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ABSTRACT

We analyze the time series of the temperature of the sedimentary core MD01-2443 originating from the Iberian Margin with a duration of
420 kyr. The series has been tested for unit-root and a long term trend is estimated. We identify four significant periodicities together with
a low climatic activity every 100 kyr, and these were associated with internal and external forcings. Also, we identify a high-frequency fast
component that acts on top of a nonlinear, irreversible slow-changing dynamics. We find the presence of chaos in the climate of the Iberian
Margin by means of a neural network asymptotic test on the largest Lyapunov exponent. The analysis suggests that the chaotic dynamics
is associated with the fast high-frequency component. We also carry out a statistical analysis of the dimensionality of the attractor. Our
results confirm the possibility that periodic behavior and chaos may coexist on different time scales. This could lead to different degrees of
predictability in the climate system according to the characteristic time scales and/or phase-space locations.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5123509

The climatic events that occurred throughout the history of our
planet leave traces through records that allow us to reconstruct
the underlying dynamics and possibly date the most important
episodes. Time series analysis helps identifying whether inter-
nal or external forcing is involved in climate dynamics. However,
most of the research in the area focuses on linear methods or
deals with identifying and dating the main events; nonlinear time
series analysis is still under-utilized. Our results show the impor-
tance of incorporating a proper nonlinear analysis in the subject.
We focus on the Iberian Margin, since it has a long tempera-
ture record and relatively few studies have been carried out in
this area. By using both linear and nonlinear methods, we iden-
tify both chaotic and periodic, sawtooth type, behavior and these
could be coupled at different time scales. We apply a comprehen-
sive toolset of nonlinear and nonparametric methods, and these
include kernel smoothing for non-parametric estimation of the
trend and quasi-periodic components, wild-bootstrap methods to

associate a confidence band with the estimated trend, advanced
unit-root tests for non-stationarity, entropy based tests for non-
linearity, neural networks based tests for chaos. Also, by combin-
ing bootstrap methods and the theory of U-statistics, we obtain a
proper confidence interval for the correlation dimension. Chaotic
dynamics can make slight changes in the Iberian Margin environ-
ment cause greater climatic variability in the region. At the same
time, the presence of different dynamics over characteristic time
scales can reflect on the presence of “windows” of predictability
that need to be substantiated.

I. INTRODUCTION

Marine isotope stages (MISs), sometimes termed oxygen iso-
tope stages (OISs), show alternating periods of cold and heat in the
Earth’s climate. These stages serve to deduce the temperature and
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climate of the world in a certain period of the past using data of
the isotopes of oxygen taken from seabed sediment samples. Cores
are taken deep enough and large enough to see the different strata
in the sedimentary column in the sea floor. Each stage represents a
period of the temperature measured in tens of thousands, hundreds
of thousands, or even millions of years. A complete study of these
isotopic stages reveals the advance and retreat of the ice during the
last ice ages and the rises or falls in sea level. Thus, glaciation times
and intermediate periods between glaciation can be determined.
(These cycles are also recorded in samples of ice and ancient pollen.)
An isotopic stage can represent a glacial or interglacial period and
also a stadial or interstadial one. A stadial is a cold period during an
interglacial, not cold enough to be considered a glacial, and an inter-
stadial is a warm period within a glacial that is not long enough or
warm enough to be called an interglacial. These climate variations
are attributable to astronomical processes, to variations in the orbit
of the Earth, or to changes in the solar radiation. They affect the cir-
culation of the oceans and the distribution of water masses, which
store and distribute heat, being, therefore, key to the climate of the
Earth.

High-resolution marine sediment cores of the Iberian Margin
contain records of the temporal variations of the different water
masses, which come from the northern part of the Atlantic and
from the Antarctic; these variations of the water masses represent
variations in the climate of the Earth. In marine sediment cores,
δ18O records of benthic foraminifera resemble the Antarctic tem-
perature signal, while the δ18O time series of planktonic foraminifera
exhibit changes similar to those found in Greenland ice cores.1–4 The
differences in the isotopic composition between surface and deep
waters of the Iberian Margin provide a first independent verifica-
tion of earlier methane interhemispheric phasing for the last climate
cycle,5 which makes the Iberian Margin a focal point for the compre-
hensive assessment of climate variability in both hemispheres over
long periods of time.4 The sea surface temperature, derived from the
sedimentary alkenones in the Iberian Margin, is coupled with the
δ18O records of Globigerina bulloides, which makes this useful as a
climate proxy. The specific characteristics of the sedimentation of
the Iberian Margin come from the displacement between the ages
of alkenones and foraminifera from intervals of identical sediment
depth.4,6 Thus, time series information obtained from cores of the
Iberian Margin is very important to understand the evolution of the
Earth’s climate during a large part of the Quaternary.

Time series analysis has proven to be a key tool for the study of
paleoclimatic data. Alongside the linear approach7 and climate mod-
eling, the paradigm of chaos theory and nonlinear dynamics fostered
the introduction of new methods and techniques for analyzing com-
plex phenomena. The approach was first investigated within the
physics community (see, e.g., Kantz and Schreiber,8 Abarbanel,9 and
references therein) and then revisited and possibly made more rig-
orous by the mathematics and statistics community (see, e.g., Chan
and Tong,10 Giannerini and Rosa,11 Giannerini,12 Fan and Yao,13 and
references therein). It is also worth mentioning the upsurge of inter-
est on climate change within the econometrics community, see, for
instance, Hillebrand et al.14 and “climate econometrics.”15

In this study, we analyze the temperature time series obtained
from alkenone records in the marine sediment core MD01-2443 of
the Iberian Margin, which has a duration of 420 kyr (1 kyr = 1000

years). We study the stationarity of the series by means of appropri-
ate kernel smoothing techniques, wild-bootstrap methods, and unit-
root tests. Also, we identify the main (quasi)-periodicities involved
in climatic variability by using both wavelets and spectral analysis.
The nonlinearity of the series is assessed through a test for irre-
versibility and an entropy metric bootstrap test. Furthermore, we
test for the presence of chaos through a neural networks based
asymptotic test on the largest Lyapunov exponent. The results are
confirmed through the direct estimation of the largest Lyapunov
exponent. Finally, we analyze the fractality of the reconstructed
attractor by means of the correlation dimension for which we derive
a proper confidence interval based both on asymptotic theory and
on bootstrap methods. The results point clearly at the presence of
an interplay between chaotic dynamics, possibly acting at a fast time
scale, and quasi-periodic oscillators that are associated with the slow
dynamics and the main spectral peaks. The analysis of the correla-
tion dimension is not conclusive in that the uncertainty is too high
and the estimates do not level off with increasing embedding dimen-
sion. The results hint at the presence of two scaling regions and
this corroborates the hypothesis of a coupled chaotic system with
different time scales.

II. DATA AND METHODS

A. Data pre-processing

For this study, we used alkenone records of the marine sed-
iment core MD01-2443 from 37◦52.85′N, 10◦10.57′W, at 2925 m
below sea level, from Martrat et al.4 Alkenones are proxies or indica-
tors of the temperature and measure the evolution of the climate
during the last 420 kyr. Due to the nature of the data, the origi-
nal time series is not equally spaced and has been made regular by
means of spline interpolation. All the analyses have been put forward
through Matlab16 and R.17 The reconstructed series is equispaced
with an interval of 10 years for an overall sample size of 4194 data
points.

B. Estimation of the trend, quasi-periodic behavior,

and unit-root tests

One of the first steps of the analysis is to assess the presence
of a trend or any other non-stationary component. The presence
of a deterministic trend can be tested by means of regression over
smooth functions of time. We used recurrence graphs as a heuristic
tool to study the stationarity of the series. In physical terms, these
compare the distribution of distances between pairs of vectors in the
reconstructed state space with the distribution of distances between
different orbits evolving over time.18

We also test for the presence of a stochastic trend, i.e., whether
the series is integrated and the observed trend is due a random walk
component. Such kind of tests are popular in the econometrics lit-
erature and are known as unit-root tests;19 for more details see the
Appendix.

Once the unit-root hypothesis has been ruled out or the series
has been differenced, we estimated the trend and the quasi-periodic
components of the series by means of a nonparametric kernel
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smoothing approach. We assume the following:

Xt = m(t/n)+ σtut,

ut =
∞

∑

j=0

ψjεt−j, ψ0 = 1,
(1)

where {εt} is a zero mean i.i.d. sequence with constant variance and
finite fourth moments, m(·) is a smooth deterministic trend func-
tion, and ut is a stationary linear process with σt accounting for
unconditional heteroskedasticity. We estimate m(·) by means of a
local polynomial smoother (loess). For the estimation of the long-
run trend, the degree of the smoother has been set to one as to
mitigate boundary effects, otherwise the order is two. The confi-
dence bands at level 95% for the nonparametric estimator of the
trend have been derived by using an autoregressive wild-bootstrap
scheme; for more details on scheme see the Appendix. The scheme
provides valid confidence intervals under the assumptions as in
Eq. (1), where the detrended series is dependent. For more details,
see Friedrich et al.20

C. Analysis of the periodic behavior: Wavelet methods

and spectral analysis

The periodic behavior of the series has been studied by means
of spectral analysis and wavelet methods. Both methods rely on find-
ing a decomposition of the series by means of orthonormal bases of
the Hilbert space of square integrable functions. In particular, spec-
tral analysis focuses on the frequency domain as the total energy is
decomposed into combination of sinusoids. We used both the raw
periodogram and its kernel smoothed version, which is a consistent
estimator of the true spectrum.13,21 Also, we used the autoregressive
spectrum to cross-check the result. Wavelet methods decompose the
signal in terms of wavelets that typically are not periodic. This is use-
ful in the presence of non-stationary series22,23 and when the time
information is important besides the frequency content of the series.
For each application, a particular shape or mother wave, is chosen;
in our case, the Morlet wavelet was used. Many types of individual
mother wavelets have oscillations that vary in wavelength; however,
Morlet wavelets have a constant wavelength and are popular because
the frequency significance of the output is clear.24–27

D. Nonlinearity and chaos

In order to assess the nonlinear nature of the data generating
process, we have used a test for time reversibility introduced in Diks
et al.28 Under the null hypothesis, the process that has generated the
observed time series is a nonlinear static transformation of a lin-
ear Gaussian random process. We also employed a general test for
nonlinear serial dependence introduced in Giannerini et al.29 and
based upon the combination of a metric entropy (Hellinger distance)
and a suitable smoothed sieve bootstrap scheme. The test requires
very mild assumptions and leads to asymptotically valid inferences
under the null hypothesis that the data generating process admits an
infinite autoregressive representation.

Once nonlinearity has been ascertained, we focus on testing
for the presence of chaos through the largest Lyapunov exponent
that quantifies the so-called initial value sensitivity. Assume that the

series is generated by the following dynamical system in R
m:

Xt = F(Xt−1) Xt ∈ R
m, (2)

and let X0 and X
′
0 be two close initial conditions and Xn and X

′
n their

value after n time steps, respectively. It results
∥

∥

∥
Xn − X

′
n

∥

∥

∥
≈ exp(n λ1)

∥

∥

∥
X0 − X

′
0

∥

∥

∥
,

where ‖·‖ is a suitable norm and δ =
∥

∥

∥
X0 − X

′
0

∥

∥

∥
is a small pertur-

bation. Hence,

λ1 = lim
n→∞

lim
δ→0

1

n
ln





∥

∥

∥
Xn − X

′
n

∥

∥

∥

∥

∥X0 − X
′
0

∥

∥



 (3)

is the global largest Lyapunov exponent. Note that

Xn − X
′
n ≈ δ · DF(n)(X0) = δ

M−1
∏

t=0

DF(Xt) = δ

M−1
∏

t=0

JM−t,

where F(n)(X0) is the n-fold iteration of the map F and Jt is the
Jacobian of the map F evaluated at Xt. Hence, it results

λ1 = lim
M→∞

1

2M
ln ν1

(

T′
MTM

)

, (4)

where TM =
∏M−1

t=0 JM−t and ν1(A) is the largest eigenvalue of matrix
A. Clearly, λ1 measures the average rate of divergence of nearby
starting trajectories and a chaotic dynamics implies λ1 > 0. The two
equivalent definitions of the largest Lyapunov exponent given in
Eq. (3) and Eq. (4) are reflected in the two approaches to estimat-
ing it in finite samples. The first approach refers to Eq. (3) and is
called direct since it finds close pairs of state vectors and measures
the average divergence S of trajectories over time.30,31 Then, typically
the logarithm of such a divergence S is plotted over time and if it
is possible to identify a linear scaling region, then its slope is the
direct estimator of λ1; for more details on direct estimators, see the
Appendix. In order to verify the reliability of the estimate usually
the exercise is replicated for a range of embedding dimensions and
time delays. One problem with this approach is that it is sensitive to
dynamic noise in that it cannot distinguish between divergence due
to noise from exponential divergence due to the chaotic dynamics.11

Moreover, there are no results on the asymptotic distribution of the
estimator so that it is not possible to test the hypothesis of chaos. In
Giannerini and Rosa,32 a bootstrap solution to the problem is pro-
posed but the intrinsic sensitivity to noise of the direct estimator
remains so that we only use it to cross-check the result from the Jaco-
bian estimator which is based upon a neural networks model of the
map F and its Jacobian J [refer to Eq. (4)]. The modeling step allows
us to filter out the effect of noise, obtaining consistent estimators
and a proper statistical test for chaos.33

Another signature of chaotic dynamics is the presence of a
fractal attractor. The literature on fractal dimensions is vast and
the interested reader is referred to Pesin,34 Cutler35 for a theoretical
account. Here, we focus on the correlation dimension, whose use has
been popularized in Grassberger and Procaccia36 (see also Cutler37).
Let F be a dynamical system over a state space X ⊆ R

m equipped
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with an invariant measure µ. Then, the correlation integral is
defined as

Cµ(ε) = Pµ⊗µ(‖X − Y‖ ≤ ε), (5)

where X and Y are independent and distributed according to the
measure µ and I(A) is the indicator function over set A. If there
exists a constant d2 such that Cµ(ε) ≈ const. × εd2 , then

d2 = lim
ε→0

log Cµ(ε)

log ε
(6)

is called the correlation dimension of µ.
The most used estimator for d2 is derived from the sample

version of the correlation integral

Ĉµ(ε) = 2

n(n − 1)

∑

i 6=j

I(
∥

∥x − y
∥

∥ ≤ ε). (7)

Usually, log Ĉµ(ε) is plotted against log ε and the slope of the lin-
ear scaling region is taken as the estimator of d2. For a review of
other estimators see Borovkova38 and Cutler.35 As summarized in
Chan and Tong (Chap. 5.1),10 the reliability of the estimators of the
fractal dimension has been questioned and depends upon a number
of factors such as the lacunarity of the invariant measure, bound-
ary effects, effects due to noise, and filter effects. Moreover, there is
no agreement on the sample size needed to obtain a good estimate
as the various studies rely on different assumptions. In any case,
the assessment of the standard error of the estimates is a manda-
tory requirement and we implemented both the asymptotic version
described in Borovkova39 and Borovkova et al.38 and a bootstrap ver-
sion similar to that of Borovkova et al.40 Both of them are based on
the Hoeffding decomposition of U-statistics.

III. RESULTS

Figure 1, blue line, shows the time plot of the original series
(after interpolation), which represents temperature values in Celsius

FIG. 1. Temperature time series (in Celsius) for the Iberian Margin, obtained from
the proxies of alkenones from the sedimentary coreMD01-2443: interpolated orig-
inal (blue line) and long-run trend (red line), together with confidence bands at 95%
(light blue).

ranging from 60 to 420 000 years before the Common Era (BCE).
The series has a maximum of 20.91 ◦C and a minimum of 5.41 ◦C,
an arithmetic mean of 14.71 ◦C, a standard deviation of 2.76 ◦C, and
a variance of 7.65 ◦C2. The series shows three cooling events, the
coldest at approximately 267.63 kyr, while in the case of warming,
five events are observed, the highest temperature being at 126.9 kyr
approximately. Note that the four earlier warming events are of
greater amplitude than the most recent. On the other hand, the tem-
perature trend in the 6 kyr closest to the present is clearly downward.
The estimated long-run trend (in red in Fig. 1) seems to indicate
some sort of tendency but this is ruled out if we take into account the
uncertainty (confidence bands in light blue). Moreover, by applying
the three unit-root tests described in Sec. II B, we also rule out the
possibility of a random walk behavior. In particular, the test statistic
for the test of Chan et al.41 results is 73.56 with a p-value< 1 × 10−4,
whereas the statistics for the tests of Ng and Perron42 and Perron
and Qu43 result are −25.28 and −22.74, respectively, with a p-value
< 1 × 10−3 in both cases. Overall, there is evidence that the process
that has generated the Iberian margin time series is stationary so that
we can proceed with the analysis by assuming this.

The smoothed spectral density function together with the nor-
malized spectrum are shown in Fig. 2. They present three well-
defined peaks, the most important one being at 10.5 kyr, followed
by the 4- and 2-kyr ones. There is also a fourth peak at 7 kyr but
with less spectral amplitude. These peaks were verified by using
the autoregressive spectral density function. The wavelet spectrum
obtained by the Morlet method (Fig. 3) shows a greater variability
from 60 to 150 kyr. Between 60 and 150 kyr, one can see an oscil-
lation that begins with a period between 0.5 and 2 kyr, which goes

FIG. 2. (a) Smoothed spectral density function for the Iberian margin time series.
The three dominant peaks are indicated with dashed lines together with their asso-
ciated period (in blue). (b) Normalized spectrum from the same series. The same
peaks are observed as in the density function, with an additional peak at 7000 yr.
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FIG. 3. Wavelet spectrum (Morlet) for the Iberian Margin time series. The color
bar is the variance, and the lower black line represents the cone of influence;
anything below is dubious.

on until having a period between 3 and 8 kyr. This repeats approx-
imately from 160 to 180 kyr, between 240 to 300 kyr and 330 to
380 kyr, although in the last interval, it begins with larger periods
and evolves toward shorter periods. The lag between these three
time intervals are 60 and 30 kyr, respectively, which are multiples
of 10 kyr. On the other hand, it is interesting to note the low activ-
ity that is seen at approximately 100, 200, 280, and 400 kyr; this
represents a process of low climatic activity every 100 kyr.

It is not difficult to appreciate from Fig. 1 that the shape of the
series is of a Fourier sawtooth type that can be modeled by using the
dominant periodicities as follows:

T(t) =
∣

∣

∣

∣

∣

A

2
+ A

2π

∞
∑

n=−∞

1

n
exp

{

j
(

nωot + π

2

)}

∣

∣

∣

∣

∣

, (8)

where ω = 2π/T is the angular frequency. We take n = 1 and
expand for eight harmonics as to obtain an approximate model of
the long-run periodicity of the temperature (Fig. 4, black line). The
model follows the general trend of the evolution of temperature
but fails to capture the quasi-periodic behavior that could be also
ascribed to a stochastic forcing factor. Hence, in order to extract
the long term periodic component, we used the local quadratic
smoother defined in Sec. II B with a time span that approximately
matches the duration of the cooling cycle (7 kyr). The results are
shown in Fig. 4, blue line. In Fig. 5, we present the time series
together with the estimated low-frequency trend cycle (red line, left
axis) where the time span is 1 kyr. The blue line represents the resid-
ual high-frequency or fast dynamics (blue line, right axis). From
Figs. 4 and 5, it can be seen that the warming periods are character-
ized by a slow increase followed by a fast decrease toward the three
main cooling events. These present greater variability with respect to
warm ones that, on the other hand, are characterized by oscillations

FIG. 4. Temperature behavior from 420 kyr to 60 yr BCE. Results of the model
(black line) and original temperature time series (grey line) together with the
estimated long-run cycle-trend (blue line).

that are more persistent and larger in amplitude, and this could indi-
cate greater climatic stability during warm periods. This asymmetric
behavior hints at the presence of a nonlinear irreversible oscillator.

The frequency distribution is tri-modal, with the maxima of
the two major peaks at 14.32 ◦C and at 18.34 ◦C, and a third at
6.89 ◦C; these represent the dominant temperatures during the cold
and warm periods, respectively (Fig. 6).

The first and second derivatives of the temperature time series
(Fig. 7) show important events at 140 kyr, with a duration of approx-
imately 50 kyr, and a period of high variability from 50 kyr to

FIG. 5. Temperature time series (light blue) together with the low-frequency
cycle-trend (red line, 1 kyr span, left axis) and the residual high-frequency com-
ponent (blue line, right axis).
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FIG. 6. Histogram of the of temperature of the time series obtained from the
proxies of alkenones from the sedimentary core MD01-2443 with the Freed-
man–Diaconis technique. The black line denotes a kernel density estimate.

approximately the present with a relatively low variability at 30 kyr.
It is worth noting that these events coincide with the high variabil-
ity observed during the periods prior to the cold periods. Also, the
evolution toward the cold stages occurs in a relatively smooth way
with gradient that on average is 1.44 × 10−4 (because the slope is
very small, the angle is almost the same, 1.45 × 10−4). The change
between a cold period (average slope of 2.55 × 10−3) and a warm one
is 1.77 × 10−1 higher; this may be due to the phase change between
water and ice and the latent heat of melting of ice. When ice forms
(melts), energy is released into (absorbed from) the environment;
this causes the temperature in the cooling (heating) curves of water

FIG. 7. Upper panel: first derivative of the temperature and lower panel: sec-
ond derivative. The first and second derivatives serve to identify the main heating
events; the second is capable of distinguishing between events of varying mag-
nitude and incorporates information about conditions before and after an abrupt
event.

to stall and show a plateau effect until the production (melting) of
ice has stopped. Thus, cold stage events involving this phase transi-
tion are slow compared to warm stage events without any such phase
transition. The change in temperature between the stages of approx-
imately 100 kyr, centered on the intermediate time of the stage,
suggest the presence of a sinusoidal period of 420 kyr. Of course, this
conjecture can only be verified with a longer time series. The empir-
ical autocorrelation function presents a strong persistence which
resembles that of continuous-time processes and does not fade away
as the lag increases. The partial correlogram presents a large positive
value at lag 1 and a negative value at lag 2 and hints at the presence
of moving average components where the dynamic noise enters into
the equation of motion. This will be further discussed below.

A. Nonlinearity and chaos

As a first step, we test for irreversibility and nonlinearity by
using the two tests described in Sec. II D. The value of the test statis-
tic for irreversibility results Q = 0.002 with a p-value of 0.001; this
was obtained with a bandwidth of 0.2 and by applying the block
method with a value of 30 blocks. The results of the entropy test for
nonlinearity of Giannerini et al.29 are shown in Fig. 8. The measure
Sk can be interpreted as a nonlinear autocorrelation function at lag k
where the confidence bands represent the null hypothesis of linear-
ity at 99% (green) and 99.9% (blue). Here, the number of smoothed
sieve bootstrap replicates was set to B = 1000, and we chose the
reference bandwidth method for kernel density estimation. Also,
in order to cope with the slow decay of the ACF, we have set the
max order of the autoregressive sieve to 1000. Even in this conserva-
tive setting, the null hypothesis of linearity is clearly rejected and we
observe a nonlinear significant effect from 5 to 7 kyr.

FIG. 8. Entropy measure Sk computed on the Iberian margin time series up
to 1000 lags (10 kyr). The confidence bands at 99% (green) and 99.9% (blue)
correspond to the null hypothesis of linearity.
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FIG. 9. Phase-space diagram for the temperature time series of the Iberian
Margin with τ = 2. Left panel: original time series; right panel: high-frequency
component (see Fig. 6).

The results point at the existence of an irreversible nonlinear
process behind the Iberian Margin time series. This is in agreement
with the fact that climate behavior is known to be associated with
Milankovitch Cycles, which in turn are related to solar cycles that
are also irreversible.28,44 It is feasible to think that a nonlinear pro-
cess (solar cycles) is generating a change in the temperature (Iberian
Margin), causing the behavior of this change to be nonlinear as
well.

In order to obtain the attractor reconstruction, the time delay τ
and the embedding dimension d were derived in first place by using
heuristic methods based on the average mutual information and on
false nearest neighbors (see the Appendix). In particular, these indi-
cate that a time delay τ = 1 or 2 is sufficient and that the embedding
dimension should be at least 6 but the results are very sensitive upon
the settings used. In Fig. 9, we show the phase-space portraits of the
reconstructed series with τ = 2. The left panel shows the original
series, whereas the right panel shows its high-frequency fast compo-
nents. The behavior of the attractor together with that observed in
Fig. 6 can be associated with the great variability that is generated
during cold events, producing a system whose dynamic behavior
is mostly rapid, since after a major event, the rest of the system is
characterized by variability in high frequencies.

As also shown in Chan and Tong10 and Giannerini and Rosa,11

the time delay embedding exercise can be seen as a statistical prob-
lem of subset selection within nonparametric modeling. Hence, a
consistent model selection criterion will lead to choosing optimal
reconstruction parameters and this is the approach we adopted.
Also, note that different objectives may require different optimal
reconstruction parameters and a reliable result should be robust
with respect to reasonable variations of the time delay and embed-
ding dimension.

We test for the presence of chaos through the largest Lyapunov
exponent λ1 as described in Shintani and Linton;33 the null hypoth-
esis results H0 : λ1 ≤ 0 vs H1 : λ1 > 0. As explained in Sec. II D,
the Jacobian estimator of λ1 relies upon a single-hidden-layer neural
network of the map and its derivative and the most difficult aspect is
training/estimating a network which reaches the global optimum of
the target function. We chose the best model by means of the gen-
eralized Bayesian Information Criterion (BIC) upon the following
grid of parameters:

Parameter Grid

Embedding dimension d 2–16
Time delay τ 1–10
Number of hidden units k 1–20

After the first grid search, the model that minimized the BIC
was refined and the convergence to the global minimum of the
target function was ensured. The results are presented in Table I,
first row. The global minimum is reached for embedding dimension
d = 10 and time delay τ = 1. The estimated Lyapunov exponent

λ̂1 = 0.112 is significantly positive as the null hypothesis is rejected
with a p-value < 2.2 × 10−16. The table also reports the number of
hidden units of the network k, the value of the minimized BIC, the
asymptotic standard error of λ̂1, and the value of the test statistic.

We have repeated the analysis on the high-frequency fast com-
ponent of Fig. 5. The results, presented in row 2 of Table I, are very
similar to those for the original time series. Hence, it seems that
the observed chaotic dynamics can be ascribed to the fast time scale
high-frequency component of the series that is possibly coupled with
an oscillator that acts at slower time scales and is responsible for
the observed periodicities. The results for the direct estimator of the
Lyapunov exponent are presented in Fig. 10 that shows the plot of
S(t, ε) vs time t [see Eq. (A2)]. The left panel refers to the original
series and each curve corresponds to a different embedding dimen-
sion d ranging from 10 to 14. The time delay is τ = 1 and ε = σ/6,
where σ is the standard deviation of the series. The regions where
the fit has been computed for each d are highlighted in blue and

the average Lyapunov exponent over d results λ̂1 = 0.148. The right
panel shows same analysis performed over the high-frequency fast
component of the series, where d = 9, . . . , 12, τ = 2, and ε = σ/2.

The average Lyapunov exponent over d results λ̂1 = 0.092. The two
results match approximately those of the Jacobian estimator. How-
ever, as mentioned before, we found the results to be very sensitive
with respect to the choice of d and, to a lesser extent, τ so that
without the guidance of the Jacobian estimator it would have been
impossible to come to a definite conclusion. Indeed, note that the
curves show two approximately linear scaling regions and without
further investigations it would not be possible to pick up the right
one. In any case, the information deriving from these curves is still

TABLE I. Output from the best neural network fit from the grid search and test for

chaos of the time series of the Iberian Margin (row 1) and the time series of the

high-frequency fast component of Fig. 5 (row 2). The table reports the embedding

dimension d, the time delay τ , the number of hidden units k, the value of the minimized

BIC, the estimated Lyapunov exponent λ̂1 together with its asymptotic standard error,

the value of the test statistic, and the p-value of the test.

d τ k BIC λ̂1 Std error Test p-value

1. 10 1 16 −15357.36 0.112 0.010 11.72 <2.2 × 10−16

2. 13 1 12 −16280.13 0.102 0.009 10.77 <2.2 × 10−16
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FIG. 10. Average log-divergence S(t, ε) vs time t [see Eq. (A2)] for the original
series (left) and for its high-frequency component (Fig. 5). The regions where
the fit has been computed for each d are highlighted in blue, and the average
Lyapunov exponent over d is reported.

valuable as it hints at the presence of coupled dynamics with differ-
ent time scales. Such a behavior could also be due to the presence of
noise and will be briefly discussed in the following.

The recurrence plot is presented in Fig. 11; the points show a
general tendency to be close to the diagonal and, at the same time,
exhibit a coherent structure. This corroborates the hypothesis of a
deterministic, possibly chaotic process.

The dimensionality of the attractor has been investigated by
means of the correlation dimension computed through the Grass-
berger and Procaccia estimator.36,45 In these computations, the time
delay τ = 2 and the Theiler W window, which was calculated with
the help of the space–time separation plot, resulted W = 170. For
each embedding dimension d ranging from 2 to 15 a linear scaling

FIG. 11. Recurrence plot: the x-axis is equivalent to j and the y-axis is equivalent
to i, which are the index numbers of the data points of the time series. The scale
bar on the right side indicates remote color mapping, where white represents a
distance zero and black a greater distance. The central diagonal indicates the
time when i = j.

FIG. 12. (left) Correlation integral C(ε) for the Iberian Margin as a function of
ε in the logarithmic scale. The embedding dimension d ranges from 2 to 15 and
the optimal linear scaling region upon which the slope is computed is highlighted

in blue. (right) estimates of the correlation dimension d̂2 as a function of the
embedding dimension d.

region that maximizes the goodness-of-fit is identified. The scaling
regions are highlighted in blue in the left panel of Fig. 12 and their
slope is taken as the estimate of the correlation dimension. These are
shown in the right panel of Fig. 12. Clearly, the estimates increase
with d and do not stabilize. The standard errors also increase with
d and are of the order of 0.8 and this makes it impossible to draw
a definite conclusion on the dimensionality of the attractor. Note
that the log-correlation integral of Fig. 12 shows two linear scaling
regions and we asked ourselves whether the true scaling region for
C(ε) could range from 0.01 to 0.2. This is investigated in Fig. 13,
where the left panel shows a zoom of Fig. 12 on the region [0.01 − 1]
for the correlation integral and the optimal fitting regions are high-
lighted in blue. The results are shown in the right panel. Also in
this case, the estimates for d2 grow with d without stabilizing. For

instance, if we consider d = 12, we get d̂2 = 2.11 with an asymptotic
standard error of 0.27 and a bootstrap standard error of 0.23. Hence,
a 95% confidence interval for d2 results [1.58, 2.64]. Again, it is not
possible to draw conclusions about the fractal nature of the recon-
structed attractor. On the one hand, it is true that the estimates of the
correlation dimension do increase at a slower rate than d and this
suggests the presence of a low-dimensional attractor; on the other

FIG. 13. (left) Correlation integral C(ε) for the Iberian Margin as a function of ε
in the range [0.1, 50] in the logarithmic scale. The embedding dimension d ranges
from 2 to 15 and the optimal linear scaling region upon which the slope is com-

puted is highlighted in blue. (right) estimates of the correlation dimension d̂2 as a
function of the embedding dimension d.
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hand, it is not possible to draw reliable conclusions on the actual
value of d2 and further investigations are needed.

IV. DISCUSSION

From a visual inspection to the time series spanning MIS 11
and from the results shown by spectral analysis, we see a marked
change in climate during the Quaternary, in which the changes from
cold to warm temperatures are more abrupt. This type of behav-
ior has already been reported by different authors and is attributed,
in most cases, to astronomical forcing.4,46–51 Beyond astronomical
effects, these episodes do not appear as periodic and are interrupted
by excursions away from these cold or warm phases. Nicolis and
Nicolis46 obtain an attractor whose shape is very similar to that
obtained in this study. The winding direction that our attractor takes
is apparently always the same. This may indicate that this climatic
attractor belongs to a family of attractors that exhibit spiral and
screw chaos.52 Different studies on climatic attractors,46,53–57 find low
dimensionality in atmospheric climate time series, one exception
being Grassberger54 that suggested that the weather had no attrac-
tor and also warned that small spurious estimates of the dimension
might be obtained if the sample size is not sufficient, or the data
are sampled too finely and too smoothed. Petkov et al.58 and Badin
and Domeisen,59 found dimensions for their attractor between three
and six, working with time series from the Arctic ozone column in
the first case and with different stratospheric areas of the northern
hemisphere in the second. Zeng et al.52 pointed out that none of
the aforementioned studies fulfill the requirement of Ruelle,60 which
stipulates that at least 10d2/2 data points are necessary for a reli-
able estimate of dimension d2. Moreover, Tsonis et al.61 suggest that
about 102+0.4d2 data points are needed for a reliable estimate of the
fractal dimension d2. Even if the length of our series fulfills both cri-
teria we found that it is not possible to obtain a reliable estimate
of the (fractal) dimension of the attractor. This can be due to several
factors and will be the subject of future investigations. We argue that
similar problems affect most of the studies where a fractal dimension
is reported and it is our opinion that an estimate without a proper
measure of uncertainty should be reconsidered after a valid confi-
dence interval has been derived. The similarity between our results
and those of Nicolis and Nicolis46 can indicate the existence of a cli-
matic attractor at the latitudes studied, regardless of the longitude,
since both studies were carried out in latitudinally similar regions
and, more importantly, using different proxies (δ18O46). Based on
the above, we can conjecture that the Iberian Margin has a cli-
matic attractor of (possibly) low dimensionality, with a deterministic
chaotic dynamics.

As for the largest Lyapunov exponent, the correlation integral
also presents two scaling regions. As pointed out in Chan and Tong
(Chap. 5.1.7),10 this can be due to the presence of noise and the scal-
ing law for ε < σ , where σ is the standard deviation of the noise,
only reflects the scaling of the noise. Moreover, there are examples
of deterministic systems with dynamic noise where the estimates of
d2 no not level off with d. Another possibility is that there are cou-
pled dynamics with different time scales and the faster dynamics acts
as disturbance. This interesting scenario requires further investiga-
tions, in any case, note that the BIC criterion selects an embedding
dimension of 10, which also results as the dimension where the two

scaling regions become apparent and this can be ascribed to such a
phenomenon.

Returning to the results of the spectral analysis, the warm
periods show greater climatic stability, which agrees with Martrat
et al.4 who observed that the stable warm periods similar to the
Holocene were maintained and although the oscillations were rare,
they were generally more pronounced than during ice ages. The
highest temperature peak (20.91 ◦C) in the record was at 126.9 kyr,
which is within MIS 5e, the interglacial period from 118 to 130
kyr BCE,62,63 while the lowest temperature (5.41◦C) was found at
267.63 kyr, which is included within MIS 8, the cold period from
240 to 300 thousand years ago. Until now, we have found tem-
peratures concordant with the mentioned Marine Isotope Stages.
Similarly, we can see that there is a greater warming during MIS
11 than during the Holocene, as suggested by the data from the
Labrador Sea of Aksu et al.64 and Abreu et al.65 We can also note
the similarity of the insolation geometry between these two stages;
MIS 11 is often considered the interglacial period analogous to the
Holocene because the orbital parameters of the Earth’s orbit were
very similar to today’s.26,65,66 However, the most significant warm-
ing took place during MIS 5e, very close to one of the last two
deglaciations, Termination II, located in SPECMAP at 128 kyr.63,67

Our results are in agreement with what was reported by Abreu
et al.,65 who reported MIS 5e as the warmest period for the same
study region.

The value shown by the second derivative (140 kyr) coin-
cides with the beginning of Termination II. This, if we rely on the
reports of Lorius et al.,68 who located the midpoint of the warm-
ing in Antarctica very close to 140 kyr, is the same value reported
in the Devil’s Hole geothermal pool (Nevada, USA) oxygen iso-
tope record.69–71 Termination II was a time of rapid climate change,
when ice sheets melted and sea level rose, as did atmospheric CO2

concentrations.51,72 In the case of the Iberian Margin, Drysdale
et al.73 put the beginning of Termination II, based on the change
of benthic δ18O to interglacial values, at 141 ± 2.5 kyr, which places
our result within this event. The values obtained in our analysis
agree with both dates provided for Termination II, which is to be
expected since the sediments of the Iberian Margin preserve an
excellent multiproxy paleoclimatic record of Termination II and the
last interglacial.4,73–78 Undoubtedly, this deglaciation had an impor-
tant influence on the climatic variation within the Iberian Margin,
since its records allow us to identify clearly such events. Through
wavelet analysis, low climate variability was observed approximately
every 100 kyr. Clearly, the influence of the cycle of eccentricity
of the Earth’s orbit (100 kyr) can be appreciated, which is to be
expected since the late Pleistocene climatic records are dominated
by this cyclical behavior.63,79,80 It is worth noting that the oscilla-
tions occurred during MIS 2–4, MIS 6, MIS 8, and between MIS
9 and 10, which places our oscillations in cold periods, with the
exception of MIS 9. In agreement with what has been mentioned
above, warm periods have greater climatic stability. We may spec-
ulate that perhaps during the MIS 9 there was some important
regional disturbance that destabilized the system.

In order to study the nature of suborbital variability within MIS
5 more closely, Oppo et al.81 estimated the power spectra of site
1059 (32 ◦N, 75 ◦W, 2985 m, near southern California) with records
of δ18O of G. ruber using the multi-taper method.82 The spectral
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peak occurs in a wideband between 4.8 and 12 kyr (with peaks of
greater power in 6 and 10 kyr). Keigwin and Jones83 found these
same periods for the same region but in MIS 3. In our Fourier anal-
ysis, periodicities of 4, 7, and 10 kyr were found, and in the wavelet
analysis, a band of 3–8 kyr was also obtained, which is very close to
the values reported by these authors. What is relevant here is to think
that one or two important events should have occurred, with a peri-
odicity of ∼ 7 and 10 kyr, which affected not only MIS 3 and 5, but
the whole record of 420 kyr (up to MIS 11) and that our record cov-
ers all this time and we continue to find these periodicities. We can
say that the event should have been large, since these two regions are
very far apart from each other.

The 2000-year period found in both Fourier and wavelet anal-
yses recalls the well-known rapid climatic oscillations ranging from
1 to 3 kyr that have been described in the glacial records of Green-
land ice cores.84–87 These are the Dansgaard–Oeschger cycles (D–O)
and the Heinrich events (HE), which are related to Bond cycles.47,88,89

Heinrich events are episodes of massive ice discharges in the North
Atlantic that are repeated every ∼ 5–10 kyr. Given that the D–O
events occurred during the last glacial period and in our wavelet
record, we have a period band of 0.5 to 2 kyr between 60 and 150 kyr,
covering this period, we can say that these oscillations are likely due
to these events. Similarly, if we take into account that, according to
our results, these oscillations for the same time interval are crossed
to a periodic band of 3 to 8 kyr, we also have the HE as the cause of
these oscillations within the interval from 60 to 150 kyr. This leads us
to consider two aspects: (1) these events (DO and HE) were the most
important ones to be recorded in the Iberian Margin, in such a way
that any other event that happened periodically was of lower energy
and it is not possible to distinguish it with the methods used, and (2)
it is clear, as already mentioned above, that there must have been at
least three important events in ∼ 2, 7, and 10 kyr that affected not
only the Iberian Margin but the entire northern part of the Atlantic
Ocean.

The asymmetric, sawtooth-like behavior that we found is a
clear pattern previously noted by Bond et al.,47 who associated
sawtooth-shaped cooling cycles with records of sea surface tempera-
ture and atmospheric temperature, maintaining a close relationship
to the HE and massive collapse of the Laurentian Ice Sheet. Bond
found this pattern in ice core records, and in our case, it is in
sedimentary records; however, as we have already mentioned, the
Iberian Margin provides records of both the North Atlantic and
Antarctic water masses. In addition, according to Bond et al.,47 this
series of heating and cooling cycles is so notorious in the records of
the surface of the sea and the atmosphere of the North Atlantic that it
must be imprinted in other records of the last glaciation. Hence, we
can say that our record also carries information about these cycles
and it is very likely that the form of our time series is also due to the
HE and to the massive collapses of the Laurentian ice Sheet; only that
in our case, it is appreciated beyond the last glacial period. This type
of behavior was also observed by Alexandrov et al.90 in a stochastic
analysis carried out through a model to study the climatic variations
of the Quaternary; its analysis shows a climatic auto-fluctuation of
the sawtooth type close to 100 kyr. This is a peculiar feature of the
climatic variability of the Quaternary.

The observed interplay of chaotic and periodic behavior hints
at complex interactions between internal and external forcing that

regulate the climate. Since our approach is not based upon a para-
metric model it is not possible to perform a bifurcation analysis. In
Weertman91 and in Alexandrov et al.,90,92 the authors were able to
observe a climate transition between periodic behavior and chaos.
In particular, Weertman,91 by changing the parameters of the model
within a physically acceptable range, marked a difference between
a glacial and an interglacial regime and found that a slight change
in the parameters produced a climatic switching. Similarly, Alexan-
drov et al.93 by using the model of Saltzman et al.94–97 identified
the different types of change by varying the level of additive noise
(using the mean temperature of the ocean) and parametric noise
(which represents physical mechanisms that govern the dynamics
of the weather). With the variations in these two types of noise, they
observe how their system progresses from a transition between small
amplitude oscillations to large amplitude oscillations. Remarkably,
they find chaotic behavior when increasing the intensity of the noise.
Moreover, Alexandrov et al.90,92 by applying a Saltzman–Sutera
model,98 found that when the climatic system approaches its bifur-
cation point, stochastic oscillations of small and large amplitude are
generated; that is, smaller noise leads to a transition from order to
chaos. In this respect, our results are in agreement with previous
studies and confirm the possibility that periodic behavior and chaos
can coexist at different time scales.

V. CONCLUSIONS

The results obtained with the Lyapunov exponent indicate that
the climatic behavior of the Iberian Margin is chaotic. Note that,
as shown in Smith et al.99 since global Lyapunov exponents are
defined in the double limit of infinitesimal perturbations and infi-
nite step-ahead in the future, they cannot pose a practical limit
to predictability of the system, whose quantification is an interest-
ing problem that we will address in future investigations. Indeed,
nonlinearity implies state-dependent predictability that could call
for a different approach. Moreover, due to the presence of differ-
ent characteristic time scales, the system could be predictable on
longer horizons while remaining substantially less predictable on the
short term [see also Cencini et al. (Chap. 9.4)100 and Chan and Tong
(Chap. 6)10 for a discussion].

The temperature records present a quasi-periodic sawtooth
shape, which is characteristic of oceanic and atmospheric temper-
ature changes. It is through the identification of this pattern that
it is possible to associate the chaotic behavior found through the
Lyapunov exponent with sudden changes in temperature. Slight
changes in the environment of this region could cause greater cli-
matic variability. It was possible to identify the 100 kyr forcing
characteristic of the late Pleistocene along with other periodicities
(2, 4, 7, and 10 kyr) that we can associate with internal and exter-
nal forcing and that indicate that prediction over those time scales
is feasible. It is the internal forcing or the high-frequency compo-
nents that are probably causing chaos in the system and the actual
predictability of the system can reflect this. In the Iberian Margin cli-
mate system, chaos and periodic behavior do not exclude each other.
Rather, they coexist as processes with different time scales as a result
of the complex interaction between the subsystems that make up the
climate.
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APPENDIX: FURTHER DETAILS ON TIME SERIES

METHODS

1. Unit-root test

Typically, it is assumed that the series Xt, t = 1, . . . , n admits
the following decomposition:

Xt = m(t)+ φXt−1 + σtut, (A1)

where m(t) is a deterministic trend, σt is a deterministic sequence,
and ut is a stationary process with zero mean and unit variance.
The hypothesis tested is H0 : φ = 1 against H1 : φ 6= 1. One of the
main problems with unit-root tests such as the popular augmented
Dickey-Fuller test is that they break down when σt is not con-
stant or ut is nonlinear. A test suited to deal with this situation has
been introduced in Chan et al.41 and it is used here. We also use
the tests introduced in Ng and Perron42,43 that suffer less from the
aforementioned issues.

2. Autoregressive bootstrap scheme

Given the settings of Eq. (1), the confidence bands for the trend
were derived by using the following autoregressive wild bootstrap
scheme:

1. obtain the estimate of the trend m̂(t) by using the bandwidth h̃
and derive the residuals ẑt = Xt − m̂(t);

2. derive the bootstrap errors z∗
t = ξ ∗

t ẑt, where ξ ∗
t = γ ξ ∗

t−1 +
ν∗

t , ν∗
t ∼ i.i.d. N(0, 1 − γ 2) and γ = θ 1/l, with θ = 0.1 and

l = 1.75 3
√

n; and
3. build the bootstrap series X∗

t = m̂(t/n)+ z∗
t for t = 1, . . . , n and

estimate the trend m̂∗(t) upon it by using the same bandwidth h̃
used in step 1.

As mentioned, the scheme produces valid confidence bands under
the assumption of a trend coupled with an autocorrelated process.

3. Direct estimators of the largest Lyapunov exponent

Let Xi be a point of the reconstructed trajectory in R
d.

The neighborhood of Xi within a radius ε is defined as
U(Xi, ε) = {Xj, j 6= i :

∥

∥Xi − Xj

∥

∥ ≤ ε} and its cardinality is denoted
as card(U(Xi, ε)). We denote with 1t(Xi, ε) the average distance
between Xi and its nearest neighbors after t steps ahead in the future,

1t(Xi, ε) = 1

card(U(Xi, ε))

∑

Xj∈U(Xi ,ε)

∥

∥Xi+t − Xj+t

∥

∥ .

It is expected that 1t(Xi, ε) ≈ exp(λ1t)10(Xi, ε), where λ1 is the
largest Lyapunov exponent. Hence, for every point Xi we can moni-
tor the evolution in time of 1t(Xi, ε), and we denote with S(t, ε) its

average (in the log-scale) over the n phase-space points:

S(t, ε) = 1

n

n
∑

i=1

ln (1t(Xi, ε)) . (A2)

In the presence of a chaotic dynamics, S(t, ε) increases linearly with
t, and the slope of the linear scaling region is the direct estimator
of λ1. This should be observable for a reasonable range of radii ε
and until the extent of the attractor is reached so that the trajecto-
ries fold back. In the initial proposal by Rosenstein et al.30 only the
nearest neighbor is considered so that card(U(Xi, ε)) = 1, whereas
Kantz31 consider a set of nearest neighbors whose cardinality typi-
cally depends upon the sample size, provided that neighbors that are
too close in time are discarded as to avoid spurious effects.

4. False nearest neighbors method

The basic idea is monitoring those phase-space points that
should not be neighbors but are neighbors just because the dimen-
sion of the embedding space is too low. Assume that the minimum
embedding dimension for a given time series Si is d0. This means
that in an d0-dimensional delay space the reconstructed attractor is
a one-to-one image of the attractor in the original phase space and
its topological properties are preserved. However, if the embedding
dimension is d < d0, then the transition from d0 to d is a projection
that no longer preserves the topological structure of the attractor.
Therefore, points can become false neighbors in a dimensional space
d < d0. Hence, for each point in the reconstructed space we take its
closest neighbors in d dimensions and calculate the proportion of
points whose distances crosses a given threshold when increasing
the dimension d.8 Such proportion is plotted over d and typically,
one chooses a value for the embedding dimension d such that the
proportion of false neighbors falls below 10%.

5. Recurrence plot

The importance of the recurrence plot is that the presence of
structure can be visualized by means of color graphics. Once the
dynamical system is reconstructed by means of delay coordinates,
the distance between all pairs of vectors x(i) and x(j) is computed
and various color codes are assigned to different distances. For ran-
dom signals, a uniform distribution of colors over the entire plane is
obtained and for deterministic signals we obtain coherent structures
in the recurrence plot. In physical terms, it compares the distance
distribution between pairs of vectors in the reconstructed state space
with the distance distribution between different orbits evolving over
time.18

In a sense, the simple examination of the time series and their
recurrence graphs often indicates whether a comprehensive analy-
sis of significant correlation can be performed (more precisely, such
an examination often indicates that the analysis should not be per-
formed). Similarly, time series that show rare bursts in otherwise
unexplored phase-space regions, as well as non-stationary series
and/or the absence of close returns in phase space, are not promising
candidates for the search for dissipative low-dimensional chaos.101
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6. Space–time separation graph and Theiler window

While the recurrence graph shows absolute times, the
space–time separation graph introduced by Provenzale et al.101 is
integrated along the parallel to the diagonal and, therefore, only
shows relative times. Usually, lines of constant probability are drawn
per unit of time for points that are an ε-neighbor of the current
point, when their temporal distance is δt. This helps to identify
the temporal correlation within the time series and is relevant to
estimate a reasonable delay time, however, it turns out to be more
important to calculate the Theiler W window, which is widely used
in dimensional analysis and for the calculation of the Lyapunov
exponent. In other words, this graph shows how large the tempo-
ral distance between points is so that it can be assumed that they
form independent samples according to invariant measurements.102

This method together with the Theiler window arose from the need
to be able to obtain reliable results in the correlation integral.

Theiler103 shows that short-term correlations can produce fairly
curved lines called knees in the correlation integral due to the one-
dimensional nature of the trajectory and this produces a bias in
the estimate of the dimension. Moreover, the asymptotic results for
U-statistics require independence or weak-dependence. For these
reasons, the sum in the sample correlation integral contains the
points whose temporal distance is greater than some W. The curves
of the space–time separation graph can be used to choose a value for
W; in the case of noise from non-stationary power laws the graph
indicates that there is no value of W for which the correlation inte-
gral reflects global scaling due to recurrence. For chaotic time series,
contour curves of the space–time plot initially rise, then oscillate
around a constant value, while for series with color noises they con-
tinue to rise.104 An alternative way to estimate the Theiler window is
to multiply the autocorrelation time by three.105
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