, traditional chromatographic techniques, analyzing both major and minor compounds 56 

either individually or in a combined way, coupled or not with specific statistical chemometric tools, 57 

have been investigated. A study in 2009 (García-González et al., 2009) proposed the application of 58 

artificial neural network (ANN) models for different levels of geographical classification (country, 59 

region, province, PDO) on a set of 687 EVOOs and VOOs from Spain, Italy, and Portugal, which 60 

were chemically characterized for the content of fatty acids, hydrocarbons, sterols, and alcohols. 61 

Other researchers have evaluated the triacylglycerol (TAG) content and composition to discriminate 62 

Moroccan oils (Bajoub et al., 2016) and Croatian samples (Peršurić, Saftić, Mašek, & Kraljević 63 

Pavelić, 2018). In addition, the stereospecific distribution of fatty acids in TAGs was reported to be 64 

useful in discriminating olive oils from different areas of North-Eastern Italy (Vichi, Pizzale, & 65 

Conte, 2007). Specific metabolites such as sterols and phenolic compounds have been investigated 66 

to identify the optimal markers, which may be a promising approach to discriminate oils according 67 

to geographical origin (Giacalone, Giuliano, Gulotta, Monfreda, & Presti, 2015; Ben Mohamed et 68 

al., 2018; Ghisoni et al., 2019). Interesting findings have also been recently reported on 69 

sesquiterpene hydrocarbons as geographical markers (Quintanilla-Casas et al., 2020). Moreover, 70 

volatile compounds have been amply studied by applying different instrumental techniques 71 

combined with chemometric data analysis (Kosma et al., 2017; Bajoub et al., 2018; Lukić, Carlin, 72 

Horvat, & Vrhovsek, 2019). 73 

Rapid and innovative instrumental approaches have also been developed and tested to satisfy the 74 

need for simple, rapid, and environmentally friendly techniques (Valli et al., 2016). This critical 75 

review (Valli et al., 2016) overviews the principal applications of optical techniques (UV-Vis, NIR, 76 

MIR, RAMAN, NMR, and fluorescence spectroscopy), methods based on electrical characteristics, 77 

and instruments equipped with electronic chemical sensors (electronic nose and tongue) for 78 

discrimination of EVOOs and VOOs according to their geographical provenance. In addition to 79 

these approaches, other promising techniques include stable isotopes analysis (Angerosa et al., 80 

1999; Chiocchini, Portarena, Ciolfi, Brugnoli, & Lauteri, 2016; Bontempo et al., 2019), multi-81 
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element fingerprint (Sayago, González-Domínguez, Beltrán, & Fernández-Recamales, 2018), 82 

differential scanning calorimetry (Mallamace et al., 2017), and GC-IMS (Gerhardt, Birkenmeier, 83 

Sanders, Rohn, & Weller, 2017). 84 

Melucci and co-workers (Melucci et al., 2016) proposed the application of flash gas 85 

chromatography (Heracles II) and a multivariate data analysis to control the compliance of 86 

information on geographic origin declared in the label (“100% Italian” vs “non-100% Italian”) for 87 

the first time. This instrumental approach allows to carry out headspace analysis in a short time and 88 

the results are processed by chemometric tools following an untargeted approach. For this reason, it 89 

can be considered as a fingerprint method, since the data can be elaborated for sample classification 90 

that is not aimed towards identification and quantification of specific analytes. Following these 91 

preliminary results and the actual need for a rapid and effective method for geographical 92 

authentication of VOOs, the aim of this work was the application of FGC for rapid discrimination 93 

of 210 EVOOs and VOOs according to geographical provenance. In this case, the categories 94 

considered for samples classification were EU member states vs extra-EU countries, and the data 95 

obtained were analyzed by applying two different classification techniques, one linear (Partial Least 96 

Square-Discriminant Analysis, PLS-DA) and one non-linear (Artificial Neural Network, ANN). 97 

 98 

2. Materials and methods 99 

2.1 Samples 100 

A total of 210 EVOOs and VOOs with a different geographical origin were collected directly from 101 

companies that were also asked to provide, when available, information about location of the mill, 102 

type of plant used, olive variety, and commercial category (Table S1, Supplementary material). 103 

Samples were collected during three crop years: 84 samples were collected during the crop season 104 

2016-2017, 90 during the crop season 2017-2018, and 36 during the crop season 2018-2019. 105 

Samples belonging to both the EVOO and VOOs commercial categories were included in this 106 
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study, considering that the indication of the geographical origin on the product label is mandatory 107 

for both these grades.  108 

According to geographical provenance, samples were distributed in 3 classes (Table 1): “EU” for 109 

oils coming from EU member states; “extra-EU” for oils coming from extra-EU countries (outside 110 

EU); “blends” for samples obtained by mixing oils coming from different EU state members or oils 111 

coming from EU state members and third countries.   112 

Aliquots of each sample (50 mL) were stored at -18 °C in dark plastic bottles.  113 

Oils were defrosted for at least 12 h and stored at 12°C before analysis.   114 

 115 

2.2 Volatile compounds analysis by FGC  116 

The analysis of volatile compounds was carried out using the FGC Electronic Nose Heracles II 117 

(Alpha MOS, Toulouse, France). The instrument was equipped with two metal capillary columns 118 

(MXT-5: 5% diphenyl, 95% methylpolysiloxane; MXT-1701: 14% cyanopropylphenyl, 86% 119 

methylpolysiloxane, for both columns: 10 m length, 180 µm internal diameter, 0.4 µm film 120 

thickness) working in parallel mode with a different polarity of the stationary phase. This permits 121 

slight differences in the separation capability of molecules detected by a FID applied at the end of 122 

each column.  123 

Each sample was analyzed in triplicate, weighing 2 ± 0.1 g of oil in a 20 mL vial sealed with a 124 

magnetic plug. For analysis, the vial was placed in a shaker oven for 20 min at 40 °C and 500 rpm. 125 

Next, 5 mL of the headspace was collected, introduced in a splitless injector (injector temperature 126 

200 °C, injection speed 100 µL/s, carrier gas flow, to ensure a fast transfer of the sample from the 127 

inlet to the trap, 30 mL/min), and adsorbed on a Tenax® TA trap maintained at 40 °C for 60 s to 128 

concentrate the analytes. The syringe temperature was set at 70 °C. Subsequently, desorption was 129 

obtained by increasing the trap temperature to 240 °C in 93 s and the sample was injected (pressure 130 

of the carrier gas at the column head was 40 kPa.) and split (split flow 5 mL/min) into the two 131 

columns. The thermal program started at 40 °C (held for 2 s), increased up to 80 °C at 1 K/s, and 132 
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then to 250 °C at 3 K/s. Hydrogen was used as the carrier gas with a pressure from 40 kPa to 64 133 

kPa, increasing with a rate of 0.2 kPa/s. At the end of each column, a FID detector (detector 134 

temperature 260 °C) was placed and the acquired signal was digitalized every 0.01 s. The software 135 

used to control the instrument was AlphaSoft version 14.5. 136 

 137 

2.3 Data processing 138 

For data analysis, the full chromatograms were processed by applying chemometric data analysis 139 

with an untargeted approach. The raw data from each chromatogram (intensity values for each point 140 

of the chromatogram considering that the signal was digitalized every 0.01 s, Palagano et al., 2019 141 

[Dataset]) were exported from the software of the instrument and the data set with all the samples 142 

was imported into MatlabR2018a®. As data pre-treatment, chromatograms were aligned by COW 143 

(Correlation Optimized Warping) algorithm (Tomasi, Van Den Berg, & Andersson, 2004) and 144 

autoscaled (mean-centering followed by division of each column (variable) by the standard 145 

deviation of that column). Preliminary tests showed that chromatograms obtained from the MXT-5 146 

column had a discriminant power higher than the other one (MXT-1701) and for this reason the 147 

classification models were developed considering only this column. Considering the reduced 148 

number of samples for the classes “blend EU” and “blend EU/extra EU”, these oils were grouped 149 

together with “EU” and “extra-EU” samples, respectively. While this can be considered to be 150 

simplification, the decision was based on the fact that the percentage of extra-EU oils was higher 151 

than EU ones in these EU/extra-EU mixtures. This means that for the data elaboration only two 152 

sample categories were considered: “EU” and “extra-EU”. 153 

Two different statistical techniques were used to classify samples according to geographical origin, 154 

the first (PLS-DA) based on a linear approach, and the second (ANN) on a non-linear approach. 155 

In particular, the PLS-DA model was built using the PLS Toolbox for Matlab2018a®: intensity 156 

values of each point of the chromatogram, for a total of 19,900 data points, were used as variable X 157 

(matrix X), while the origin (“EU” and “extra-EU”) was implemented as variable Y (binary 158 
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variables, 0 - 1). The sample data set was split into a calibration/full-cross validation set (75% of the 159 

sample) and an external validation set (25% of the samples) using the Kennard-Stone method 160 

(selects samples that best span the same range as the original data, but with an even distribution of 161 

samples across the same range) (Daszykowski, Walczak, & Massart, 2002). The threshold value 162 

useful to define the category of each sample was defined using a probabilistic approach based on 163 

Bayes’s rule.  164 

The ANN model was performed by using the Neural Net Pattern Recognition tool for 165 

Matlab2018a®. Specifically, a Multi-Layer Perceptron (MLP) neural network was built to predict 166 

the specific class to which samples belong using a non-linear method. For input and hidden layers, 167 

linear and logistic activation functions, respectively, were used, while for output layer the SoftMax 168 

function was applied. From a statistical point of view, with the SoftMax activation function and 169 

cross entropy error, the output is interpretable as posterior probabilities for categorical target 170 

variables (Bishop, 1995). One nominal output variable is returned, assuming that the target output is 171 

1.0 in the correct class output, and 0.0 in the non-correct class. Looking for the best classification 172 

ability, different node numbers in the hidden layer and combinations were tested. The convergence 173 

of ANN was ruled by a back propagation algorithm.  174 

The original data set was divided into training (55%), validation (20%), and external validation test 175 

(25%) sets. The latter was composed of the same samples used for the external validation of the 176 

PLS-DA model and selected using the Kennard-Stone method. The training set was used to 177 

calculate the transfer function parameters of the network, the validation set to measure network 178 

generalization and to halt training when generalization stops improving, and the test set was treated 179 

as an unknown, the correct classification of which indicates that the neural network is performing 180 

well.  181 

 182 

3. Results and discussion 183 
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A set of 210 EVOOs and VOOs were analyzed for their volatile profile by FGC. Considering the 184 

large amount of data and aim of this work, chemometric data analysis following an untargeted 185 

approach was carried out.  186 

For elaborations, samples were grouped into two categories: “EU”, which included oils from single 187 

EU state members and blends of oils from different EU countries, and “extra-EU” that consisted of 188 

oils from single countries outside the European Union and blends of oils from the EU and third 189 

countries.  190 

In Fig. 1-a the mean chromatogram of “EU” and “extra-EU” categories, obtained averaging the 191 

intensity of each variable for all “EU” or “extra-EU” samples, is reported: even if almost all peaks 192 

are concentrated in the initial part of the chromatogram (between 2000 and 10000 variables), a clear 193 

difference, in terms of variable intensities, exists between the two groups, thus confirming the 194 

discriminating power of the volatile profile with respect to the geographical origin (Melucci et al., 195 

2016; Lukić, Carlin, Horvat, & Vrhovsek, 2019).  196 

Concerning the PLS-DA results (4 latent variables), the values of the estimated Y variable 197 

(geographical category) by the model in cross and external validations are shown in Fig. 2. The 198 

dotted line identifies the threshold value used to define the attribution of samples to different 199 

classes. Regarding the location of each sample, a greater distance from the threshold line can be 200 

interpreted as a better classification capacity of the model. 201 

The results, in terms of percentage and number of samples correctly classified, are reported in Table 202 

2. The percentage ranged from 80.8% to 91.2%. The values obtained for the “EU” category were 203 

higher, likely because of the greater number and variability of samples used to build the model. The 204 

external validation percentages were lower compared to those obtained for the cross-validation as 205 

expected, but the results can be considered more robust since they were obtained considering the 206 

25% of samples that were not used to build the model.  207 

The ROC (Receiver Operating Characteristic) curve, reported in Fig. 3, summarizes the trade-off 208 

between sensitivity (number of samples predicted to be in the class divided by number actually in 209 
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the class) and specificity (number of samples predicted to not be in the class divided by the actual 210 

number not in the class) for the PLS-DA classification model (external data set). The area under the 211 

curve (AUC=0.9365) and the height values of sensitivity (0.89) and specificity (0.8) suggest that the 212 

model was characterized by a good degree of discrimination. The specificity and sensitivity as 213 

threshold variation is reported on the right. The dotted line identifies the threshold value used in the 214 

model and is shown in Fig. 2. 215 

The VIP (Variable Importance in Projection) score obtained by the PLS-DA confirmed that the 216 

section of the chromatogram ranging from 2000 to 10,000 variables has a major contribution to 217 

sample discrimination (VIP values greater than 1) according to geographical origin (Fig. 1-b). 218 

Focusing on incorrectly classified samples, a specific trend as a function of characteristics that 219 

could usually affect the volatile profile of the oil (such as the commercial category, olive cultivar, or 220 

specific country of origin) was not seen, thus not justifying the observed misclassifications.  221 

Results related to the probabilistic approach are shown in Fig. 4. The graph refers to the category 222 

“EU”: this means that the higher a sample is located, the higher the probability for which it is 223 

classified as member of the “EU” category. As a consequence, oils classified as members of the 224 

other category (extra-EU) are located in the bottom area of the graph. In this case, the threshold 225 

value is fixed at 0.5, corresponding to a probability of 50%: a sample classified with a probability 226 

lower than this is considered as not correctly grouped. It is also interesting to note that most samples 227 

were correctly classified with a probability between 90% and 100%. 228 

Regarding ANN, an early stopping technique was used to select the number of training cycles 229 

(epochs) to avoid over-fitting, using the validation set to monitor the prediction error. An example 230 

of this procedure is reported in Fig. 5, where the best ANN training was characterized by 47 epochs. 231 

Above this point, the error increased further indicating that the ANN tends to overfit. Consequently, 232 

the results of ANN are related to these iterations. 233 
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The best prediction results were obtained with a three layers network (input, hidden and output), 234 

having 5 nodes in the hidden one; a larger number of nodes did not increase the network 235 

performance.  236 

The classification results, in terms of number and percentage of samples correctly classified 237 

(according to the highest class probability), are summarized in Table 3, for the validation and 238 

external data sets. The external data set was composed of the same samples selected to validate the 239 

PLS-DA model. As reported for the PLS-DA model, even in this case higher percentages (from 240 

92.3% to 97.5%) were achieved for the “EU” category in all three data sets.  241 

In particular, comparing the results of the external validation data (the same for both classification 242 

methods), it is possible to note that higher percentages were obtained using the ANN for both the 243 

“EU” and “extra-EU” categories. In particular, an increment of 3.8% and 7.6% of correctly 244 

classified samples was obtained, respectively. The ROC curve (specificity vs sensitivity) and AUC 245 

value (0.9526) of the ANN model (external data set) confirms the higher classification power of this 246 

techniques compared to PLS-DA (Fig. 6). This is probably due to the fact that the ANN model is 247 

based on a non-linear approach.  248 

In general, the percentages obtained were slightly lower than those reported by other studies based 249 

on volatile compounds and chemometric untargeted data analysis (Gerhardt, Birkenmeier, Sanders, 250 

Rohn, & Weller, 2017; Bajoub et al., 2018; Lukić, Carlin, Horvat, & Vrhovsek, 2019). This aspect 251 

can be explained by the large variability, in terms of geographical origin, olive variety, and 252 

commercial category of the samples analyzed, which represents a strong point of this work.  253 

The results described herein confirm the suitability of FGC for verifying geographical traceability 254 

of EVOOs and VOOs, even using untargeted chromatographic signals of the volatile fraction as 255 

variables for multivariate analysis (Melucci et al., 2016). An in-house validation of this analytical 256 

method, performed to verify that a repeatable and reproducible signal, with sufficient sensitivity to 257 

collect the valuable information from the samples, has been carried out which underlined the good 258 

performance of the technique; this will be discussed in more detail in a subsequent publication. 259 
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 260 

4. Conclusions 261 

In this work, the application of FGC for volatile compounds analysis combined with untargeted 262 

chemometric data analysis (PLS-DA and ANN) to discriminate EVOOs and VOOs with different 263 

geographical origin was presented. For both elaborations, satisfactory results, in terms of 264 

percentages of correctly classified samples, were obtained: PLS-DA (external validation) allowed 265 

classification of 89% and 81% of “EU” and “extra-EU” samples, respectively; for ANN (external 266 

validation), the percentages were 92% and 88%, respectively.  267 

It is important to highlight that these promising results were achieved by analyzing a set of samples 268 

that are representative of the large variety of parameters (olive cultivar, country of origin, 269 

commercial category) that can describe olive oil and affect its chemical characteristics.  270 

It cannot be excluded a priori that other factors could also affect this discrimination, but the results 271 

clearly showed that the EU vs. extra-EU origin of the oils played a key role. 272 

The results obtained herein sustain the use of multivariate chemometrics with untargeted detection 273 

of volatile compounds as a powerful tool to discriminate EVOOs and VOOs of different origin, 274 

leading to the possibility to verify compliance with the labelled geographical provenance (EU vs 275 

extra-EU). The identification of the specific country of origin, both in blended and not blended oils, 276 

may be of significant relevance, but to obtain a robust and satisfactory classification model a 277 

specific sampling, comprising a very high number of oils coming from each country, is still needed. 278 

Other studies have already reported that the analysis of volatile compounds is suitable for tracing 279 

the geographical origin of VOOs. It is, therefore, of utmost importance to identify and quantify the 280 

main volatile compounds involved in the discrimination with other analytical techniques. 281 

Nonetheless, the methodology proposed herein presents some advantages over other techniques 282 

generally applied for this analysis, as it is very rapid (only 200 s are needed for each 283 

chromatographic run) and easy to use since no sample treatment is required. In particular, for the 284 

effective application of the proposed analytical methodology, it would be worthwhile for each 285 



13 

 

laboratory to build its own model on a large dataset of samples of interest in order to achieve, year 286 

after year, a historical memory that is useful to control the conformity of oils coming from the same 287 

areas and sold by the same or different suppliers. Inter-laboratory tests should be also carried out to 288 

verify the comparability of the results among different laboratories, allowing the establishment of a 289 

shared data set to increase overall reliability, on which the predictive models should be based. 290 
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Table 1. Number of samples for each class of origin considered and geographical origin. EU: oils 

from EU state members. Extra-EU: oils from countries outside the European Union. Blends: oils 

obtained mixing EU oils or EU and extra-EU oils. 

 

Origin class N Country of origin  

EU 116 29 Spain, 25 Italy, 22 Croatia, 16 Greece, 12 Portugal, 12 Slovenia 

Extra-EU 70 42 Morocco, 21 Turkey, 6 Tunisia, 1 Chile 

Blends 24 12 EU blends, 12 EU/extra-EU blends 
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Table 2. Percentages and number (in parentheses) of correctly classified samples for each category 

using the PLS-DA model. EU: oils from a single state member of European Union and oils obtained 

by mixing EU oils. Extra-EU: oils from a single country outside the European Union and oils 

obtained by mixing EU and extra-EU oils. 

 

Category Cross validation External validation 

EU 91.2% (93/102) 88.5% (23/26) 

Extra-EU 91.1% (51/56) 80.8% (21/26) 
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Table 3. Percentages of samples correctly classified for each category using the ANN model. EU: 

oils from a single state member of the European Union and oils obtained by mixing EU oils. Extra-

EU: oils from a single country outside the European Union and oils obtained by mixing EU and 

extra-EU oils. 

 

Category Training (%) Verification (%) External validation (%) 

EU 97.5 (80/82) 95.0 (19/20) 92.3 (24/26) 

Extra-EU 93.2 (41/44) 91.7 (11/12) 88.4 (23/26) 

 















Highlights 

 

- FGC was applied to discriminate oils with different geographical origin  

- Chemometric analysis with untargeted approach was applied 

- PLS-DA and ANN classification models were built and validated 

- Satisfactory percentages of samples correctly classified were obtained 
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