
Fast Heck−Cassar−Sonogashira (HCS) Reactions in Green Solvents
L. Ferrazzano, G. Martelli,*,∇ T. Fantoni, A. Daka, D. Corbisiero, A. Viola, A. Ricci, W. Cabri,*,∇

and A. Tolomelli

Cite This: Org. Lett. 2020, 22, 3969−3973 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The replacement of toxic solvents with greener alternatives in Heck−Cassar−Sonogashira (HCS) cross-couplings was
investigated. The fine-tuning of the HCS protocol allowed to achieve complete conversions and high speed under mild conditions.
N-Hydroxyethylpyrrolidone (HEP) gave the best results. Moreover, the methodology was successfully applied to the synthesis of an
intermediate of the anticancer drug Erlotinib, demonstrating the versatility of the new green protocol.

Palladium-catalyzed cross-coupling reactions currently
represent privileged methodologies for the C−C bond

formation.1,2 Among them, the reaction between the sp2

carbon of an aryl halide and the sp carbon of an alkyne allows
the installation of a triple bond on the aromatic ring, opening
access to subsequent transformations.
The reaction was independently reported in 1975 by

Sonogashira3 as Pd(0)/Cu(I) catalyzed cross-coupling and
by Heck4 and Cassar5 as a copper-free procedure. Since then,
the Heck−Cassar−Sonogashira (HCS) reaction was success-
fully applied for industrial production. Several studies have
investigated the influence of leaving groups, palladium ligands,
cocatalyst, and bases.6

The greenness of industrial processes to preserve the
environment and to ensure health and safety of workers has
evolved from an ethic approach to an inescapable necessity.7

Solvents represent the main source of waste in chemical
industrial processes, constituting, on average, 80−90% of the
total process mass.8 Their selection is critical in Pd-catalyzed
cross-couplings, because of the influence on the coordination
sphere of the metals, the stability of the catalyst, the
equilibrium, and the rate and selectivity of the reaction.9

In the last decades, almost 40% of the published HCS
reactions were performed in N,N-dimethylformamide
(DMF),10 which is well-known as a highly reprotoxic solvent,
is classified as a substance of very high concern (SVHC), and is
a potential source of N-dimethylnitrosamine.11 Other solvents

also have been used, such as tetrahydrofuran (THF),
dimethylsulfoxide (DMSO), 1,4-dioxane, toluene, dimethoxy-
ethane (DME), and amines, even if not representing real
greener alternatives.9 Alcohols and aqueous systems,12 ionic
liquids,13 and bio-based solvents such as dimethylisosorbide,14

γ-valerolactone,15 and Cyrene10 also were investigated.
DMF has been successfully replaced in many processes by

N-methylpyrrolidone (NMP), which displays a similar polarity
profile. However, NMP has limitations, because of the
potential development of toxic metabolites, such as oxidized
derivatives and formaldehyde.16

Longer N-alkylpyrrolidones may offer novel opportunities,
since their metabolites are less toxic than formaldehyde and
related compounds typically deriving from N-Me oxidation in
DMF and NMP. Their lower toxicity allowed their use as
surfactants and their addition in cosmetic formulations.17

Among them, N-butylpyrrolidone (NBP) has been already
successfully used in Heck and Suzuki cross-couplings,18 while
less attention has been paid to pyrrolidones with longer alkyl
chains (N-octylpyrrolidone (NOP), N-benzylpyrrolidone
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(NBnP), N-cyclohexylpyrrolidone (NCP)), and to N-hydrox-
yethylpyrrolidone (HEP). In addition, anisole and tert-butyl
acetate (tBuOAc) have been included, since they are
sustainable dipolar aprotic solvents.19,20

The target of this study is the identification of protocols for
fast and efficient HCS reactions under mild conditions, using
green solvents. We selected the model reaction between
iodobenzene 1a and phenylacetylene 2a, in the presence of
Pd(PPh3)2Cl2 and CuI at 30 °C to test the efficiency of new
greener solvents, by screening several parameters (see Scheme
1 and Table 1).21 A high-performance liquid chromatography−

ultraviolet (HPLC-UV) signal at 210 nm was used to follow
the transformation of the reagents to diphenylacetylene 3a.22

The reactions were stopped when no further evolution in time
was observed. DMF and Cyrene experiments were performed
as reference reactions and compared with literature data.10

Under the selected conditions, all of the solvents did not afford
complete conversion (Table 1, entries 1−10). HEP gave
promising results, allowing 96% conversion (Table 1, entry 4).

The incomplete conversion in all the reactions reported above
is mainly due to the competing side reaction of alkyne
homocoupling.
One of the worst performing solvents, NOP, was used to

optimize the reaction conditions in further experiments. An
excess of 2a increased the conversion to 92% (Table 1, entry
11). Nevertheless, the strongest effect was observed when the
reaction was performed by using N,N,N,N-tetramethyl
guanidine (TMG) in place of the most commonly used
TEA. Under these conditions, the reaction complete
conversion was achieved within only 30 min, even in the
presence of 1% copper co-catalyst (Table 1, entries 12 and 13).
No excess of 2a was required, since the acceleration of the
HCS reaction won the competition with the homocoupling.
These conditions were successfully applied to all of the other
green solvents (Table 1, entries 14−19) affording 3a in 90%−
95% isolated yield. Copper-free conditions were also attempted
but did not afford satisfactory results (Table 1, entries 20 and
21). HEP allowed an easy recovery of 3a (97%), because of the
complete migration of this solvent in water during the workup.
This reaction was also performed on 10 mmol scale, with
comparable results, in order to verify HEP recovery.
Distillation of the HEP/water phase afforded the pyrrolidone
in >90% yield. The E factor is comparable to the one
achievable in DMF. However, HEP is a nontoxic solvent,23

manageable at high temperatures and easily removable by a
simple workup as reported above. Furthermore, HEP can be
potentially very inexpensive, being an intermediate in the green
synthesis of N-vinylpyrrolidone from biogenic acids.24

The reaction was extended to substituted aryl iodides and
acetylenes (see Scheme 2 and Table 2). For each couple of
substrates, the mildest conditions to reach complete
conversion were investigated, starting from the best conditions
identified in the model reaction between 1a and 2a. Thus, all
of the reactions were performed in HEP, using Pd(PPh3)2Cl2
(2 mol %) as a precatalyst, copper iodide (1 mmol %), and
TMG (1.1 equiv) (see Scheme 2). The results are reported in
Table 2.
The presence of electron-withdrawing and electron-donating

groups and the nature of the aromatic ring of the iodide (1b−
1g) did not affect reactivity, since all tested reagents displayed
complete conversions to 3b−3g at 30 °C in 30 min (Table 2,
entries 1−6).
In contrast, the transformation of differently substituted

acetylenes required to modify the reaction conditions, mainly
as a consequence of a variable tendency to afford
homodimerization. The cross-coupling of 2-methyl-3-butyn-
2-ol 2h with 1a afforded complete conversion to 3h under the
standard conditions in 1 h (see Table 2, entry 7). In a similar
way, 3-dimethylamino-1-propyne 2i and 3-phenyl-1-propyne
2j reacted with 1a at 30 °C to give 3i and 3j in 1 h and 30 min,
respectively (see Table 2, entries 8 and 9). In both cases, an
excess of acetylene reagent (1.5 equiv) was required to reach
>99% conversion.
Propargyl alcohol 2k and 1-hexyne 2l showed a lower

reactivity and the increase of reaction temperature to 50 °C,
together with an excess of reagent, was required. Under these
conditions, products 3k and 3l were obtained in 30 min and 1
h, respectively (see Table 2, entries 10 and 11). Moving from
iodides to aryl bromides, stronger reaction conditions were
needed.
Using the best protocol reported in Table 1, entry 17,

bromobenzene 4a did not react (see Table 3, entry 1).

Scheme 1. HCS Model Reaction in Green Solvents

Table 1. HCS Model Reaction Screening

solvent
2a

[equiv] base
CuI

[mol %]
time
[h]

conversion [%]
(yield [%])a

1 DMF 1.05 TEA 4 1 90
2 Cyrene 1.05 TEA 4 1 91
3 NMP 1.05 TEA 4 1 86
4 HEP 1.05 TEA 4 1 96 (90)
5 NBnP 1.05 TEA 4 1 83
6 NCP 1.05 TEA 4 1 66
7 NBP 1.05 TEA 4 1 65
8 NOP 1.05 TEA 4 1 72
9 An 1.05 TEA 4 1 86
10 tBuOAc 1.05 TEA 4 1 92
11 NOP 1.5 TEA 4 1 92
12 NOP 1.05 TMG 4 0.5 >99 (92)
13 NOP 1.05 TMG 1 0.5 >99 (93)
14 NBP 1.05 TMG 1 0.5 95 (90)
15 NBnP 1.05 TMG 1 0.5 >99 (90)
16 NCP 1.05 TMG 1 0.5 >99 (94)
17 HEP 1.05 TMG 1 0.5 >99 (97)b

18 An 1.5 TMG 1 0.5 >99 (94)
19 tBuOAc 1.5 TMG 1 0.5 >99 (95)
20 HEP 1.05 TEA − 1 49
21 HEP 1.05 TMG − 1 9

aConversion monitored at HPLC-UV at 210 nm. The product was
isolated only when conversion was >95%. bThis reaction was also
performed in 10 mmol scale with similar results.
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Satisfactory conversion could be observed after 21 h at 60 °C
with an excess of 2a in the presence of copper (Table 3, entry
2). The copper-free protocol allowed complete conversion to
be attained within 14 h (see Table 3, entry 3).
To increase the reaction speed, the inexpensive Pd-

(PPh3)2Cl2 had to be replaced by Pd(ACN)2Cl2/Xphos or
Pd(DPPF)Cl2.
Since its first use in HCS reactions in 2003 by Gelman and

Buchwald,25 Pd catalyst containing Xphos ligand has been

reported to give extraordinary results in several applications.
Complete conversion of 4a into 3a was obtained within 2 h
with Pd(ACN)2Cl2/Xphos, with or without copper (Table 3,
entries 4 and 5). The use of Pd(DPPF)Cl2

26 did not produce
comparable results, since 98% conversion was observed in the
Heck-Cassar copper-free reaction only after 7 h (Table 3, entry
7), while the presence of the copper co-catalyst completely
inhibited the reaction (Table 3, entry 6).25 In order to have a
further demonstration of the general applicability of our

Scheme 2. HCS Reaction on Substituted Reagents in HEP

Table 2. Screening of HSC Reaction Conditions with Substituted Reagents

entry 1 2
amount
[equiv]

temperature, T
[°C]

time
[h]

conversion [%]a

(yield [%]) product

1 4-nitroiodobenzene, 1b phenylacetylene, 2a 1.05 30 0.5 >99 (96) 3b
2 3-nitroiodobenzene, 1c phenylacetylene, 2a 1.05 30 0.5 >99 (95) 3c
3 3-methoxyiodobenzene, 1d phenylacetylene, 2a 1.05 30 0.5 >99 (98) 3d
4 4-methoxyiodobenzene, 1e phenylacetylene, 2a 1.05 30 0.5 >99 (98) 3e
5 3-chloroiodobenzene, 1f phenylacetylene, 2a 1.05 30 0.5 >99 (95) 3f
6 2-iodothiophene, 1g phenylacetylene, 2a 1.05 30 0.5 >99 (98) 3g
7 iodobenzene, 1a 2-methyl-3-butyn-2-ol, 2h 1.05 30 1 >99 (94) 3h
8 iodobenzene, 1a 3-dimethylamino-1-propyne, 2i 1.5 30 1 >99 (96) 3i
9 iodobenzene, 1a 3-phenyl-1-propyne, 2j 1.5 30 0.5 >99 (98) 3j
10 iodobenzene, 1a propargyl alcohol, 2k 1.5 50 0.5 >99 (95) 3k
11 iodobenzene, 1a 1-hexyne, 2l 1.5 50 1 >99 (95) 3l

aConversion monitored at HPLC-UV at 210 nm.

Table 3. Optimization of Reaction Conditions on Aryl Bromide Substrates

entry aryl bromide alkyne [equiv] Pd precatalyst L CuI [mol %] temperature, T [°C] t [h] product conversion [%] (yield [%])a

1 4a 2a (1.05) Pd(PPh3)2Cl2 − 1 30 21 3a −
2 4a 2a (3) Pd(PPh3)2Cl2 − 1 60 21 3a 91
3 4a 2a (3) Pd(PPh3)2Cl2 − − 60 14 3a >99b (93)
4 4a 2a (3) Pd(ACN)2Cl2 Xphos 1 60 2 3a >99 (95)
5 4a 2a (3) Pd(ACN)2Cl2 Xphos − 60 2 3a >99 (95)
6 4a 2a (3) Pd(DPPF)Cl2 − 1 60 7 3a 25
7 4a 2a (3) Pd(DPPF)Cl2 − − 60 7 3a 98 (95)
8 4b 2h (3) Pd(PPh3)2Cl2 − 1 60 22 5b 50
9 4b 2h (3) Pd(PPh3)2Cl2 − − 60 22 5b 95 (80)c

10 4b 2h (3) Pd(ACN)2Cl2 Xphos 1 80 22 5b 17
11 4b 2h (3) Pd(ACN)2Cl2 Xphos − 60 14 5b >99 (85)c

12 4b 2h (3) Pd(DPPF)Cl2 − 1 80 22 5b 86
13 4b 2h (3) Pd(DPPF)Cl2 − − 60 3 5b >99 (86)c

aConversion monitored at HPLC-UV at 210 nm. The product was isolated only when conversion was >95%. bConversion was 94% after 7 h. cYield
was calculated after telescoping transformation to 6b.
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procedure, we selected an industrially relevant process
requiring a Sonogashira reaction step (Scheme 3).

As an example, the synthesis of an intermediate of the
pharmacologically active molecule Erlotinib resulted in being
suitable for our scope.
Erlotinib hydrochloride is an oral antitumor drug27 that acts

by reversibly and selectively inhibiting epidermal growth factor
receptor (EGFR) type 1 tyrosine kinase activity in many types
of human cancers affecting lung, pancreas, ovary, kidney,
stomach, liver, and breast tissue.
The industrial process for its production (Scheme 4),28

requires a Sonogashira reaction to convert 3-bromoaniline 4b

to 3-ethynylaniline 6b. Thus, the reaction between 4b and 2-
methyl-3-butyn-2-ol 2h in HEP was studied. As reported in
Table 3, the Pd(ACN)2Cl2/Xphos catalytic system allowed to
achieve complete conversion to the intermediate 5b only after
14 h without CuI (Table 3, entry 11). The comparison of
entries 5 and 11 in Table 3 shows a decreased efficiency of the
Pd catalyst in the presence of the aniline fragment.
The best catalytic system for the reaction of 4b resulted in

being Pd(DPPF)Cl2 under copper-free HC conditions, which
allowed complete conversion to be attained within 3 h (Table
3, entry 13). As already reported by Buckwald at high
temperature, the copper co-catalyst favors the aryl alkyne
oligomerization.25

Intermediate 5b was not isolated and directly transformed
under telescoping conditions with toluene/NaOH into 6b.29

In summary, several green solvents have been tested to
replace toxic DMF and N-methylpyrrolidone (NMP) in the
HCS cross-coupling between aryl halides and substituted
acetylenes.
N-hydroxyethyl pyrrolidone (HEP) has been shown to be

the most suitable candidate, allowing one to find mild
conditions for poorly reactive alkynes and aryl bromides.
The versatility of the solvent is particularly important when
complex molecules are synthesized via multistep procedures.
The excellent results obtained in the synthesis of an
intermediate of the drug Erlotinib encourage in the application
of HEP on a large scale.
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