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Abstract

Relationships are analysed between advection pathways and atmospheric composition at the
high-mountain station of Mt. Cimone (Italy), between 1999 and 2006. Back-trajectory cluster
analysis identifies eight main advection pathways. A connection is demonstrated between the
seasonality of airmass transport and atmospheric composition. Temporal trends and correlation
of variables, flow types and teleconnection indices show, among other, decreasing tf&lRits of

(a radionuclide of crustal origin; -0.008 mB¢fiyear’) as well as PN (-0.15 pg it year'),

indicating that previously observed downwardgkends in Europe may actually be

attributable to a combination of meteorological factors and decreasing anthropogenic emissions.
The detection of a positive (negative) correlation of these tracers with Western (Arctic) air
masses, showing significant downward (upward) trends at the study site, further confirms our
findings. Lastly, relationships between teleconnection indices and atmospheric transport
types/atmospheric variables are further analysed, focusing on large-scale atmospheric circulation
indices and regional low-frequency atmospheric circulation pathways, the Mediterranean
Oscillation and the Western Mediterranean Oscillation. The analysis reveals the important
influence of such regional indices on the advection pathways.

1 Introduction

There is a pressing need to improve understanding of processes contributing the seasonal
variability of background/baseline (i.e. well-mixed tropospheric) atmospheric composition in the
central north Mediterranean region, a hotspot of air pollution and climate change. In fact, due to
the sunny, hot and dry weather typical of this region especially during summer, together with the
convergence of long-range transport over the basin, air pollution in the form of reactive
compounds is often higher than in most European inland regions (Dulac et al., 2016). In addition,
climate change will significantly impact air quality with numerous two-way interactions not
always well understood.

Air pollution in the Mediterranean basin is primarily in the form of particulate matter and ozone
and nitrogen deposition (Ochoa-Hueso et al., 2017).

In this framework, clustering of backward trajectories has been used to study the influence of the
origin and pathway of air masses on composition change (for a review see Fleming et al., 2012).
The investigation of vertical motions in the atmosphere may take advantage oBesamyl

1% radiotracers, because of their naturally contrasting origin: in'Becthalf-life 53.3 days)

is produced by cosmic ray spallation reactions with nitrogen and oxygen in the stratosphere
(about 75%) and in the upper troposphere (Usoskin and Kovaltsov, 2008)*\Rtilghalf-life

22 years) is a tracer of continental air masses (Balkanski et al., 1993), being emitted as decay
product of?Rn (half-life 3.8 days) deriving from crustal rocks and soils (Turekian et al., 1977).
Once produced, both radionuclides attach to submicron-sized aerosol particles peaking in the
accumulation mode (e.g., Gaffney et al., 2004). Thereafter, the main removal mechariBens of
and?%b from the atmosphere are wet and dry scavenging of the carrier aerosol (Feely et al.,
1989; Kulan et al., 2006). For this reason, simultaneous measurem@&samic?*°Pb, and

analysis of their ratio, can provide useful information about the vertical motion of air masses as
well as on convective activity in the troposphere (e.g., Koch et al., 1996; Lee et al., 2007).

The use of air mass classification together with atmospheric radiotracers is not common, but
has been the subject of some studies (e.g. Arimoto et al., 1999; Hernandez et al., 2008; Duefias
et al., 2011; Lozano et al., 2012; Chambers et al., 2013, 2014, 2016 a,b; Grossi et al., 2016;
Hernandez-Ceballos et al., 2016). However, most of the previous studies of this kind in the
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Mediterranean region focused on relatively shonetseries, and focused on understanding the
variability of atmospheric radiotracers withoutleaz connection to other atmospheric
compounds. Moreover, while the relation betweenna@tadionuclides and teleconnection
indices has been the subject of recent studiess@ied al., 2016; Sarvan et al., 2017), the
variability in the occurrence of each trajectorggp and the assessment of trends in association
with large-scale atmospheric circulation indicegsas the North Atlantic Oscillation index
(NAOQI), is less common (Orza et al., 2013). Evesslstudied is the association in the
occurrence of advection pathways with the remainnogles of atmospheric circulation over
Europe, such as the Eastern Atlantic (EA) pattéastern Atlantic/Western Russia (EA/WR),
and the Scandinavian (SCA) pattern. Together wii©Nthese indices represent the most
important mid-latitude modes for the Mediterranelmate at the monthly time scale (Trigo et
al., 2006).

In this context, long-term measurements at the-bighation WMO-GAW baseline station
of Mt. Cimone (ltaly; 44°11’ N, 10°42’ E, 2165 mlpare of paramount importance. In
particular, they are useful for the identificatioihdominant advection pathways, assessing
associations between pathways and atmospheric oo and investigating links between
flow pathways and circulation modes in the Med@egan region on seasonal and interannual
time scales. In addition, the occurrence of treart$ the relationships of trends in atmospheric
composition with those in advection pathways atettsnection indices in the monthly time
series are also explored, focusing not only onglaatale indices but considering two additional
regional low-frequency atmospheric circulation pelis, namely the Mediterranean Oscillation
(MO) and the Western Mediterranean Oscillation (V@Mt should be emphasized here that,
historically, the investigation of atmospheric aliation model influences (both large-scale and
regional) typically focused on precipitation anthfeerature pathways. To date, there has been
limited exploration of the relationship betweens@enodes and advection pathways/atmospheric
composition.

This work is organized as follows. We first deserthe measurement techniques and the
statistical methods used. We then present andstismur results on: 1) the description of the
main advection pathways found by the cluster amalysback trajectories; 2) the analysis of the
relationships between advection pathways and nmategcal parameters/other atmospheric
components; 3) the temporal analysis of the morttitlg series, including trends; 4) the
associations of air flow types with teleconnectiotices and meteorological/atmospheric
variables. We finally summarize our main conclusion

2 Materialsand M ethods
2.1 Sampling site

Mt. Cimone, the highest peak of the Italian nomth&pennines, hosts a global station of the
Global Atmosphere Watch (GAW) programme of the \Waddeteorological Organization

(WMO) constituted by a meteorological observatoyythe Italian Air Force (active since 1941)
and a research facility managed by the Institutétofospheric Sciences and Climate (ISAC) of
the National Research Council of Italy (CNR), aetsince 1996. The site is located far away
from large industrialized and urban areas, has04 86e horizon experiencing both regional and
long-range transport of air masses (Bonasoni 1899, 2000Db; Cristofanelli et al., 2006,
2009a, b, 2013; Cristofanelli and Bonasoni, 200siffi et al., 2013). The elevation of the site
(2165 m asl) is such that the station lies aboeepthnetary boundary layer (PBL) during most
of the year, even if an influence of the innermager is evident during warm months due to the
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increased mixing height and the influence of theimain/valley breeze regimes (Fischer et al.,
2003; Cristofanelli et al., 2007; Griffiths et &014). For these reasons, under specific condition
(i.e. usually during cold months and during staalexmer nights when regional anti-cyclonic
conditions dominate), the measurements of atmogpb@mpounds and meteorological
parameters at this site can be considered repegsendf the well-mixed southern European-
Mediterranean basin free troposphere (Bonasoni,e2@0a; Fischer et al., 2003; Cristofanelli et
al., 2007, 2018), a region which is recognized hstespot both in terms of climate change and
air quality.

2.2 Measurements

As a WMO-GAW station, several atmospheric compourailse been measured at Mt.
Cimone for many years (Cristofanelli et al., 20183, (since 1979) (Ciattaglia, 1983, 1986;
Colombo et al., 2000), tropospherig Bince 1991) (Cristofanelli et al., 2015, 2018),
concentration and size distribution of particlefwaptical diameter between 0.30 andu2®
(since 2000) (Marinoni et al., 2008), black carlgduly 2005) (Marinoni et al., 2008), and CO
(since 2007) (Cristofanelli et al., 2009b).

"Be,*%b and aerosol mass loading in the form of,P(dirborne particulate matter with a
mean aerodynamic diameter less than 10 um) wersureghregularly in the period 1998-2011
with a Thermo-Environmental Pihigh-volume sampler (average flow rate of 1.233min™ at
standard temperature and pressure conditions)dlLak, 2007; Tositti et al., 2012, 2013, 2014).

After retrieval, the observations of the varioum@spheric parameters previously mentioned,
as well as of meteorological parameters such apdmature, pressure, relative humidity, and
wind speed, were averaged to the same time resolatiPM and atmospheric radionuclides
for statistical homogenization of data. In facttlas PMy filters at the station are manually
changed, sampling time is not uniform. Anyway astwd the samples were collected over 48
hours (sampling approximately 3256 of air), in order to safely apply statistical ta@jues,
data have been firstly homogenized by selecting thdse samples which collected a volume
between 2700 and 3700’'m

We also included tropopause heights in the analgalsulated from the radiosoundings in
San Pietro Capofiume (44°39'N, 11°37’E, 10m a,sd Jegional meteorological station located
in the Po Valley to the North-East of Mt. Cimonea#able since 1987 from the University of
Wyoming website_(http://weather.uwyo.edu/upperaurfgling.html).

2.3 Teleconnection indices

As reported in the Introduction, here we invesegaie connection of atmospheric composition
and advection pathways with teleconnection indicessidering both large-scale and regional
scale teleconnections, i.e. NAO, EA, EA/WR, SCA, Mid WeMO. Table 1 presents an
overview of the teleconnections investigated is faper.

The NAO, a redistribution of atmospheric mass betwine Arctic and the subtropical
Atlantic (Hurrell, 1995), has been identified as ttominant mode of variability of the surface
atmospheric circulation across the Atlantic (Basnsind Livezey, 1997). The NAO is
determined by the position and strength of thealogic low and the Bermuda-Azores High.
Oscillations between high and low NAO phases mddulze westerly jet stream and cause large
changes in the heat and moisture transport bettineeatlantic and the neighbouring continents
(e.g., Hurrell, 1995, 1996), affecting the intepsihd number of storms (Hurrell et al., 2003).
These changes influence air pollutant transportdisikrsion, impacting, for instance, the
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transport of Saharan dust into the Mediterraneanfdlantic in winter (Moulin et al., 1997), the
export and import pathways of pollution to the Med@anean basin (Hurrell, 1995), influencing
local-to-regional scale pollutant concentrationg.(eCuevas et al., 2013; Cristofanelli et al.,
2015), and modifying the transport of pollutantsnfirNorth America to Europe (Li et al., 2002).
A relation between the NAO phase and Stratospleefi@dposphere Transport (STT) variability
has also been pointed out (James et al., 2003p@uelli et al., 2006, 2015). A common
measure of the NAO phase is the so-called NAO ift&Oi) which is commonly defined as
the difference in normalized sea level pressurd’jSinomalies between either Lisbon (Portugal)
or Ponte Delgada (Azores), and Stykkisholmur/Reykjéiceland) (Hurrell, 1995). Alternative
definitions of NAOi have been introduced, includimge based on the empirical orthogonal
function (EOF) analysis of the SLP field. The NA®ithis case is identified as the leading
eigenvector (the first Principal Component, PCIjpated from the time variation of the SLP
field (e.g., Hurrell et al., 2003). The advantage@sing EOF analysis of the SLP field is that the
PC1 provides a more accurate representation dfi&@ pattern considering the shifting of the
NAO centres of action throughout the year (Pausb#h., 2012). This index appears to be less
noisy than the station-based indices. Both moritidices present a significant correlation
coefficient equal to 0.80 and 0.76 over the perit@®38-2011 and 1999-2006 used in this work,
respectively. Another alternative NAO index, thelC&ation-based NAOI, is calculated as the
difference between the normalised SLP over Gibraltal the normalised SLP over southwest
Iceland (Jones et al., 1997). CRU station-baseekipdesents a significant correlation
coefficient with the previous ones (equal to O0.7&hwurrell station-based NAOi, and equal to
0.77 with Hurrell principal components-based NAOI).

The EA pattern is the second prominent mode offi@guency variability over the
North Atlantic, and was first described by Wallacel Guntzler (1981) as anomalously high 500
mb height anomalies over the subtropical North #ttaand eastern Europe when in positive
mode. It consists of a north-south dipole of angneahters spanning the North Atlantic from
east to west. The positive phase of the EA patteassociated with above-average surface
temperatures in Europe in all months and it has Iseggested to play a role in positioning the
primary North Atlantic storm track (e.g., Seiers&dl., 2007) and in modulating the location
and strength of the NAO dipole (Hurrell and De2€09).

The EA/WR pattern (Lim, 2015) affects Eurasia tlgioout the year and consists of four
main anomaly centers. The positive phase is agedowth positive height anomalies located
over Europe and northern China, and negative haightnalies located over the central North
Atlantic and north of the Caspian Sea.

The SCA pattern (Bueh and Nakamura, 2007) consisiprimary circulation center
over Scandinavia, with weaker centers of opposifie aver western Europe and eastern Russia/
western Mongolia. The positive phase of this patierassociated with positive height
anomalies, sometimes reflecting major blocking@mtones over Scandinavia and western
Russia, while the negative phase of the patteasssciated with negative height anomalies in
these regions.

The MO is a low-frequency variability pattern prathg opposing barometric, thermal
and pluviometric anomalies between the westerneastern borders of the Mediterranean basin.
The MO was originally defined as the differencestaindardised geopotential height anomalies
at Algiers (Alger) and Cairo (Egypt) (Conte et 4B89), while similar indices have been defined
in terms of the difference of standardised presanmnalies at Gibraltar (Spain) and Lod
(Israel) (Palutikof, 2003) or at Marseilles (Franaad Jerusalem (Israel) (Brunetti et al., 2002).
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It has a significant influence over rainfall in thediterranean basin (e.g., Martin-Vide and
Lopez-Bustins, 2006; Angulo-Martinez and Begue2fd,2). The WeMO was defined within the
synoptic framework of the Western Mediterraneanrbasd its vicinities (Martin-Vide and
Lopez-Bustins, 2006). It is defined as the diffeebetween the standardized surface pressure
values in Padua (ltaly), and San Fernando (Cagin$ while the north of Italy is an area with
a relatively high barometric variability due to timduence of the central European anticyclone
and the Liguria low, the gulf of Cadiz is oftenlugnced by the Azores anticyclone. Similar to
MO, WeMO has an important effect on precipitatintie Mediterranean, and especially in the
eastern Iberian Peninsula (e.g., Martin-Vide angdzsBustins, 2006; Angulo-Martinez and
Begueria, 2012; Izquierdo et al., 2013), where N&@eakly correlated with precipitation.

2.4 Clusters of back trajectories, significant differencesand trends

In order to analyse the origin of air masses arg\at the measurement site, 96-hour 3D
kinematic back-trajectories starting four timesag (00, 06, 12, 18 UTC) at three heights (1400,
2200 and 3000 m asl) were calculated with the HYBinhgle-Particle Lagrangian Integrated
Trajectory (HYSPLIT) model version 4.8 (Draxler addss, 1997, 1998; Draxler, et al., 2018).
A 96-hour time length was considered representéiv®ng-range transport to the receptor site
and to better control the uncertainty of back-tajges. Sensitivity tests with a 6-day time
length were also performed; however, their regatigcate a reduced number of clusters with
lower significant differences in atmospheric pargereand constituents, suggesting that these
longer trajectories may lose part of their spedié@tures.

The first issue faced in the calculation of theksaajectories was the choice of the
meteorological fields used as input, linked tostrengest source of errors (Stohl et al., 2001)
when calculating back-trajectories, and eventuallyencing the outcome of the trajectory
clustering (Cabello et al., 2008a).

As previously observed in Brattich et al. (2017g the coarse resolution of the terrain model
included in the meteorological databases is gelyarat able to adequately resolve the
topography of Mt. Cimone. In this work we used Kaional Center for Environmental
Prediction (NCEP)/National Center for AtmospheresBarch (NCAR) reanalysis with a 2.5°
latitude-longitude resolution, 17 pressure levedsnf 1000 to 10 hPa, and 6 hourly data, which
was the best compromise available at the time artest the back-trajectories calculation. Such a
coarse resolution, too large to resolve mesoscélgymoptic processes, is still acceptable for our
study since we are most interested in the largkedloav pattern more meaningful in a long-term
guasi-climatological approach. The vertical motadrthe air parcels was calculated from the
vertical velocity fields. As a rule and due to thethodology applied to compute the back-
trajectories (the computation uses the horizonmtadlignt of the field, calculated as a “centered
difference” with meteorological data on a subghdttfollows the trajectory), it is recommended
that trajectories at three heights are calculatedlsaneously (see
https://www.arl.noaa.gov/hysplit/hysplit-frequentgked-questions-fags/faq-hg23/). In this
case, trajectories were calculated at 2200 m astl §bove the monitoring site), at 3000 m asl
(800 m higher, at the edge of the free troposphard)at 1400 m asl (above the terrain’s height
for the measurement site in the model, to bettasicer meteorology below the study site). In
the following, results are reported and discussed for the height corresponding to that of the
receptor site. The analysis at 3000 m, useful lpare the study site with the free troposphere,
is included in Supporting Information (SI).
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As for the association between trajectories andogesneach aerosol sample with its
physico-chemical properties was associated withegic advection pattern only if at least 60%
of the calculated trajectories ending at the sitengd) the sampling corresponded to that
advection pattern. However, samples out of theredlconditions were also analysed in depth
with emphasis on flows characterized by fast agtHiequency variability often associated
with singular though relevant trajectories (i.etoéllows or Saharan dust incursions).

Clusters of back-trajectories were calculated foitg a clustering procedure based on
the k-means algorithm, with specific features like use of great-circle distances and
determination of the number of clusters from thaleation of the classification into k clusters
(considering a large number of replicates), withukning from 15 to 3, (see for example Cabello
et al. (2008b), Duenas et al. (2011), Perrone. €R@l3), Brattich et al. (2016)). Significant
differences in the analysed meteorological and spheric parameters according to the
identified clusters were analysed using the KrusRédllis test, without any “a priori”
assumption of their distribution (Brankov et aB98). Whenever significant differences among
the groups were found, pairwise Mann-Whitney testge performed to identify the significantly
different pairs. Conservatively, p-values in thitelawere compared against adjusted
significance levels using the Dunn-Sidak correction for multiple compansa = 1 —

(1 — a)'/™, wheren = k (k — 1)/2 is the number of pair-wise comparisons done betvkee
categories, with overall significanog = 0.05.

Composite synoptic charts of 700, 850 and 1000d@@aotential height, computed with
data from NCEP/NCAR re-analysis project databasgn@y et al., 1996), available from the
Earth System Research Laboratory, Physical Sciddiegsion, of the USA National Oceanic
and Atmospheric Administration (NOAA) at http://wwasrl.noaa.gov/psd/ were used to analyse
the meteorology of individual situations.

The presence of trends in the monthly time senves the study period considered in this
work was examined though a number of nonparam&taicstical methods, mainly based on the
Mann-Kendall (M-K) tau test to assess the signifezof monotonic trends and the Theil-Sen
(T-S) slope estimate for trend magnitude. In paldéic considering that the significance of a
trend is affected by the presence of serial caicglaand, conversely, the estimate of the serial
correlation is also altered by the presence o#rdirthe correlation coefficients at different lags
were first estimated by computing the sample autetation function (ACF) for each time
series. The results indicated that, in generalatteysed time series present some degree of
serial correlation, together with seasonality; @as@sequence, two methods of trend analysis
have been used with the aim of removing, or redydime influence of seasonality and lag-1
autocorrelation in the monthly data:

(1) The seasonal Kendall test (Hirsch et al., 198Rjch applies the M-K trend test
separately for each month and then combines thdtse&) The trend-free pre-whitening
(TFPW) procedure (Yue et al., 2002) applied togbasonally adjusted monthly time series, to
remove the influence of the month-to-month correfet in the significance of the trends. The
TFPW procedure comprises several steps, inclutiadear detrending of the time series using
the T-S slope, the removal of the serial autocati@h of the residuals and the add-back of the
discarded linear trend to the remaining time sehefore the M-K test is applied. Seasonal-trend
decomposition of the time series was used to obte&ie-seasonalized time series, which were
subsequently analysed by the TFPW procedure. Tetenagosition technique used in this work
(STL decomposition hereafter) is based on LOES&(lp weighted low-degree polynomial
regression), a nonparametric regression technegwgsively applied to the seasonal and trend




295 components (Cleveland et al., 1990). Additionalig resulting (nonlinear) trend component has
296 been used for the visual assessment of the longdiehaviour of the time series.

297 The association between the frequency of each dduquattern and observations at the
298 sampling site, as well as with the NAOI and otlaegé- and regional-scale teleconnections, has
299 been examined for the de-trended monthly time senel for the seasonal means via least-

300 square regression analysis with statistical sigaifce evaluated by a two-tailetest. Since

301 relationships are not necessarily linear, the ncapatric Kendall rank test has also been used to
302 identify any statistically significant associatisthout any “a priori” assumption of their form.

303 Spearman correlation coefficients have been corddotethe cases with significant association.

304 3 Resultsand discussion
305 3.1 Characteristics of the main advection pathways

306 Figure 1 shows the centroids (representative tr@jes) of the 8 clusters obtained at 2200 m asl
307 and the relative percentage frequency of each flattern over the whole 1998-2011 period,

308 together with the mean height evolution over timd the monthly variation of the frequency of
309 the air flow pathways reaching the receptor site.

310 Cluster names were chosen based on their regiprosénance. Most of the trajectories
311 correspond to westerly flows; in particular, welstérajectories are classified into Northern

312  Atlantic (N Atl), North America (N Am), Atlantic (8), Western (W), and North-Western

313 Europe (NW-Eu) flows, together representing moentB0% of the flows. The remaining

314 trajectories are classified into Arctic (A), East€E), and Mediterranean-Africa (Me-Af).

315 As from the mean height evolution over time of tbpresentative trajectories reported in
316 Figure 1, the Arctic and North-American trajectsrgeescend from the most elevated heights
317 while approaching the site, and eventually riséragad cross over the Alps. North Western-
318 Europe and Eastern flows do not considerably chémgeheight during their transport, whereas
319 Western, Atlantic and (more specifically) Mediterean-Africa trajectories generally reach the
320 observatory from very low levels.

321 Figure 2 shows the box plots of meteorological peters, i.e., pressure, temperature,
322 relative humidity, precipitation, tropopause hejghind speed, and mixing height by advection
323 pattern. Similar to Figure 2, Figure 3 depicts ptots for the atmospheric species, such gs O
324 CO,, BC, CO, fine and coarse particles, BMBe, and®'%Pb, associated with each flow pattern
325 at 2200 m and at 3000 m asl. Additionally, the gsialextends over nuclidic and mass ratios
326  such asBef*Pb, Be/PMy, **Pb/PM,, used to gain insights into the vertical motionsiof

327 masses as well as on convective activity in thpdasphere (e.g., Koch et al., 1996), are also
328 analysed. The summary statistics together withifsogint differences of each variable by

329 advection pattern is reported in the Sl. In orddpétter characterize the flow pathways, both
330 boxplots and summary statistics refer to the “mases”, i.e., the samples attributed to only one
331 advection pathway (when at least 60% of the trajezt ending at Mt. Cimone during one single
332 sampling period belong to the same advection pathwa

333 Below we summarize the major characteristics ofdeatified advection pathways in

334 terms of seasonal variability, mean height, metegioal variables and atmospheric

335 composition, as indicated in Figures 2 and 3.

336 * A: advection of fast and elevated (mean heighhefduster equal to 3113 m) air masses
337 originating in the Arctic/polar regions. This trefery type is more frequent in autumn
338 and winter. This subsiding air flow is associatathyow temperatures, low relative

339 humidity, low wind speeds, relatively low valuestloé tropopause height (probably due

8



340 to the fact that these air masses are not vestitailtk compared to other air masses), and

341 moderate mixing heights. Such air masses can kedito the presence of lows or cut-off
342 lows characterized by low tropopause or tropopdaiskng and in fact are also

343 associated with rather low pressure systems. Dtleetosubsiding nature, travelling at
344 high altitudes over remote regions, these air nsagmegenerally moderately clean, i.e.
345 associated with low values otlack carbon, CO, P, and®*°Pb. It is also associated
346 with high ‘Be and therefore with higiBe”*%b and'Be/PMy. This kind of transport is
347 in fact frequently associated with STE, in agreetméth previous observations of

348 stratospheric intrusions at Mt Cimone (Bonasorlgt1999, 2000a, 2000b; Brattich et
349 al., 2017a). In particular, the higBe, 'Be*®Pb and'Be/PM, can be attributed to the
350 high production rate oBe in the stratospheric air at high latitudes (Bateal., 2012), ,
351 even though the reduced ozone concentration poutta connection with subsidence
352 from the upper troposphere, a region connected initteases ifiBe but not in @.

353 » E: advection of relatively slow and low (mean heighual to 2190 m) air masses from
354 East. This flow type is more frequent in April, Magd September, and groups the 13%
355 of the trajectories. These air flows are associaiiéldl low tropopause height, while

356 pressure, wind speeds, humidity, and mixing heigke intermediate values. This flow
357 type brings lower concentrations of PMhan the Western advection, but is associated
358 with higher loadings of fine than coarse particlasagreement with observations by

359 Tositti et al. (2013). This flow type is also assted with moderately high black carbon
360 and high?*°Pb, and to the lowest values’8e/*Pb activity ratio; overall this flow can
361 be labelled as “continental polluted”.

362 » Me-Af: relatively short and low (mean height eqt@P154 m) Mediterranean and North-
363 African air masses. These trajectories, groupiegl®Po of the total, are active all-year
364 round but mainly in spring and autumn. These flovess over the Mediterranean at low
365 altitude and correspondingly are warm and humid,are associated with low wind

366 speeds and intermediate mixing height (close t®IOwhich is below the typical mean
367 height reported for Saharan dust transport, bet#&00 and 4000 m asl; see Jorba et al.,
368 2004 and Papayannis et al., 2008). These air mhgsgssubstantial PM loadings as

369 linked to Saharan Dust transport (in agreement ithhi et al., 2016), associated with
370 increases in both fine and coarse sized partittlesntributes also to BC and to high

371 ?%ph and'Be concentrations, and thus to rather [B&/*°Pb, 'Be/PM, and®*°Pb/PMy,
372 ratios. Overall, this flow may be labelled as “Afin convective”, including the often-
373 observed biomass burning tracers. In particularilar to what Duefias et al. (2011) and
374 Brattich et al. (2017a) reported, Mediterraneanie&flair masses are linked to high

375 activities of bothBe and®*%Pb, due to the combination of downward transpornfthe
376 upper troposphere and African dust uplifting.

377 * W: advection of relatively slow and low-level (mdagight equal to 1915 m) air masses
378 from West, which are active all year round butraae frequent in July, August, and
379 October. This flow pattern groups the 15% of tlagetrtories. These air masses are

380 associated with high pressures, high temperatlowselative humidity, high tropopause
381 height, moderate wind speeds, and moderate-torhigimg heights. This advection

382 pattern carries elevated values @f BM,, fine and coarse particles; it contributes to a
383 large degree also to black carbon, a tracer of cstidn. This is likely related to of the
384 entrainment of aged, polluted air masses intoftbws tyg)e when crossing coastal areas
385 in the western Mediterranean. It contributes abshigh“*Pb and'Be concentrations
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(low "Be/PMy, 2Pb/PMy and’Be*%Pb ratios) suggesting associated convective
pathways.

Atl: relatively fast and low-level (mean height afjto 1974 m) air masses coming from
the Atlantic Ocean. This advection pattern is ncoshmon from October to April. It
groups only the 8% of the trajectories. These asses are moderately warm and humid,
present low pressure levels, moderate to high wpeeds, and low mixing heights. This
advection pattern shows low contributions af Black carbon, PhM, 'Be and™'*Pb, as a
consequence of the renewal of air masses by thesgsnid latitude maritime flows and
the relatively high wind speeds recorded at the sit

N-Am: polar fast and upper level (mean height ef ¢tuster equal to 2965 m) air masses
that originate as continental air over North Amarichis air mass type is negligible in
summer months, mostly occurring from October toilAphis advection pattern is the
least frequent among those emerged for Mt. Cimb#e df the trajectories arriving at the
receptor site). Similar to the Arctic type, these eold, dry subsiding flows. They are
related to the lowest temperatures (even lower thamrctic ones), lowest pressure
levels, low relative humidity, low tropopause hdégjhnd mixing heights, and moderate
wind speeds at the study site. The polar-fronstietam is present at upper levels. North
American air masses are usually very clean (low4nblack carbon, CO, PMas well

as in both fine and coarse patrticles), with thedstimean and median values of these
species. The cleanliness of these flows derives fteeir subsiding nature originating
quite high above the North American region, andheey Mt. Cimone (i.e. southern
Europe) at moderately high wind speeds. This resaithe replacement of air masses
with cleaner, fresh air, as previously observed atsother southern Mediterranean sites
in Spain and ltaly (e.g., Cabello et al., 2008hyétee et al., 2013, 2014). Also the
atmospheric radiotracefBe and”°Pb present low concentrations within this flow type
probably due to the low concentration of susperfotedparticles and relatively younger
upper level air masses.

N-Atl: relatively fast, but not very high (mean bkt of the cluster equal to 2562 m) air
masses coming from the Northern-Atlantic Oceanividhroughout the year with
highest frequency in July. This group of trajectercomprehends the 14% of the total.
These air masses are moderately warm, very humiticannected to slow wind speeds
and high mixing height. This flow pattern showsveked contributions of £and fine
particles, but low values of black carbon , carbmmoxide and*%b, while it

contributes moderately to Riyand’Be (low ‘Be/PMyo, 2*°Pb/PM, and’Be*°Pb ratios),
probably due to contribution of aged pollutantsvird/estern Europe where they travel
after their residence over the North-Atlantic Ocaaragreement with Brattich et al.
(20186).

NW-Eu: slow and not very high (mean height equé&l3@1 m) continental air masses
coming from North Western-Europe. This flow pattesith mean height equal to 2321
m, is more frequent in summer months and group4 98¢ of the trajectories. These air
flows present the lowest wind speeds and high pressfrequently related to blocking
situations in the summertime; they are also reladddgh temperatures, relative humidity
and mixing height. Similar to the Eastern advectibhrings lower concentrations of
particulate matter with respect to the Western figpe, but associated with higher
loadings of fine particles than coarse ones. THeses contribute moderately, together
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with Eastern air masses, to black carbon and to4if§b (low’Be/PMy, 2*Pb/PM, and
"Be%Pb ratios).

3.2 Atmospheric parameter s by advection pattern

The large-scale advection pathways found at Mt.ddierhave been described in terms of
meteorological variables and atmospheric compasitidhe previous subsection. Summarizing,
North Atlantic and NW Europe advections, both pagsiver the British Isles and France,
present the highest;@vels. In turn, Atlantic as well as North Amerigad Arctic air flows are
associated with low ©values, which points out the influence of precutseels. CQ, a long-
lived greenhouse gas, is well-mixed in the frepdsphere and not much affected by the
boundary layer dynamics, with values homogeneadislyibuted over all the flow types. While
Mediterranean Africa and Western air masses ae@sed with high number of both fine and
coarse particles, as related to the transport oineand desert particles together with
anthropogenic pollution, North Atlantic advecticare high only in fine particles related to the
transport of polluted particles from anthropogeorigin.

Low values of thé'%Pb crustal tracer are observed when air masse® &mwim the ocean
(Atlantic, North Atlantic and Northern America) espected, whilé*°Pb maxima are linked to
flows with an explicit continental origin such agbiterranean-Africa, Western, Eastern and
North Western-Europe. This behaviour is of counse i*'%Pb continental origin, &5°Rn flux
from the oceans into the atmosphere is negligibketd its low marine source (low radon
emission) (Balkanski et al., 1993; Baskaran, 20B8.low values are connected to Atlantic and
Northern American air masses, while Western flovesralated to the highest values, likely
connected to Gulf of Genoa and Gulf of Lion cycloggs, which have been long recognized as
associated with STE (e.g., Stohl et al., 2000; seler and Schéar, 1998).

Here it is worth noting that due to the coarse ltggm of the meteorological field we are
using, our methodology is not able to resolve meslesand subsynoptic processes. However,
such processes may have important effects on thebildy of the atmospheric species we are
considering. In particular, some of the identifaeti’ection pathways (the local and regional
transports) can be associated with favourable fstgn” conditions (mostly during the summer
months), such as the increase in height of thenaiPBL and/or mountain/valley breeze
regimes, as previously investigated by Cristofamelal. (2013, 2016).

Figures 4 and 5 analyse the connection of the saégoof advection pathways with that
of radiotracers and P}y respectively. The seasonality of variables wadysed considering
monthly medians as the distributions of Mnd of atmospheric radiotracers are decidedly non-
Gaussian (Tositti et al., 2013, 2014), and in tlaise the median should be preferred over the
arithmetic mean as a more robust indicator (e.gksN2011).

As shown in Figure 4 and as previously highlighfedsitti et al., 2014; Brattich et al.,
2016, 2017a), the seasonal behaviol®b is characterized by the presence of one summer
maximum mainly due to higher mixing height and erdsal uplift from the boundary layer.
Conversely/Be seasonal variations are more complex, beingactenized by two relative
maxima, one during the cold season (March) asstiaith an increased frequency of STE
(James et al., 2003; Stohl et al., 2003; Brattichl.e2017a) and one in the warm season mainly
(but not exclusively) associated with troposphstibsidence balancing low tropospheric air
masses uplift generated by the convective ciraigbroduced by the intense solar heating and
the higher tropopause height increase of this sedeannidou et al., 2014), occasionally
accompanied by STE (Cristofanelli et al., 2009ssifficet al., 2014). Figure 5 highlights,
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however, that the seasonality of radionuclidesataa be connected to the seasonality of air
mass transport at the site, as previously pointgdy Brattich et al. (2017b) by means of model
simulations with a Chemistry and Transport Modeldct, while’Be March maximum seems to
be related to the seasonal pattern of Arctic agsea (as Atlantic and North American air
masses, presenting also a simultaneous winter peakssociated with low&Be values in the
boxplots of Figure 3), thBBe summer maximum seems to correspond to thatmqieesby
Mediterranean-Africa, Western and North Atlanticraasses**°Pb summer maximum seems
instead to be well related with the seasonalitMefstern and North Western-Europe flows.
However the monthly analysis is not capable of Ik@sg the contributions of advection
pathways occurring in the same month and therééoumiquely determine a clear connection
between advection pattern and concentration.

Figure 5 provides similar analyses for the gbkasonal pattern, which, likEPb, show
minimum values during the cold season and maxinaggsummer months, when it is uplifted
from the regional boundary layer due to thermaleation and increased mixing height (Tositti
et al., 2013). The seasonal pattern of;PMight be, however, influenced by the seasonakpatt
of advection pathways bringing about elevated naesds of particles, such as Mediterranean-
Africa, Western, North Atlantic and North Westerar&pe air masses. In particular, while the
seasonal maximum frequency of Mediterranean-Afinciune contributes to the first R
increase observed during this month, July valueselated to the contribution of North Atlantic
flows, and August elevated values are linked toséeesonal pattern of Western and North
Western-Europe advections. Figure 6 also showghkeanagnitude of the peaks is determined
by both the source of trajectories and the conag&aotr over source regions, as indicated by the
analysis of the time spent by trajectories overthéifrica together with the aerosol optical
depth (AOD) over Africa from MODIS Aqua 5.1 collexnt (Deep Blue AOD at 550 nm). We
have found that trajectories spend more time owethern Africa in November than in May, but
AOD in Africa is lower in November (mean equal tdZb in November vs. 0.396 in May), an
observation consistent with the low PMoncentration in November. Similarly, the AOD &05
nm (Land and Ocean) along the western Mediterraglkaws higher values for May than for
November (0.27 vs. 0.14).

Though the seasonal frequency of events accountadst of the variability, a detailed
analysis shows that singular events may make irappbcontributions to some of the parameters
observed. For this reason, Figure 6 reports bogmibthe mediafBe/*®Pb contribution per
number of episodes for each season. Figure 8 glgklthat both summer Arctic as well as
summer North-American flows, though being infreduean contribute to increases’Be (and
not in?*%Pb). Their average contribution to hit®e”*°Pb during summertime is higher than
during winter when they are more frequent. Figueds® emphasizes Arctic, North Atlantic,
North-American and Western flows as the main cbatdrs to wintefBe/%b increases;
Mediterranean-Africa flows are instead associatitd @xpectedly large contributions 8fPb
and PMy, while less obvious, but in agreement with presistudies (Hernandez et al., 2008;
Menut et al., 2009; Dueiias et al., 2011; Gordd.e2@15), is the inherently high contribution in
"Be. The high'Be of this flow type can be connected to the intermnvection generated by the
extremely high temperature of the ground and thg &gy conditions in the Sahara desert
together with the mineral dust size spectrum inclg@lso a large fraction of submicron
particles to whicHBe attaches (Brattich et al., 2017a). This confihow, given the suitable
dynamical framework, théBe*°Pb ratio is a pragmatic and efficient proxy of ik motion.

3.3 Trend analysis of transport pathways, teleconnection indices and atmospheric composition
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The assessment of the existence of temporal tiartie time series of the monthly frequencies
of the air flow types, as well as of monthly mediari the variables and of teleconnection
indices has considered the presence of seasoaaltitgerial correlations in the time series (see
SI). Indeed, as previously reported in the Methogwplsection, the analysis of the pattern of the
ACF (AutoCorrelation Function) can reveal the preseof seasonality in the time series. Here,
the previously described seasonal nature of theanbn pathways, as well as of the analysed
atmospheric variables, is also evidenced by thegerbehaviour of the ACF of their monthly
frequencies of occurrence (in the case of advetyipes) and monthly medians (in the case of
atmospheric species), with maxima and minima beymnahds of significance (95% confidence)
and a full cycle of 12 months. Examples of ACFraqgorted in the SI. In all cases the use of the
STL (Seasonal and Trend decomposition using Lakss)mposition allowed the estimation of
the relative contributions of the seasonal, tramdl r@sidual components, and the subsequent
removal of the periodic structure (connected wlida $easonal component) in the ACF for further
analysis.

Since significant data loss occurred for technieakons in 2007, the trend analysis was
restricted only to the 1999-2006 time window. Altigh this time period is too short to provide
definitive trend assessment, this analysis canigeawseful hints as to the role of specific
processes (e.g. meteorology vs anthropogenic emssss atmospheric transport) in modulating
the variability of the atmospheric species. In #ddj considering the decreasing number of
samples towards the end of the time series andahgequent decrease in the number of
trajectories, for the analysis of trends we conmgdehe corresponding fraction of each trajectory
type with respect to the total number of traje@siin a month. At this step of the research we
also included in the analysis the tropopause helgta obtained obtained from the Aqua AIRS
satellite, available since August 2002 from the MAGoddard Earth Sciences Data and
Information Services Center (http://mirador.gsfeangov/). The comparison of the tropopause
height from radiosoundings and from satellite obggons yields a strong significant correlation
(R?= 0.83 for the monthly means and=R0.71 for the monthly medians).

Trend analysis on air flow pathways reveals someifstant tendencies though of
limited extent and also with some differences adicay to the different approaches applied, in
particular seasonal Kendall test and trend-freendmtening methods (see Table 2). Both
methods consistently detect significant trends muber of cases, in particular indicating an
increasing trend for Arctic flows and a decreasing for Western flows. The seasonal absence
of both Arctic and North-American flows stronglyabes the Theil-Sen slope to zero. However,
the seasonal Kendall tests suggest the preserecsigihificant trend in the Arctic time series,
and deseasonalization provides a better estimateeafpward trend, As for the variables, the
results indicate a strong upward trend for, 0@ agreement with the long-term g@ehaviour at
the global scale (Machta, 1972; Thoning et al.,.91%8anderson et al., 1997; WMO-GAW,
2017), and a significant decreasing trend for tiséhmonthly medians 6tPb and P\,
measured at the station in the period 1999-200§u(Ei7). The mean annual change of the
original monthly time series is equal to +1.80 pgear, -0.008 mBq it year* and -0.151g m
3 year, for COp, %Pb and PM respectively, while for the de-seasonalized maorskties it is
equal to +1.90 ppm yedar-0.01 mBq it year' and -0.3Qug m* year™.

The detection of contemporary decreasing trend$®b and PM is particularly
important in light of the decreasing trend of Rl the period late 90's-2010 observed in many
stations in Europe, especially at regional backgdostations (Pérez et al., 2008; Barmpadimos
et al., 2011; Colette et al., 2011; Barmpadimaa.e2012). Generally, this Pidrop is
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attributed both to a decrease in anthropogenicsams, as a result of to the mitigation strategies
adopted, as well as to different meteorologicatpsses or cycles, such as the frequency and
intensity of Saharan dust episodes (Pérez et@)8)2Both Colette et al. (2011) and
Barmpadimos et al. (2012) showed that the decri@aamethropogenic emissions seems to be
more important than meteorology as a driving fatdothe observed decrease. However, in our
case the observation of a contemporary decreasing bf the?*°Pb radionuclide at this remote
background site, which cannot be ascribed to aedserin anthropogenic emissions due to the
crustal natural origin of this nuclide, highlightse important role played by meteorology in
these decreases.

A visual inspection of the time series and theantt components obtained from the
seasonal-trend decomposition analysis (Figure ggests that the upward trend of Arctic flows
was significant from 2002 on, while Western flowsswhward trend was almost constant over
the 1999-2006 study period. While g@resents an upward trend over the time period, in
agreement with, e.g., WMO-GAW global analyses (30fof 2°Pb and PM, the decreasing
trend is stronger after 2001. Besides parametensacterised by the existence of significant
trends, we also reported results for the two NA@des with the aim of illustrating the result for
this well-known and often studied teleconnectiasteixy, showing a slightly decreasing non-
significant trend.

The increase ift%Pb activity from 2002 to 2003 might be due to thr@mely high
temperature recorded in the whole European regspecially during the summer months
(Cristofanelli et al., 2009a; Pace et al., 2006} eonnected also to anomalously high ozone
concentrations at Mt. Cimone (Cristofanelli et 2a007) and to augmented radon exhalation
during the 2003 summer heat wave in Europe. IndRMs increase is masked by the 2004
maximum connected to an exceptional Saharan disidgppreviously described (Beine et al.,
2005) which resulted in an event concentrationhiz®c80pug m*and characterized by a
significant increase in the coarse fraction anddaced, though not negligible, increase in the
fine fraction (to which radionuclides attach), amith a less substantial increas&fPb than in
PMy, (Tositti et al., 2013; Brattich et al., 2015a, b).

The analysis of the two tropopause height datateta's no trends at Mt. Cimone,
contrarily to the increasing trend observed glgbafid suggested as an alternative detection
variable of climate change (e.g., Afiel et al., 2086nnected to the increase in atmospherig¢ CO
leading to tropospheric warming and stratospheyaticg, and to anthropogenically induced
depletion of stratospheric ozone, also inducingtsipheric cooling (e.g., see Chapter 5 of
WMO, 2007; Myhre et al., 2013; Santer et al., 20TB)e absence of trends in our case is
possibly due to the different and short time windeg/use.

Both of the NAQiI time series (the station-based tredPrincipal Components-based) do
not show any significant trends according to tiststedespite presenting a negative T-S slope.
For the sake of completeness, we also investigatedesults for the CRU station-based NAOI
which indicate the absence of statistically sigmifit trends during the analysed period. The only
teleconnection index presenting a significant trdndng the study period is the WeMOi, with a
downward trend constant over the study period. ddvenward trend is particularly evident in
2005 and 2006 in correspondence with very largatnegindices indicative of the presence of
strong lows in the Gulf of Cadiz and anticycloneséntral Europe and associated with an
increase of humid airflows travelling over the Medianean Sea and a reduction of westerly-
northwesterly flows.
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The analysis of the magnitude of the seasonalrand tomponents of the time series
revealed that the seasonal component dominategtevérend component and the small-time
scale variations in almost all the measured atmergphiariables, weighting about twice the
trend component. In turn, the small-scale variaidaminate most of the teleconnection indices
with the exception of MOi, and the frequencieshaf different advection pathways.

3.4 Association among air flow types, meteorological/atmospheric parameters and teleconnection
indices

In this work, the degree of association amonglaw types, meteorological/atmospheric

parameters and teleconnection indices is asseysathlyzing the Spearman correlation

coefficient, considering both the complete yearyet series and separately by season.

Figure 8 shows the linear Spearman correlationficteits between teleconnection
indices and flow types, while comprehensive taklel all the correlation coefficients are
reported in the Sl.

The NAO is related to North-American flows (espégia winter), and weakly related
to Mediterranean-Africa (during summer and all-y&ag) and North-Atlantic pathways. It is
recognized that the positive NAO phase correspantdira stronger than usual subtropical high-
pressure centre and deeper than normal Icelandicdsults in more and stronger winter storms
crossing the Atlantic Ocean on a more northerlgkravhile the negative phase is connected to
fewer and weaker winter storms crossing on a ma&s-wast pathway (Barnston and Livezey,
1987). An anti-correlation of westerly flows reanyithree Mediterranean sites (Lecce, Elche
and Malaga) with NAOi was previously observed by®et al. (2013): this observation is
connected with the fact that the position of thietapical high at lower latitudes during the
negative phase of the NAO promotes the access stevies (W)/southwesterlies (Me-AF) to
the Mediterranean. This is shown in Figure 9, praag for each spatial grid cell the ratio
between the residence time of the air parcels regd¥it. Cimone during the positive and the
negative phases of NAO (NAOi higher than +0.5 awader than -0.5, respectively) for the
extended winter period (DJFM), calculated as thaler of trajectory endpoints falling within
each area of interest divided by the total numibéragectory endpoints for the entire set of
trajectories in the considered time period.

Figure 9 reveals that south-westerlies and slovestevlies from the westernmost part of
Northern Africa and southern Spain are more fretjdaring the negative phase of the NAO,
while flows from Libya and surrounding regions (atslonging to the Mediterranean-Africa
cluster) occur preferentially during the positivA® phase. Moreover, trajectories coming from
North-America are more frequent during the posiptase of NAO, as indicated by the
significant high correlation between North-Ameridlows and NAO. Finally, North-Eastern
flows seem to be more usually observed during tsitipe NAO phase, even if this was not
readily observed from the correlation analysis.

The frequencies of Atlantic, North-Atlantic, Norfimerican and Western flows are
related to the WeMOi.. In particular, while Atlantiorth-American and Western flows are
related to the WeMOi both all-yearlong and duriegarate seasons specific for each advection
pattern, the frequency of North-Atlantic trajecésris strongly connected with WeMOi in
summer, and less so considering the whole timesdtiis also weakly negatively related to the
Eastern advection pattern. These correlations eaabily understood considering that this index
measures the difference between the standardizéatspressure values measured in Padua
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(Italy), and San Fernando (Cadiz, Spain). Therefitiese results suggest a likely connection of
the downward trends of Western flows with WeMOpasviously observed.

MOi presents weak relations with Western and Novistern Europe pathways, and
with North-American flows during winter. Also thessations can be easily understood from the
MOi construction as the difference of standardigedpotential height anomalies at Algiers
(Alger) and Cairo (Egypt).

EA, consisting of a north-south dipole of anomapices displaced South-Eastern with
respect to the NAO ones, appears negatively retatédctic flows (especially in autumn, and
secondarily in winter and all-yearlong), and pesitly associated with Western (mostly in
winter) and Atlantic flows (not in spring). Its ation with Me-AF has only a winter nature.

EA/WR and SCA indices present less relations witimass pathways, probably due to
their limited influence in central Europe; in fattte EA/WR presents an association with
Western flows only during autumn, while the SCAt@at is negatively correlated with Western,
Atlantic, North-American and North-Atlantic pathwsagluring winter, while positive
associations with North-American and Western flanes observed during summer and autumn,
respectively.

Figure 10 similarly reports the correlation coa#fitts between teleconnection indices
and the monthly medians of and atmospheric conmpasrariables.

The positive correlation of NAO during the tranmitiseasons with particles
concentration, even though not statistically sigaift, is linked to the fact that the positive NAO
phases are associated with drier weather conditiothee Mediterranean area which generate
intense uplift of particles from the ground; on tomtrary, the negative correlation between the
station-based NAOI and coarse particles is linketheir transport from Western and
Mediterranean-Africa, and to a lesser extent froonthl\Western-Europe flows, and to the
association of the negative NAO phase with moreaevkss/south-westerlies entering the
Mediterranean. The association of the PC-based N&Q% during summer is in agreement with
the results of Pausata et al. (2012) and is linkdate drier conditions in the Mediterranean area
associated with the positive NAO phase resultindpenbuild-up of @because of photochemical
processes; however, the transport ge@riched air masses from the Atlantic Ocean, wkigre
build-up is linked to the low dispersion capacifypeecursors, increase of the photochemical
yield and of kinetic reactions due to the high tenapure, cannot be completely ruled out. In
particular, Pausata et al. (2012) associated thadtease in south-western Europe to transport
of air masses from continental Europe, favouretheypresence of a more extended Azores
anticyclone. In the case of Mt. Cimone, we obsemmihcrease of Me-AF transport linked with
the positive NAO phase. As such, the positive datian of O; with NAOI could be linked to
the role of mesoscale circulations (enhanced \&@iansport and photochemistry under
anticyclonic conditions) which are not resolvediur study due to the coarse resolution of the
meteorological field we are using. The index shaptime highest number of significant
correlations with the variables is the MOi (botdiges). In the MO positive phase, when higher
pressures are found over the western and centrdit&leanean, the storm track is displaced
northward and the orientation of the westerly ai#$ is modified. This causes dry conditions in
the Mediterranean basin, with low precipitation aaldtive humidity. Conversely, low pressures
and in particular cyclogenesis over the westerfaeMediterranean, which are linked to the
negative MO phase, are associated with precipitatia high'Be”*%Pb and'Be/PMy ratios.

Figure 11 reports the associations between montklgians of the variables and
frequencies of air flow types during different seasas well as throughout the year. Most of
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these associations agrees with Figure 3. Amongstdlrelations observed, it appears
particularly important and interesting to discussse likely to be connected with &b and
PMyo negative trends observed in the previous sechiortic flows, presenting an upward trend,
are negatively related with°Pb and PM, (all year-long, even though a positive relationiig
winter season also appears), while Western flovesgnting a downward trend, are positively
associated with'®b and PMo. The anti-correlation of Arctic flows with%Pb and P\ is

mainly related to the continental origin“0fPb and PNy, in agreement with Brattich et al.
(2016, 2017b). In the Supplementary Material, talégporting all significant correlation
coefficients between teleconnection indices/adweegiathways and variables are reported.

4 Summary and conclusions

This work focused on finding relationships betwdba advection pathways and atmospheric
composition observed in a long time series of d&derlimate variables (ECVs) observed at the
WMO-GAW station of Mt. Cimone (Italy). Advection phavays were identified by a cluster
analysis of back trajectories starting at Mt. Cima three different heights; the cluster analysis
identified 8 groups at the initiation height of 226, approximately at the height of the station.
The results reflect strong seasonal pathways widvglence of westerlies as typical of mid-
latitude Northern Hemisphere sites. The main femtwof these flow pathways, both from the
meteorological and from the atmospheric composigioimt of view, were analyzed. The results
indicate that North-American air masses, associatgh subsiding flows originating at high
altitudes, are related to low pressures and trapsgdneights, cold, and dry air masses, and
linked to high wind speeds. These flows are ndgkgduring summertime, besides being related
to low concentrations of atmospheric pollutantshsas BC, CO, @ PMy, but also of
atmospheric radionuclidéBe and®%b. Arctic flows are typically cold (though lessithNorth
American ones) and more frequent in the cold seaBeimg subsiding flows and travelling at
high altitudes over remote ocean and ice, theyal®@ connected to low values of atmospheric
pollutants such as CO,s0BC, but also of particulate matter aft@Pb. On the contrary, but for
the same reason, this flow type is associated high ‘Be and seems connected to S| events.
Continental flows from North-Western Europe, EastBurope, Western and Mediterranean-
Africa are generally linked to higher values of asipheric components; in particular, NW-
Europe, Western and Eastern flows are related autoon” events, being associated with high
levels of CO, BC, @and fine particles number densities, leading twesponding increases in
PMyp In those cases, the relatively “short” back-wtpees suggest the occurrence of
meteorological conditions characterised by low Natdn that, especially during warm months,
can also promote the diurnal-scale transport of RBimasses to the receptor site (Cristofanelli
et al., 2017). Because of their continental origfitese flows are also associated with HjRb
levels. Mediterranean-Africa flows associated wiidtharan Dust events bring about high;M
values, both in the fine and coarse fraction ofipas. Interestingly, this flow type was not only
associated with higi'®Pb values, but also with higfBe, which could be connected to the
combination of African dust uplifting and subsideritom the upper troposphere.

The association of the seasonality of air massspams with the seasonality of
radionuclides and particulate matter has also sagtied. In fact, whiléBe winter maximum is
related to the seasonal behaviour of Arctic andiiNAtlantic air masses that reach Mt. Cimone
after traversing the AlpsBe summer maximum can be connected to the seapattatn of
Mediterranean-Africa, Western and North Atlantic miasses**°Pb summer maximum is well
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related with the seasonality of Western and Nor#siatn-Europe flows, whereas the seasonal
pattern of PMop might be, however, influenced by the seasonalepatbf advection types
bringing about elevated mass loads of particlesh s Mediterranean-Africa, Western, North
Atlantic and North Western-Europe flows.

Temporal trends were detected by means of non-mrantechniques applied on the
monthly frequencies of flow types and on monthlydmes: over the period 1999-2006, an
upward trend for Arctic flows and a downward trédod Western flows reaching Mt. Cimone at
2200 m was detected. In addition, a downward tfenthe monthly medians f%b and Pl
measured at the station, and a contemporary dowihwand for WeMOi during the study
period, possibly connected to the decreasing tadnd/estern flows, were also detected. The
simultaneous decreasing trends of bot#Pb and PMy cannot be ascribed exclusively to a
decrease in anthropogenic emissions, highlightihg totential influence exerted by
meteorology, and suggesting further investigatidnsparticular, the observation of a positive
correlation of*Pb and PNy with Western air masses, showing a decreasind,teend a negative
correlation with Arctic flows, presenting an incse® trend, seems to largely explain the;Pahd
21%pph trends observed in the time series. Significgnward temporal trends were detected for
CO,, in agreement with longer time records. The amalgsthe magnitude of the seasonal and
trend components of the monthly time series revetiat the largest variabilities in almost all
the studied atmospheric variables are associatddthhe seasonal components, with a reduced
weight of the trend component for all the series.

The association of teleconnection indices with atlwa pathways and atmospheric
variables was also examined. In particular, pasiagsociations of NAOi with the frequency of
North-American, Atlantic and North-Atlantic flowand between WeMOi and Western, Atlantic
North-American and North-Atlantic flow types, wembserved. The relationship between
teleconnection indices and atmospheric variablgblight the significant influence of regional
short scale modes of variability, like MO, over gghic conditions and atmospheric conditions at
the sampling site.

The results of this work highlight the role of flopathways and teleconnections as
factors that can have a deep influence in the trans in atmospheric composition at a site
located in the central Mediterranean. This was iptessince the time series of data acquired at
the station was long enough to characterize a cfoshort-term climatology of the site. The
results are therefore of paramount importance ttebeinderstand processes controlling the
variability of atmospheric composition in a regimtognized as a hotspot of air pollution and
climate change.
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1158 Tables
1159

1160 Table 1. Analysed teleconnection with associated locatibceaters of action including the sign
1161  of geopotential height (or pressure) anomaliesteir positive phases.
1162
TELECONNECTION ABBREVIATION CENTERS OF ACTION
NORTH ATLANTIC
OSCILLATION

NAO Greenland (-), Azores (+)

North Atlantic (-), Subtropical North Atlantic and
Mediterranean (+)
EAST ATLANTIC/WESTERN RUSSIA EA/WR NW Europe (+), Western Russia (-), NE China (+)
SW Europe (-), Scandinavia (+),
Kazakhstan/Mongolia (-)

MEDITERRANEAN OSCILLATION MO Algiers (+), Cairo (-), Gibraltar (+), Israel (-)

WESTERN MEDITERRANEAN
OSCILLATION

EAST ATLANTIC EA

SCANDINAVIA SCA

WeMO Po Valley (-), Gulf of Cadiz (+)
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1187 Table 2. Results of the seasonal Kendall test for the mgritme series and the trend-free pre-
1188  whitening Yue-Pilon (Y-P) procedure on the de-seafized monthly series for the detection of
1189 monotonic trends applied on the 1999-2006 timeesefor each case, the p (significance) value
1190 and the mean change per year from the Theil-Sgre slce presented. In bold when significant at

1191 the 0.05 level, in italic when the trend is onlyakly significant, i.e., at the 0.1 level.
1192

MONTHLY FREQUENCIES

Seasonal Kendall Deseasonalized Y-P
INDEX p value mean change p value mean change
per year per year
Hurrell_Stat_NAOi 0.6935 -0.07 0.3220 -0.08
Hurrell_PC_NAOi 0.2840 -0.05 0.3645 -0.05
CPC_Stat_NAOi 0.2110 -0.07 0.1307 -0.06
CRU_Stat_NAOi 0.4320 -0.07 0.4215 +0.04
WeMOi 0.0000 -0.15 0.0000 -0.17
MOi1l 0.2530 +0.01 0.2497 +0.01
MOi2 0.6171 -0.01 0.1668 -0.01
EA 0.7206 +0.02 0.9028 +0.01
EA/WR 1.0000 -0.03 0.3612 -0.03
SCA 1.0000 +0.01 0.8875 +0.01
Seasonal Kendall Deseasonalized Y-P
FLOW TYPE p value mean change p value mean change
per year per year
A 0.0383 0.000 0.0462 +0.007
E 0.0760 +0.003 0.1358 +0.007
Me-AF 0.8284 +0.003 0.3924 +0.001
w 0.0376 -0.010 0.0274 -0.011
Atl 0.1061 -0.006 0.0349 -0.007
N-Am 0.0689 0.000 0.2872 -0.003
N-Atl 0.1605 -0.004 0.3462 -0.004
NW-Eu 0.7203 +0.003 0.9232 0.000
Monthly medians
Seasonal Kendall Deseasonalized Y-P
VARIABLE p value mean change p value mean change
per year per year
p (mbar) 0.1237 +0.317 0.2317 +0.133
T(°C) 0.1855 +0.300 0.1024 +0.168
RH (%) 0.1234 +0.263 0.4996 -0.336
TH (m) 0.7690 +19.296 0.9919 -10.414
ws (ms™?) 0.1336 +0.054 0.2292 +0.117
Prec (mm) 0.6408 +0.000 0.7777 +0.000
MixHeight (mm) 0.9083 +4.822 0.6875 -3.568
O; (ppbv) 0.1320 +0.279 0.1806 +0.292
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1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214

CO; (ppm)

’Be (mBq m?)
2%} (mBqg m™)
PMy, (ug m*)
’Be/PM;, (mBq pg™)
#°Pb /PMyo (mBq ug™)
’Be/**°Pb

0.0000
0.2840
0.0450
0.0053
0.1851
0.7921
0.6678

+1.804
-0.079
-0.008
-0.154
+0.007
0.000
0.000

30

0.0000
0.1984
0.0135
0.0083
0.1616
0.9839
0.3612

+1.900
-0.085
-0.011
-0.296
+0.012
+0.000
+0.083
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Figure 1. (a) Centroids of the trajectory clusters ideatififor 96-h back-trajectories arriving at
2200 m asl for the 12-year study period. The fl@athprays are identified as follows: Arctic (A),
Eastern (E), Mediterranean-Africa (Me-AF), Atlan{iatl), Northern Atlantic (N-Atl), North
America (N Am), North Western-Europe (NW-Eu). Thergentage is for the frequency of
occurrence of each flow pattern in the whole 190812 period. (b) Heights above mean sea
level of the representative back-trajectories wsd-point time. (c) Monthly variation in
percentage frequency of the identified advectidhyays.
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Figure 2. Box plots of meteorological variables measuredat Cimone (P = pressure, T =
temperature, RH = relative humidity, Prec = prdaijpon, TH = tropopause height, WS = wind
speed, MixH = mixing height) versus air flows aimiy at the receptor site. The horizontal bold
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line in each box represents the"5Percentile (median), the circle represents thenmesdue,
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1323 Figure 8. Spearman correlation coefficients between thguieacy of occurrence of the different
1324 teleconnection indices and air flow types by seasmhfor the full year. Filled symbols indicate
1325  significant correlations (p < 0.01 significancedgv
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1329 Figure9. Ratio of residence time of air parcels reachirtg@mone in the positive and negative
1330 phase of Hurrell Stat NAO (NAOI higher than +0.5ddower than -0.5, respectively) in the

1331 extended winter DJFM period. The black dot indisdtee position of Mt. Cimone.
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1335 Figure 10. Spearman correlation coefficients between thectinection indices and the
1336 monthly medians of variables by season and fofuheear. Filled symbols indicate significant
1337 correlations (p < 0.01 significance level) letterdicate the variables: {3 ozone, C@= carbon
1338 dioxide, BC = black-carbon’Be, ?%Pb, PM, FP = fine particles, CP = coarse particles,
1339 'Be/PMhyo, “Pb/PMy, 'Bef*Pb.
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Figure 11. Same as Figure 10 but for the correlation betwkerfrequency of occurrence of air
flow types and the monthly medians of variables.
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