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Highlights

Persistent Manifolds of the special Euclidean group SE(3): a Review

Yuanqing Wu, Marco Carricato

• A systematic review of the concept of persistent manifolds and their application to mech-
anism design.

• Classification of three classes of persistent manifolds, namely, the Lie subgroups, the
product-of-exponential (POE) manifolds, and the symmetric subspaces.

• Ample examples illustrating the application of the three classes of persistent manifolds
in mechanism design.
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Abstract

Mechanisms and robots often share the following fundamental property: the instantaneous
twist space generated by the end-effector at a generic pose is a rigidly-displaced copy of the one
generated at the home configuration, i.e., the tangent spaces at all points of its motion manifold
(a manifold of the Lie group of rigid displacements SE(3)) are mutually congruent. A manifold
of this kind, hereafter denoted as persistent, can be seen as the envelope of a persistent twist
subspace rigidly moving in SE(3). In this paper, we shall summarize three important classes
of persistent manifolds that have so far been discovered and systematically investigated in the
literature, namely the Lie subgroups, the persistent product-of-exponential (POE) manifolds,
and the symmetric subspaces. In each case, the persistence property arises from a distinct
manifold structure, which dictates the ensuing classification and underlies the framework for
the synthesis of mechanical devices that are capable of generating such manifolds. In this
regard, we attempt to offer a guideline to classification and mechanism synthesis of persistent
manifolds for a general audience.

Keywords: persistent manifold, Lie subgroup, product-of-exponential manifold, symmetric
subspace, mechanism design.

1. Introduction

A robot or a mechanism in general is an ensemble of rigid bodies, called links, interconnected
by kinematic pairs or joints. The base link is fixed to the ground, whereas the end-effector
interacts with the environment by exerting motion and forces through a change of configuration
of the mechanism. A pose of the end-effector is unambiguously specified by six parameters,
which accounts for the six dimensions (three for orientation and three for position) of the special
Euclidean group SE(3), namely the Lie group of all rigid displacements in the 3-D Euclidean
space. Many practical tasks require less than six degrees of freedom (DOFs), so that the
corresponding task spaces can be identified with manifolds of SE(3). We shall henceforth refer
to manifolds of SE(3) (containing the identity transformation I) as motion manifolds.

In engineering applications, it is of equal importance to study the vector fields (or tan-
gent spaces) of motion manifolds as local linear approximations of the latter, corresponding
to instantaneous motions or twists of the end-effector. Moreover, the instantaneous motion is
related, by the principle of virtual work, to the forces and moments (collectively referred to as
wrenches) that the end-effector may exert. Since the instantaneous motion can be studied by
the simple tools of linear algebra, there is a long-lasting aspiration of engineers to describe (and
design) the finite end-effector motion through the instantaneous one. However, any lineariza-
tion is necessarily local and configuration dependent. The extrapolation from local to general,
from infinitesimal to finite, is a challenging task, which we wish to address in this contribution.
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From an engineering perspective, the study of motion manifolds can arguably be organized
into the following three stages. First, the properties characterizing the motion manifolds in
consideration are identified from task-specific functional requirements. Second, the collection
of all motion manifolds that share the established properties are classified. Third, mechanisms
that are able to generate the desired motion manifolds are synthesized. We shall henceforth
speak of the characterization, classification and synthesis stage. Depending on the scope
of characterization and classification, the task of mechanism synthesis may exhibit varying
difficulties.

Mechanisms in practice often share the following fundamental property: the instantaneous
twist subspace generated by the end-effector at a generic pose is a rigidly-displaced copy of the
one generated at the home configuration, i.e., the tangent spaces at all points of its motion
manifold are mutually congruent. A manifold of this kind, hereafter denoted as persistent, can
be seen as the envelope of a persistent twist subspace rigidly moving in SE(3). In this paper, we
shall summarize, in a chronological order, three important classes of persistent manifolds that
have so far been discovered and systematically investigated in the literature, namely the Lie
subgroups [1], the persistent product-of-exponential (POE) manifolds [2], and the symmetric
subspaces [3]. In each case, the persistence property arises from a distinct manifold structure
that dictates the ensuing classification and synthesis problem. In this regard, we attempt to
offer a guideline to classification and mechanism synthesis of persistent manifolds for a general
audience.

The paper is organized as follows. In Sect. 2, we give a brief review of the Lie group prop-
erties of the Euclidean group SE(3). Then we introduce in Sect. 3 the first class of persistent
manifolds, namely the Lie subgroups of SE(3). In Sect. 4, we introduce, as a generalization to
Lie subgroups, the persistent POE manifolds. Finally, in Sect. 5, we introduce the symmetric
subspaces of SE(3). The paper concludes with a summary of the three classes of persistent
motion manifolds.

2. Review of SE(3)

2.1. Lie group of rigid-body displacements SE(3)

As illustrated in Fig. 1(a), given a coordinate system a attached to the inertial or reference
frame, and another coordinate system b attached to a freely movable rigid body, the rigid-body
or Euclidean transformation gab of b with respect to a can be described by a 4×4 homogeneous
matrix gab:

gab ,

(
Rab pab
0T 1

)
∈ R4×4 (1)

where Rab is a 3 × 3 proper orthonormal matrix and pab is a 3-D translation vector. For
subsequent exposition, the subscript ab will simply be dropped. The set of all rigid-body
transformations forms a 6-D Lie group called the special Euclidean group SE(3):

SE(3) ,

{
g =

(
R p
0T 1

)
∈ R4×4

∣∣∣∣ R ∈ SO(3),p ∈ R3

}
(2)

where SO(3) is the 3-D special orthogonal group. g ∈ SE(3) transforms a point q0 ∈ R3 via
its homogeneous coordinate (qT0 , 1)T :

g

(
q0

1

)
=

(
R p
0T 1

)(
q0

1

)
=

(
Rq0 + p

1

)
(3)

Given g0 ∈ SE(3), we may define left and right translation on SE(3), denoted Lg0 and Rg0

respectively:
Lg0(g) , g0g, Rg0(g) , gg0, ∀g ∈ SE(3) (4)
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(a) (b)

Figure 1: (a) Rigid-body transformation gab of body frame b with respect to reference frame a; (b) Conjugation
of a rigid motion g due to change of reference frame and body frame by g0.

They correspond to a change of reference and body coordinate frame, respectively (Fig. 1).
Similarly, we define the conjugation map Cg0 associated to a given g0 ∈ SE(3) as:

Cg0(g) , g0gg
−1
0 = Lg0 ◦Rg−1

0
(g), ∀g ∈ SE(3) (5)

We define a rigid-body motion (with respect to an unspoken reference frame) to be a trajec-
tory g(t) ∈ SE(3), t ∈ R, such that g(0) = I, i.e., the body frame coincides with the reference
frame at the initial configuration. In general, we can nullify the initial coordinate transfor-
mation g(0) 6= I by considering the right-translated trajectory g(t)g(0)−1. As illustrated in
Fig. 1(b), a motion g(t) as observed in a reference frame a′ becomes Cg0(g(t)) when observed
in a reference frame a with gaa′ = g0; Cg0(g(t)) may as well be considered a rigidly displaced
version of g(t) observed from the same reference frame.

2.2. Lie algebra se(3) of SE(3)

The Lie algebra of SE(3), denoted se(3), is its tangent space at the identity element I:

se(3) , TI(SE(3)) =

{
ξ ,

(
ω̂ v
0T 0

)
∈ R4×4

∣∣∣∣ ω,v ∈ R3

}
(6)

where ω̂ is a 3×3 skew-symmetric matrix such that ω̂ω′ = ω×ω′,∀ω′ ∈ R3. se(3) is equipped
with the following skew-symmetric bilinear Lie bracket operator:

[ξ1, ξ2] , ξ1ξ2 − ξ2ξ1, ∀ξ1, ξ2 ∈ se(3) (7)

For any g0 ∈ SE(3), we define an Adjoint transformation Adg0 to be the following linear
transformation on se(3):

Adg0(ξ) , g0ξg
−1
0 = Lg0 ◦Rg−1

0
(ξ), ∀ξ ∈ se(3) (8)

Adg0(ξ) corresponds to the observation of a twist ξ under changing reference frame or the
observation of a displaced copy of ξ from the same frame. The tangent space of SE(3) at a
generic point g is related to se(3) via either left or right translation:

Tg(SE(3)) = gse(3) = se(3)g (9)

which leads to the following congruence-invariance property of se(3):

Adg(se(3)) = gse(3)g−1 = se(3), ∀g ∈ SE(3) (10)
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(a) (b) (c)

Figure 2: (a) A twist ξ as a tangent vector of a motion g(t) at the identity I; (b) the exponential map; (c)
the exponential map maps an open neighborhood U0 of 0 ∈ se(3) smoothly onto an open neighborhood VI of
I ∈ SE(3).

Physically, ξ ∈ se(3) corresponds to the instantaneous velocity ġ of a rigid motion g(t), t ∈
R:

ξ = ġ(t)g(t)−1 (11)

and it is often called a twist (see Fig. 2(a)). The velocity q̇(t) of a point q(t) on the moving
body is given by: (

q(t)
1

)
= g(t)

(
q0

1

)
⇒
(
q̇(t)

0

)
= ġ(t)

(
q0

1

)
= ġ(t)g(t)−1g(t)

(
q0

1

)
= ξ

(
q(t)

1

) (12)

where q0 = q(0). A vector subspace T of se(3) is often called a twist subspace.
se(3) can be integrated back into SE(3) via the exponential map exp : se(3) → SE(3) (see

Fig. 2(b)):

exp(ξ) , eξ =
∞∑
k=0

ξk

k!
=



(
eω̂ (I− eω̂) 1

‖ω‖2 ω̂v + ωTv
‖ω‖2ω

0T 1

)
‖ω‖ 6= 0(

I3×3 v

0T 1

)
‖ω‖ = 0

(13)

where
eω̂ = I3×3 + sin ‖ω‖

‖ω‖ ω̂ + 1−cos ‖ω‖
‖ω‖2 ω̂2, ‖ω‖ 6= 0 (14)

The exponential map maps an open neighborhood U0 of the zero matrix 0 ∈ se(3) onto an
open neighborhood VI of I ∈ SE(3) (see Fig. 2(c)). Given a basis (ξ1, . . . , ξ6) of se(3), the
exponential map leads to the following two parameterizations of VI [4]:

exp1 : (θ1, . . . , θ6) 7→ exp(θ1ξ1 + · · ·+ θ6ξ6) (15)

exp2 : (θ1, . . . , θ6) 7→ exp(θ1ξ1) · · · exp(θ6ξ6) (16)

The coordinates θ , (θ1, . . . , θ6) in Eq. (15) and Eq. (16) are referred to as canonical coordinates
of the first and second kind respectively [4]. Eq. (16) is often referred to as the product-of-
exponential (POE) formula [5].

For any ξ ∈ se(3), we define an adjoint map adξ to be the following linear map on se(3):

adξ(ξ
′) ,

d

dt
(Adetξ(ξ′))

∣∣∣∣
t=0

= [ξ, ξ′], ∀ξ′ ∈ se(3) (17)

which gives the rate of the Adjoint transformation of ξ′ along ξ.
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(a) (b)

Figure 3: (a) A wrench ζ acting on a body moving with twist ξ; (b) geometry of the cylindroid.

2.3. Screw coordinates of twists and wrenches
In mechanism analysis and synthesis, a twist ξ ∈ se(3) as shown in Eq. (6) is often identified

with a pair of 3-D vectors (ω,v) ∈ R3 × R3, and interpreted as the instantaneous velocity of
a twisting or screwing motion about an axis ` with pitch p and magnitude ω. The Plücker-
coordinate representation of ξ is accordingly:

ξ =

(
ω
v

)
= ωS , ω

(
e

q× e+ pe

)
⇔

{
ω = ‖ω‖, p = ωTv

‖ω‖2

e = ω
‖ω‖ , q = 1

‖ω‖2 ω̂v
(18)

where ω is the angular velocity about `, q ∈ R3 is a point on `, and v is the linear velocity of
a reference point. A twist of the form (0,v) is said to have an infinite-pitch; it has a direction,
but not an axis. An n-system of screws is a projective space underlying a twist subspace of
dimension n. When there is no danger of ambiguity, the term can refer to the twist subspace
itself. A screw S may also be used to characterize a generalized force called wrench and denoted
ζ, which is simply a vector in the dual space se(3)∗ of se(3):

ζ =

(
f
m

)
= fS , f

(
e′

q× e′ + pe′

)
(19)

where f and m are respectively its force and moment vector along the screw axis of S. Unlike
se(3), se(3)∗ is not equipped with a Lie algebra structure. A vector subspace of se(3)∗ is often
called a wrench subspace.

The power developed by a wrench ζ acting on a body moving with twist ξ is given by the
reciprocal product between ζ and ξ:

ξ � ζ , ωfS� S′ , vT f + ωTm = ωf((p+ p′) cos θ − d sin θ) (20)

where θ is the signed angle formed by e and e′, and d is the signed distance between the two
screw axes (see Fig. 3(a)). Two screws are said to be reciprocal if their reciprocal product is
zero. Given a twist subspace denoted T, we define its reciprocal wrench subspace denoted W
to be:

W , T⊥ = {ζ ∈ se(3)∗ | ξ � ζ = 0, ∀ξ ∈ T} (21)

2.4. Screw systems
A classification, up to an Adjoint transformation, of all screw systems of se(3) was first

obtained by Hunt [6] (and later refined in [7, 8]). We first introduce the following basis twists:

rx ,

(
x̂ 0
0T 0

)
4×4

,

tx ,

(
0̂ x
0T 0

)
4×4

,

ry ,

(
ŷ 0
0T 0

)
4×4

,

ty ,

(
0̂ y
0T 0

)
4×4

,

rz ,

(
ẑ 0
0T 0

)
4×4

,

tz ,

(
0̂ z
0T 0

)
4×4

(22)
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where x,y, z are a canonical basis of R3. rx, ry, rz represent unit rotation twists along x, y and
z axes; tx, ty, tz represent unit translation twists along x, y and z directions. We also define
p-pitch twists along the coordinate axes:

ip , rx + ptx, jp , ry + pty, kp , rz + ptz (23)

A general one-system, denoted S1,g, is spanned by a single screw S ∈ se(3), denoted S1,g =
{S}sp. When S has infinite pitch, we have the first special one-system S1,1.

A general two-system, denoted S2,g, has its screw axes lying on a cylindroid, thus all
intersecting a single axis at right-angle [6]. The intersection point between the screw and the
cylindroid axis, and the screw pitch, are prescribed by the circle diagram, from which two
screws that perpendicularly intersect at the mid-way of the cylindroid are shown to have the
maximal and minimal pitch, denoted α and β respectively (see Fig. 3(b)). By a suitable Adjoint
transformation, the basis screws may be brought to align with the x and y-axis respectively:

S2,g , {iα, jβ}sp (24)

For any p ∈ (β, α), there exists exactly two screws in the system having pitch value p. Aside
from a general two-system, Hunt summarized a total of five special two-systems [6], which we
denote by S2,i, i = 1, . . . , 5, and list in Tab. 1.

Similarly, a general three-system, denoted S3,g is spanned by three mutually orthogonal and
intersecting basis screws with pitch value α > β > γ. By a suitable Adjoint transformation,
the basis screws may be brought to align with the x, y, and z axes, respectively:

S3,g , {iα, jβ,kγ}sp (25)

For any p ∈ (γ, β)∪ (β, α), there exists a one-parameter family of screws in the system having
pitch value p; this family forms one regulus on a hyperboloid of one sheet. There is exactly
one screw, namely the basis screw iα (or kγ), that has a pitch value α (or γ). The screws with
pitch value β lie on a degenerate regulus on two planes. Aside from a general two-system, Hunt
summarized a total of ten special three-systems [6], S3,i, i = 1, . . . , 10; see Tab. 1.

The geometry of four-systems and five-systems are determined, respectively, by their re-
ciprocal two-systems and one-systems; their classifications follow that of two-systems and one-
systems [6]. There are a total of six classes of four-systems, namely the general four-system S4,g

and the five special four-systems S4,i, i = 1, . . . , 5, and two classes of five-systems; see Tab. 1.

3. Lie subgroups of SE(3)

A manifold G of SE(3) is called a Lie subgroup if it is closed under group multiplication
and inverse, i.e., for any h,h′ ∈ G,

hh′ ∈ G, h−1 ∈ G (26)

The Lie algebra g , TI(G) of G becomes a twist subspace in se(3) that is closed under the Lie
bracket:

[ξ1, ξ2] ∈ g, ∀ξ1, ξ2 ∈ g (27)

and is called a Lie subalgebra of se(3).
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Table 1: A complete classification of screw systems of se(3).

dim screw system reciprocal sys.

1
S1,g , {iα}sp S5,g

S1,1 , {tx}sp S5,1

2

S2,g , {iα, jβ}sp S4,g

S2,1 , {iα, jα}sp S4,1

S2,2 , {iα, ty}sp S4,2

S2,3 , {tx, ty}sp S4,3

S2,4 , {iα, tx cos ζ + ty sin ζ}sp, ζ ∈ (0, π/2) S4,4

S2,5 , {rx, tx}sp S4,5

3

S3,g , {iα, jβ ,kγ}sp S3,g

S3,1 , {iα, jα,kγ}sp S3,1

S3,2 , {iα, jα,kα}sp S3,2

S3,3 , {iα, jβ , tz}sp S3,3

S3,4 , {iα, jα, tz}sp S3,4

S3,5 , {iα, ty, tz}sp S3,5

S3,6 , {tx, ty, tz}sp S3,6

S3,7 , {iα, jβ , tx cos ζ + tz sin ζ}sp, ζ ∈ (0, π
2
) S3,7

S3,8 , {rx, tx, jβ}sp S3,8

S3,9 , {tx, ty, iα cos ζ + kα sin ζ}sp, ζ ∈ (0, π
2
) S3,9

S3,10 , {rx, tx, ty}sp S3,10

4

S4,g , {iα, jβ , rz, tz}sp S2,g

S4,1 , {iα, jα, rz, tz}sp S2,1

S4,2 , {iα, ty, rz, tz}sp S2,2

S4,3 , {tx, ty, rz, tz}sp S2,3

S4,4 , {iα, tx cos ζ + ty sin ζ, rz, tz}sp, ζ ∈ (0, π
2
) S2,4

S4,5 , {rx, tx, rz, tz}sp S2,5

5
S5,g , {iα, ry, ty, rz, tz}sp S1,g

S5,1 , {tx, ry, ty, rz, tz}sp S1,1

(a) (b) (c)

Figure 4: Illustration of 1-D Lie subgroup generators: (a) the R joint; (b) the P joint; (c) the H joint.

3.1. Classification of Lie subgroups of SE(3)

Lie’s third theorem [4] states that there is a one-to-one correspondence, via the exponential
map, between Lie subalgebras g of se(3) (up to an Adjoint transformation) and connected Lie
subgroups G of SE(3) (up to conjugation). Moreover, each Lie subgroup G shares the same
Lie group and Lie algebra properties as those of SE(3). The systematic classification of a total
of ten classes of connected Lie subgroups of SE(3) was (probably) first studied in [9] based
on a classification of Lie subalgebras of se(3); see also [1]. The complete classification of Lie
subgroups of SE(3) is now presented for quick reference.

1-D Lie subgroups of SE(3) are of the form exp({ξ}sp) for some twist ξ ∈ se(3). After
bringing ξ to lie on the z-axis by a suitable Adjoint transformation, we have the following
three conjugacy classes of 1-D Lie subgroups:

i) R , exp({rz}sp), the 1-D rotation group;

ii) P , exp({tz}sp), the 1-D translation group;

7



iii) H p , exp({kp}sp), the 1-D helical group with pitch p.

Here, with a slight abuse of notation, we denote these 1-D Lie subgroups by their correspond-
ing lower kinematic pair, namely, the revolute (R ), prismatic (P ) and helical (H ) joints,
respectively (Fig. 4).

Following the Lie bracket relationships of the basis twists of se(3):

[ty,tz]=0, [tx,ty]=0, [tz,tx]=0, [rz,rx]=ry, [rx,ry]=rz,

[ry,rz]=rx, [ry,tx]=−tz, [rx,tx]=0, [rz,tx]=−ty, [rx,ty]=tz,

[ry,ty]=0, [rz,ty]=−tx, [rx,tz]=−ty, [ry,tz]=tx, [rz,tz]=0

(28)

and the fact that Lie bracket is a skew-symmetric bi-linear operator, one can directly verify
that there are altogether two conjugacy classes of 2-D Lie subalgebras of se(3), i.e., 2-D vector
subspaces that are closed under the Lie bracket. Consequently, there are two classes of 2-D Lie
subgroups of SE(3):

i) T2 , exp({tx, ty}sp), the planar translation group.

ii) C , exp({rz, tz}sp), the cylindrical group, the motion manifold of a cylindrical joint.

It is also clear that exp({tx, ty}sp) contains any 1-D translation group with axis lying in the
xy-plane, and that exp({rz, tz}sp) contains any 1-D subgroup with axis being the z-axis (Fig. 5
(a) and (b)).

Following a similar approach, we can verify that there are four classes of 3-D Lie subgroups
of SE(3) (illustrated in Fig. 5 (c) to (f)):

i) T3 , exp({tx, ty, tz}sp), the spatial translation algebra, which is the motion manifold of a
3-DOF gantry robot and the 3-DOF DELTA parallel robot;

ii) E , exp({rz, tx, ty}sp), the planar Euclidean group;

iii) Yp , exp({kp, tx, ty}sp), the planar helical group with characteristic pitch p;

iv) S , exp({rx, ry, rz}sp), the spatial rotation group, which is the motion manifold of a
spherical joint, or a satellite in space;

and there is only one class of 4-D Lie subgroup of SE(3), namely:

x) X , exp({rz, tx, ty, tz}sp)

which is often referred to as the Schönflies group, and is the motion manifold of a 4-DOF
pick-and-place or palletizer robot.

Finally, there is no 5-D Lie subalgebras of se(3) and consequently no 5-D Lie subgroups of
SE(3). A total of ten classes of connected Lie subgroups of SE(3) and their corresponding Lie
subalgebras are listed in Tab. 2.

3.2. Mechanism synthesis for Lie subgroups of SE(3)

The screw representation of twists leads to the following mechanical interpretation of the
POE formula in Eq. (16) for SE(3). The canonical coordinates θ = (θ1, . . . , θ6) in Eq. (16)
represent the joint variables of a kinematic chain or serial mechanism with six 1-DOF joints
with joint screw axes Si, i = 1, . . . , 6 (denoted (S1, . . . ,S6)); the POE formula prescribes the
generation of SE(3) by the end-effector of the serial mechanism (S1, . . . ,S6).

The above elaboration immediately leads to a synthesis procedure for serial mechanisms
that generate a Lie subgroup G of SE(3). Given the desired k-D Lie subgroup G ⊂ SE(3),

8



(a) (b) (c)

(d) (e) (f)

Figure 5: Traces of a rigid body undergoing motions of the: (a) cylindrical group C (z) = exp {tz, rz}sp; (b)
planar translation group T2 = exp({tx, ty}sp). (c) spatial translation group T3 = exp {tx, ty, tz}sp; (d) planar
Euclidean group E (z) = exp({tx, ty, rz}sp);(e) planar helical group Y = exp({tx, ty,kp}sp); (f) spatial rotation
group S = exp({rx, ry, rz}sp).

Table 2: A complete list of connected Lie subgroups of SE(3).

dim Lie subalgebra
screw
system Lie subgroup

conjugate

form
characteristic

feature

1
rp , {kp}sp S1,g Hp , exp(rp) Hp(`) axis `, pitch p

r , {rz}sp S1,g R , exp(r) R (`) axis `

t1 , {tz}sp S1,1 P , exp(t1) P (v) direction v

2
t2 , {tx, ty}sp S2,3 T2 , exp(t2) T2(n) normal n

c , {rz, tz}sp S2,5 C , exp(c) C (`) axis `

3

s , {rx, ry, rz}sp S3,2 S , exp(s) S (p) center p

t3 , {tx, ty, tz}sp S3,6 T3 , exp(t3) T3 —

e , {tx, ty, rz}sp S3,5 E , exp(e) E (n) normal n,

yp , {tx, ty,kp}sp S3,5 Yp , exp(yp) Yp(n) normal n, pitch p

4 x , {tx, ty, tz, rz}sp S4,3 X , exp(x) X (v) direction v

we assign to its k-D Lie algebra g ⊂ se(3) a basis {Si}ki=1. The resulting serial mechanism
(S1, . . . ,Sk) generates G (locally) via the local diffeomorphism (Eq. (16) adapted to G):

exp2 : (θ1, . . . , θk) ∈ Rk 7→ eθ1S1 · · · eθkSk ∈ G (29)

More generally, given a redundant generator {Si}ri=1 , r > k of g,

exp2 : (θ1, . . . , θr) ∈ Rr 7→ eθ1S1 · · · eθrSr ∈ G (30)

is a local submersion into G. By implicit function theorem [10], exp−12 (I), namely the config-
uration space of a closed-loop linkage formed by connecting the base and the end-effector of
(S1, . . . ,Sr), is a manifold of Rr with dimension r − k. This serves as a generalization of the
Grübler mobility formula; see the trivial linkages in [1].

In reference to Eq. (29), a Lie subgroup generator is exactly the same as a Lie subalgebra
generator. Indeed, if we define

S′j , Adexp(θ1S1)··· exp(θj−1Sj−1)(Sj), j = 2, . . . , k (31)

9



(a) (b) (c)

Figure 6: Several instances of serial mechanical generators for X . (a) An H H H H chain; (b) An R R R P
chain; (c) A P R R P chain.

for any non-singular configuration (θ1, . . . , θk) of the serial mechanism (S1, . . . ,Sk), then

{S1,S
′
2, . . . ,S

′
k}sp = {S1, . . . ,Sk}sp = g (32)

thanks to the invariance property Adg(g) = g,∀g ∈ G, with se(3) and SE(3) in Eq. (10)
replaced by g and G, respectively. Conversely, if Eq. (10) is satisfied for any θ = (θ1, . . . , θk)
in a neighborhood of 0 ∈ Rk, we have:

[Si,Sj] =
d

dθi
(AdeθiSi (Sj))

∣∣∣∣
θi=0

∈ g (33)

where we assume i < j and that θl = 0, l = 2, . . . , i − 1, i + 1, . . . , j − 1 in Eq. (31). This
shows that g and G are necessarily a Lie subalgebra and its corresponding Lie subgroup. Lie
subalgebra generators were known to Hunt [6] as kinematic chains that admit full-cycle mobility.
Hervé was probably the first to point out their equivalence to Lie subgroup generators [11].
Due to Eq. (32), Lie subalgebra generators are also said to generate invariant screw systems
[2], since the end-effector twist space (and thus the corresponding screw system) does not vary
as the chain moves.

Example 1 (Serial mechanism for the Schönflies group X ). Recall that the Schönflies group X
is a 4-D Lie subgroup of SE(3), with Lie algebra x = {tx, ty, tz, rz}sp. To synthesize a kinematic
chain for X , we specify a basis (S1, . . . ,S4) of x as the joint screws:(

S1 S2 S3 S4

)
=
(
tx ty tz rz

)
·A (34)

where A is a non-singular 4× 4 co-efficient matrix. It can be verified that we need at least one
screw Si with non-infinite pitch parallel to the z-axis. Several possible choices are illustrated
in Fig. 6. In Fig. 6(a), the four screws S1, . . . ,S4 are all parallel to the z-axis, with finite pitch
pa, pb, pc and pd not all equal to the same value; the four screw axes should not lie in a common
plane. In Fig. 6(b), the basis comprises three zero-pitch screws S1,S2,S3, and one infinite-
pitch screw S4 parallel to the z-axis; the three zero-pitch screws should not lie in a common
plane. In Fig. 6(c), the basis comprises an infinite-pitch screw S1 lying in the xy-plane, two
zero-pitch screws S2 and S3, and one infinite-pitch screw S4 parallel to the z-axis; S1 should
not be perpendicular to the plane defined by the axes of S2 and S3. The corresponding serial
mechanisms are illustrated in Fig. 6. ♦

10



(a) (b)

Figure 7: (a) A redundant H H H H H chain generating the Schönflies group X ; (b) A 1-DOF linkage resulting
from closing the loop of the H H H H H chain.

Example 2 (Redundant chain for Schönflies motion). Continuing on Example 1, consider a
chain (S1, . . . ,S5) with Si ∈ x, i = 1, . . . , 5 and satisfying

{S1, . . . ,S5}sp = x (35)

One such kinematic chain is shown in Fig. 7(a), where Si, i = 1, . . . , 5 are all parallel to the
z-axis and have distinct pitches p1, . . . , p5. In light of the discussion after Eq. (30), (S1, . . . ,S5)
is a 5-DOF kinematic chain that redundantly generates the 4-D Schönflies group X ; by locking
its end-effector to the base, as shown in Fig. 7(b), we obtain a movable closed chain with
mobility 5− 4 = 1 [12]. ♦

Example 3 (Parallel mechanism for the spatial translation group T3). Once we have synthe-
sized a Schönflies chain (S1,S2,S3,S4) as in the previous case, we can use it to synthesize a
spatial translational parallel mechanism with motion manifold T3 as follows [1]. We first make
l (l ≥ 3) rigidly displaced copies of (S1,S2,S3,S4)

M i , (Si1, . . . ,Si4) = (Adgi(S1), . . . ,Adgi(S4)), i = 1, . . . , l (36)

for some gi ∈ SE(3), i = 1, . . . , l. (Si1, . . . ,Si4) is then a chain of the conjugate subgroup
X (vi), i = 1, . . . , l. Finally, we connect the l chains to the same base and end-effector. By
realizing that the intersection of a collection of subgroups of SE(3) is another subgroup, and
the fact that T3 is a subgroup of X (vi) for any vi ∈ R3, we see that:

l⋂
i=1

X (vi) = T3 (37)

if v1, . . . ,vl span R3. This suggests that we can construct a T3 parallel mechanism from a
collection of (at least three) Schönflies chains that generate X (vi), i = 1, . . . , l. A T3 parallel
mechanism with three chains is illustrated in Fig. 8. For future reference, we denote the
aforementioned parallel mechanism by M 1‖ · · · ‖M l. Hervé was the first to use the group
intersection argument to generalize the famous DELTA robot [13] to a class of T3 parallel
robots [14]. ♦

Example 4 (Wrench analysis of T3 parallel mechanism). Continuing on Example 3, a dual
interpretation of fundamental engineering value emerges by looking at wrench spaces. Denote
the twist subspaces of all chains by Ti and their corresponding reciprocal wrench subspaces by

11



Figure 8: Illustration of a T3 parallel mechanism with l X (vi) chains (v1, v2 and v3 must span R3, namely
they must not be perpendicular to the same direction).

Wi for i = 1, . . . , l. If all Ti’s are invariant, so are their wrench subspaces Wi’s. This makes
it possible to conceive the constraints that generate the desired end-effector motion in a single
configuration, with the guarantee that they hold for finite motions away from it.

In the above case, we see that each chain M i has an invariant wrench subspace spanned by
two infinite-pitch basis wrenches ζi1, ζi2 that are perpendicular to the unit direction vector vi.
It is not difficult to see that the parallel mechanism M 1‖ · · · ‖M l is a T3 generator if the span
of all chain basis wrenches equals the wrench subspace of T3:

l∑
i=1

Wi =
l∑

i=1

T⊥i = {ζ11, ζ12, . . . , ζl1, ζl2}sp

=

{(
0
x

)
,

(
0
y

)
,

(
0
z

)}
sp

= (t3)
⊥

(38)

which is consistent with Hervé’s group intersection argument. As we shall see later, the dual
interpretation can be applied to more general chain types. ♦

4. Persistent POE manifolds of SE(3)

Though mechanical generators of Lie subgroups have a fundamental importance, the world
of mechanical devices goes beyond them. There are plenty of ingenious mechanisms with very
useful properties that generate persistent manifolds that are not subgroups. In this cases, the
“enveloping” twist subspace of the manifold is not invariant, but does move in space. Persistent
manifolds that are not subgroups have not been systematically studied until recently, when
persistent Product-of-Exponential (POE) manifolds and symmetric subspaces of SE(3) have
been revealed and investigated.

4.1. POE manifolds of SE(3)

Recall the POE formula for SE(3):

exp2 : (θ1, . . . , θ6) ∈ W0 ⊂ R6 7→ eθ1S1 · · · eθ6S6 ∈ VI ⊂ SE(3) (39)
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which is a local diffeomorphism of a neighborhood W0 of 0 ∈ R6 onto a neighborhood VI of
I ∈ SE(3). If one or more joint variables, say θm+1, . . . , θ6, are constantly set to zero, the image
of the map:

exp2 : (θ1, . . . , θm, 0, . . . , 0) 7→ eθ1S1 · · · eθmSm (40)

is in general a manifold of SE(3), which we shall refer to as a POE manifold, and denote
by
∏m

i=1 exp({Si}sp) or exp({S1}sp) · · · exp({Sm}sp). POE manifolds naturally describe the
motion of all serial chains. Indeed, any serial chain can be considered as the serial connection
of 1-D Lie subgroup generators, so that the resulting end-effector motion is the product of the
corresponding 1-D Lie subgroups (each one of which is the exponential of a 1-D Lie subalgebra).
In reference to the canonical parameterization Eq. (16) for Lie subgroups, POE manifolds
include Lie subgroups as special cases.

4.2. Persistence of POE manifolds

If the twist space T(g) of a manifold M at a generic point g ∈ M is a congruent copy
of its twist subspace T(I) at the identity I ∈ M, M is referred to as a persistent manifold :
the shape of its twist subspace persists through a change of configuration. A POE manifold∏m

i=1 exp({Si}sp) is persistent if for any generic configuration θ = (θ1, . . . , θm):

{S1,S
′
2, . . . ,S

′
m}sp = Adg(θ)({S1, . . . ,Sm}sp) (41)

for some g(θ) ∈ SE(3) parameterized by θ, where S′j, j = 2, . . . ,m, is defined in Eq. (31). The
invariance property in Eq. (32) is a particular case of the congruence-invariance property in
Eq. (41), occurring when g(θ) = I for any configuration θ.

Since Adexp(θ1S1)(S1) = S1, we have:

{S1,Adexp(θ1S1)(S2), . . . }sp = {Adexp(θ1S1)(S1),Adexp(θ1S1)(S2), . . . }sp
= Adexp(θ1S1)({S1,S2, . . . }sp)

(42)

which turns Eq. (41) into:

{S1,S2,S
′
3, . . . ,S

′
m}sp = Adg′(θ)({S1, . . . ,Sm}sp) (43)

where g′(θ) = exp(−θ1S1)g(θ). We may therefore, without a loss of generality, set θ1 = 0 in
Eq. (41). From a similar argument, we may also set θm = 0 in Eq. (41).

In general, a POE manifold is not persistent, unless its kinematic generator meets special
requirements. It is worth pointing out that the order by which S1, . . . ,Sm are concatenated is
important: for example, even if the manifold exp({S1}sp) exp({S2}sp) exp({S3}sp) is persistent,
the manifold exp({S1}sp) exp({S3}sp) exp({S2}sp) may not be so.

A guaranteed source of persistent POE manifolds comes in the form of a point-wise product
of two Lie subgroups (or a binary product) G1 and G2 of SE(3), namely the set G1G2 defined
by:

G1G2 , {g1g2 ∈ SE(3) | g1 ∈ G1,g2 ∈ G2} (44)

which is a manifold of dimension dim G1 + dim G2 − dim(G1 ∩ G2) [1]. We denote the Lie
algebra of G1 and G2 by g1 and g2, respectively. To see that the binary product G1G2 is indeed
a persistent manifold, note that for any motion h1(t)h2(t) ∈ G1G2, where h1 ∈ G1,h2 ∈ G2,
any twist ξ in the twist space T(h1h2) is given by:

ξ=
d(h1h2)

dt
(h1h2)

−1=ḣ1h2h
−1
2 h−11 +h1ḣ2h

−1
2 h−11 =ḣ1h

−1
1 +Adh1(ḣ2h

−1
2 )∈g1+Adh1(g2) (45)
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(a) (b) (c)

Figure 9: Serial mechanism of a binary product E (u)E (v). (a) A redundant serial generator; (b) Redundant
subgroup P (u× v); (c) A non-redundant serial generator.

which, together with the fact that Adh1(g1) = g1,∀h1 ∈ G1, leads to the following congruence-
invariance property:

T(h1h2) = Adh1(g1 + g2) = Adh1(T(I)), ∀h1h2 ∈ G1G2 (46)

By concatenating a G1 chain with another G2 chain, we have thus created a persistent G1G2

chain.

Example 5 (Serial mechanism of E (u)E (v)). Consider the binary product formed by the
product of two planar Euclidean groups G1 = E (u) and G2 = E (v). We may construct
a kinematic chain for E (u)E (v) by first constructing an R R R chain for E (u) and E (v)
respectively, say:

ME (u) = (S1,S2,S3), ME (v) = (S4,S5,S6) (47)

with

{S1,S2,S3}sp=e(u)=Adg(z,u)({tx,ty,rz}sp), {S4,S5,S6}sp=e(v)=Adg(z,v)({tx,ty,rz}sp) (48)

where g(z,u),g(z,v) ∈ SE(3) denote transformations that take z to u and v, respectively. The
concatenated 6-R chain (S1, . . . ,S6) is then a serial mechanism for E (u)E (v), as illustrated in
Fig. 9(a). This observation suggests that E (u)E (v) can be expressed into the following POE
form:

E (u)E (v) =
6∏
i=1

exp({Si}sp) (49)

Since E (u) and E (v) have a non-trivial intersection, namely the 1-D translation group
P (u×v) (see Fig. 9(b)), (S1, . . . ,S6) is redundant by a degree of one. A non-redundant chain
for generating E (u)E (v), say (S1, . . . ,S5), is formed by removing a redundant screw S6 from
ME (v) while keeping the remaining freedoms intact:{

S4,S5,

(
0

u× v

)}
sp

= e(v) (50)

We arrive at a non-redundant POE representation for E (u)E (v):

E (u)E (v) =
5∏
i=1

exp({Si}sp) (51)

and its corresponding 5-R chain is shown in Fig. 9(c).
Notice that E (u)E (v) contains the subgroup T3 of spatial translations, as well as all sub-

groups of SE(3) that comprise rotational or helicoidal motions around lines that are perpen-
dicular to u× v, though no spherical subgroups. ♦
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(a) (b)

Figure 10: (a) A 1-DOF linkage resulting from closing the loop of a 6-DOF redundant E (u)E (v) chain; (b) A
purely translational parallel mechanism comprising 3 or more EE chains.

Notice that, similarly to Lie subalgebra generators, if a k-D persistent POE manifold is
generated by a redundant chain {Si}ri=1, r > k, as in Fig. 9, the degree of redundancy r− k is
constant (throughout the motion of the chain and out of singularities, vectors S1, . . . ,Sr remain
linearly dependent and form a twist space of dimension k). Accordingly, the configuration
space of a closed-loop linkage formed by connecting the base and end-effector of (S1, . . . ,Sr) is
a manifold of Rr with dimension r − k. This serves as a further generalization of the Grübler
mobility formula; see the ordinary linkages in [2].

Example 6 (Sarrus mechanism). Continuing on Example 5, consider closing the loop of the
redundant E (u)E (v) chain (S1, . . . ,S6) shown in Fig. 9(a). Since E (u)E (v) is a 5-D persistent
manifold, the closed chain, as shown in Fig. 10(a), becomes a movable mechanism with mobility
6− 5 = 1, following an argument similar to that in Example 2. ♦

4.3. Classification of persistent POE manifolds of SE(3)

A systematic classification of persistent POE manifolds resulting from binary products can
be accomplished based on classification of Lie subgroups of SE(3). The results were known to
Hervé and researchers in the mechanism synthesis field [15, 16]; a relatively recent summary can
be found in [16]. Carricato et al. [17, 2] were the first to recognize the persistence of tangent
spaces of products of two Lie subgroups. Moreover, they investigated the persistence of general
k-D POE manifolds by resorting to screw-system geometry, by conducting systematic studies
that revealed a large number of persistent POE manifolds [18, 19, 20, 2, 21].

While all POE manifolds of dimension one, two and six are trivially persistent, the identi-
fication and classification of persistent POE manifolds of dimension three, four and five is not
trivial. The exhaustive classification of persistent POE manifolds of dimension three [18] and
four [20, 19] was recently completed, whereas the classification of 5-D persistent POE manifolds
is an open issue (though a number of relevant examples, such as Example 5, are available in
the literature [2]).

Since a 2-D POE manifold is a binary product of two 1-D Lie subgroups, any basis (S1,S2)
of any type of two-systems is automatically congruence-invariant, and thus the corresponding
POE manifold is persistent.
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Figure 11: Persistent S3,1 system (H R H type).

4.4. 3-D persistent POE manifolds

3-D persistent POE manifolds were systematically identified in [18], with an addendum in
[22].

– S3,2, S3,5 and S3,6 correspond, respectively, to the spherical algebra, the planar helical algebra
and the spatial translation algebra; any basis (S1,S2,S3) of these two three-systems will
automatically form a persistent generator. The corresponding persistent POE manifolds are
equivalent to the spherical group, the planar helical group and the spatial translation group,
respectively.

– Among the three-systems that include no infinite-pitch screws and are not Lie subalgebras,
namely S3,g and S3,1, only S3,1 = {iα, jα, rz}sp admits a persistent generator (S1,S2,S3),
which via a suitable Adjoint transformation and change of configuration, can be brought
into the following form (Fig. 11):

S1 = Adexp(ζ21rx+d21tx)(kp1), S2 = rz, S3 = Adexp(φ2S2) exp(ζ23rx+d23tx)(kp3)

(pi = α sin2 ζ2i, d2i = α sin ζ2i cos ζ2i, i = 1, 3)
(52)

where φ2 must not be a multiple of π for S1,S2 and S3 to be linearly independent. The
corresponding persistent manifold exp({S1}sp) exp({S2}sp) exp({S3}sp) represents the motion
manifold of an H R H chain. Notice that when α = 0 or ζ21 = ζ23 = 0, S3,1 becomes a Lie
subalgebra (S3,1 or S3,5, respectively) and is automatically persistent.

– Among the three-systems that include exactly one infinite-pitch screw, only S3,7 = {iα, jβ,
cos ζtx + sin ζtz, 0 ≤ ζ ≤ π/2}sp admits a persistent generator of type H P H in the form
(Fig. 12(a)):

S1 = jβ,S2 = cos ζtx + sin ζtz,S3 = Adexp(ζ13rz+d13tz)(jp3) (53)

– Since S3,8 = {rx, tx, jβ}sp contains the cylindrical algebra, the following basis (Fig. 12(b)):

S1=ip1 , S2=ip2 , S3=Adexp(ζ23rz+d23tz)(ip3) (p1 6=p2,p3=β−d23cotζ23,ζ23 6=0) (54)

results in a persistent binary product exp({rx, tx}sp) exp({S3}sp) of type C H . The other
persistent generator of S3,8 is given by (Fig. 12(c)):

S1=Adexp(ζ21rz+d21tz)(ip1), S2=tx, S3=Adexp(ζ23rz+d23tz)(ip3) (pi=β−d2icotζ2i,i=1,3) (55)

which leads to a ternary product of type H P H .
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(a) H P H type (b) C H type (c) H P H type

Figure 12: Persistent S3,7 (a) and S3,8 (b, c) systems.

(a) T2H type (b) H P H type

Figure 13: Persistent S3,9 system.

– Since S3,9 = {tx, ty, iα cos ζ + kα sin ζ}sp, ζ 6∈ {0, π2} contains the planar translation algebra,
the following basis (Fig. 13(a)):

S1 = tx, S2 = Adexp(ζ12rz)(S1), S3 = iα cos ζ + kα sin ζ (ζ12 6= 0) (56)

results in the 3-D manifold exp({S1,S2}sp) exp({S3}sp), which is a binary product of the
planar translation group T2 and the 1-D helical group H , and is automatically persistent.
The corresponding motion manifold is that of a T2H chain. The other persistent generator
of S3,9 is given by (Fig. 13(b)):

S1 = iα cos ζ + kα sin ζ, S2 = tx, S3 = S1 + d13ty (d13 6= 0) (57)

The corresponding motion manifold is that of a H (S1)P (S2)H (S3) chain.

– S3,10 = {rx, tx, ty}sp admits the following three persistent generators (Fig. 14):

S1 = ip1 , S2 = ip2 , S3 = Adexp(ζ23rz)(tx) (p1 6= p2, ζ23 6= 0) (58)

which corresponds to a binary product of type C P ;

S1 = ip1 , S2 = ip2 , S3 = Adexp(d23tz)(ip3) (p1 6= p2, d23 6= 0) (59)

which corresponds to a binary product of type C H ;

S1 = Adexp(ζ31rz)(tx), S2 = Adexp(ζ32rz)(tx), S3 = ip3 (ζ31 6= ζ32) (60)

which corresponds to a binary product of type T2H .

Aside from the above non-redundant persistent generators, the binary product C H resulting
from Eq. (59) has the following redundant generator:

S1=ip1 , S2=ip2 , S3=Adexp(d23tz)(ip3), S4=Adexp(d23tz)(ip4) (p1 6=p2,p3 6=p4,d23 6=0) (61)

which leads to a binary product of type C C . Similary, the binary product T2H resulting
from Eq. (60) has the following redundant generator:

S1 = Adexp(ζ31rz)(tx), S2 = Adexp(ζ32rz)(tx), S3 = ip3 , S4 = ip4 (ζ31 6= ζ32, p3 6= p4) (62)

which leads to a binary product of type T2C .
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(a) C P type (b) C H type (c) T2H type

Figure 14: Persistent S3,10 system.

(a) C R H type (b) H R R H type

Figure 15: Persistent S4,g systems.

4.5. 4-D persistent POE manifolds

In [19, 20], a systematic identification of 4-D persistent POE manifolds has been carried
out, and the results are summarized below.

– S4,g = {iα, jβ, rz, tz}sp admits two persistent generators, with the first being [20] (Fig. 15(a)):

S1=kp1 , S2=kp2 , S3=Adeζ23rx+d23tx (rz), S4=Adeφ3S3eζ23rx+d23txeζ34rx+d34tx (kp4)

(p1 6=p2,p4=αsin2ζ34,d34=αsinζ34cosζ34,d23=αcosζ23sinζ23,β=αcos2ζ23,α≥β≥0)
(63)

where φ3 is chosen so that S1,S2,S3 and S4 are linearly independent. The corresponding
persistent manifold exp({S1,S2}sp) exp({S3}sp) exp({S4}sp) is a ternary product of the type
C R H .

The second persistent generator of S4,g is given by (Fig. 15(b)):

S1=Adexp(φ2S2)exp(ζz2rx+dz2tx)exp(ζ21rx+d21tx)(kp1), S2=Adexp(ζz2rx+dz2tx)(rz),

S3=Adexp(ζz3rx+dz3tx)(rz), S4=Adexp(φ3S3)exp(ζz3rx+dz3tx)exp(ζ34rx+d34tx)(kp4)

(06=ζz2=ζz3 6=π
2
,β=αcos2ζz2,dz2=dz3=αsinζz2cosζz2,p1=αsin2ζ21,

d21=αsinζ21cosζ21,p4=αsin2ζ34,d34=αsinζ34cosζ34)

(64)

where φ2 and φ3 are chosen so that S1,S2,S3 and S4 are linearly independent. The cor-
responding persistent manifold exp({S1}sp) exp({S2}sp) exp({S3}sp) exp({S4}sp) is a quater-
nary product of type H R R H .

– S4,1 = {iα, jα, rz, tz}sp admits persistent bases only when the principal pitch α in Tab. 1 is
zero, namely S4,1 = {rx, ry, rz, tz}sp, which leads to the following persistent manifolds.
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(a) P S or H S type (b) C R R type (c) H S or R S type

Figure 16: Persistent S4,1 systems.

(a) H Yα type (b) C Yα type

(c) C H H type (d) C H P type (e) C P H type

Figure 17: Persistent S4,2 systems.

The first one, as illustrated in Fig. 16(a),

exp({kp1}sp) exp({rx, ry, rz}sp) (p1 6= 0) (65)

is a binary product of type P S (p1 =∞) or H S (p1 6∈ {0,∞}).
In particular, when S2(0) is aligned with the z-axis, it may be replaced by a screw of arbitrary
pitch p2, thereby resulting in a second persistent manifold (Fig. 16(b))

exp({S1(p1),S2(p2)}sp) exp({S3(0)}sp) exp({S4(0)}sp) (p1 6= p2) (66)

of type C R R .

The third persistent manifold, as illustrated in Fig. 16(c),

exp({Adexp(ζz1ry+dz1ty)(kp1)}sp) exp({rx, ry, rz}sp) (dz1 = −p1 tan ζz1) (67)

is a binary product of type R S (ζz1 = π
2
) or H S (ζz1 6∈ {0, π2}).

Finally, the binary product shown in Eq. (66) can be shown to be equivalent to the binary
product exp({S1(p1),S2(p2)}sp) exp({rx, ry, rz}sp) of type C S .
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(a) H T2H type (b) C P H type (c) C T2H type

Figure 18: Persistent S4,4 systems.

– S4,2 = {iα, ty, rz, tz}sp leads to the following persistent manifolds.

The first one, as illustrated in Fig. 17(a):

exp({S1(p1)}sp) exp({S2(α),S3(α),S4(α)}sp) (p1 − α = dx1 tan ζx1, ζx1 6= 0) (68)

is a binary product of type H Yα.

Besides, the fact that S4,2 contains both the cylindrical algebra {rz, tz}sp and the planar
helical algebra {iα, ty, tz}sp leads to the following binary product (Fig. 17(b)):

exp({S1(p1),S2(p2)}sp) exp({S3(α),S4(α),S5(α)}sp) (p1 6= p2) (69)

of type C Yα. Three more ternary products arise from removing the redundancy in Eq. (69):

exp({S1(p1),S2(p2)}sp) exp({S3(α)}sp) exp({S4(α)}sp (Fig. 17(c)) (70)

exp({S1(p1),S2(p2)}sp) exp({S3(α)}sp) exp({S4(∞)}sp (Fig. 17(d)) (71)

exp({S1(p1),S2(p2)}sp) exp({S3(∞)}sp) exp({S4(α)}sp (Fig. 17(e)) (72)

– Since S4,3 = {tx, ty, rz, tz}sp is the Schönflies algebra, any basis of S4,3 is automatically
persistent; the corresponding persistent POE manifold is equivalent to the Schönflies group.

– S4,4 = {iα, tx cos ζ + ty sin ζ, rz, tz}sp admits the following persistent manifolds.

The first one, as illustrated in Fig. 18(a):

exp({S1(p1)}sp)exp({S2(∞),S3(∞)}sp)exp({S4(p4)}sp) (ζz4 6=ζz1,pi=α+dzicotζzi,i=1,4) (73)

is a ternary product of type H T2H .

The second one, as illustrated in Fig. 18(b):

exp({S1(p1),S2(p2)}sp)exp({S3(∞)}sp)exp({S4(p4)}sp) (p1 6=p2,p4=α+dz4cotζz4) (74)

is a ternary product of type C P H . The latter can also be turned into a ternary C T2H -type
product (Fig. 18(c)):

exp({S1(p1),S2(p2)}sp)exp({S3(∞),S4(∞)}sp)exp({S5(p5)}sp) (p1 6=p2,p5=α+dz5cotζz5) (75)
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(a) C C type (b) C T2C type (c) H T2H type

Figure 19: Persistent S4,5 systems.

Table 3: A complete list of 3-D persistent POE manifolds of SE(3).

dim screw sys. persistent basis POE manifold subalg.

3

S3,1, γ = 0 Eq. (52) H R H
S3,2, α = 0 any basis S s
S3,5 any basis Yα yα
S3,6 any basis T3 t3
S3,7 Eq. (53) H P H
S3,8 Eq. (54), Eq. (55) C H , H P H
S3,9 Eq. (56), Eq. (57) T2H , H P H
S3,10 Eq. (58) – (62) C P , C H , C C , T2H , T2C

– S4,5 = {rx, tx, rz, tz}sp admits the following persistent manifolds.

The first one, as illustrated in Fig. 19(a):

exp({S1(p1),S2(p2)}sp) exp({S3(p3),S4(p4)}sp) (76)

is a binary product of type C C .

Eq. (76) can be turned into a ternary product of type C T2C , as shown in Fig. 19(b):

exp({S1(p1),S2(p2)}sp)exp({S3(∞),S4(∞)}sp)exp({S5(p5),S6(p6)}sp) (p1 6=p2,p5 6=p6) (77)

which is equivalent to a ternary product of type H T2H (Fig. 19(c)):

exp({S1(p1)}sp) exp({S2(∞),S3(∞)}sp) exp({S4(p4)}sp) (78)

Obvious ternary products of type C T2H , C P C and C P H can also be obtained.

The aforementioned persistent POE manifolds are summarized in Tab. 3 and Tab. 4.

4.6. Mechanism synthesis with persistent POE manifolds

A m-D persistent POE manifold M ,
∏m

i=1 exp({ξi}sp) can be readily generated by the
corresponding serial kinematic chain (ξ1, . . . , ξm). Persistent POE manifolds can then be used
to construct more parallel mechanisms. Hunt was probably the first to use binary product-
equivalent kinematic chains in the synthesis of parallel mechanisms [23].

Example 7 (Translational parallel mechanism with persistent EE chains). We have already
seen in Example 5 that the spatial translation group T3 is contained in the binary product
E (u)E (v), which suggests the synthesis of a T3 parallel mechanism by using multiple EE
chains. Consider l (l ≥ 3) rigidly displaced copies of a E (u)E (v) chain, say (S1, . . . ,S5) as
shown in Fig. 9(c):

M i , (Si1, . . . ,Si5) = (Adgi(S1), . . .Adgi(S5)), i = 1, . . . , l (79)
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Table 4: A complete list of 4-D persistent POE manifolds of SE(3).

dim screw sys. persistent basis POE manifold subalg.

4

S4,g Eq. (63), Eq. (64) C R H , H R R H
S4,1, α = 0 Eq. (65) – (67) P S , H S , C R R (C S ), R S
S4,2 Eq. (68) – (72) H Y , C H H , C H P , C P H , Y C
S4,3 any basis X x
S4,4 Eq. (73) – (75) H T2H , C P H , C T2H
S4,5 Eq. (76) – (78) C C , H T2H , C T2C , C T2H , C P C , C P H

for some gi ∈ SE(3), i = 1, . . . , l. (Si1, . . . ,Si5) is then a chain of the conjugate manifold
E (ui)E (vi),ui = giu,vi = giv, i = 1, . . . , l.

Since the reciprocal wrench subspace Wi(g) of each chain manifold E (ui)E (vi) is persis-
tently generated by an infinite-pitch wrench ζi(∞):

ζi(∞) =

(
0

ui × vi

)
i = 1, . . . , l (80)

the constraint wrench subspace of the parallel mechanism M 1‖ · · · ‖M l shown in Fig. 10(b) is
given by:

l∑
i=1

Wi = {ζ1, . . . , ζl}sp =

{(
0
x

)
,

(
0
y

)
,

(
0
z

)}
sp

= (t3)
⊥ (81)

so that the end-effector of M 1‖ · · · ‖M l cannot rotate so long as ui × vi, i = 1, . . . , l, span R3.
This validates M 1‖ · · · ‖M l as a T3 parallel mechanism. ♦

We have seen from Example 6 and 7 that persistent POE manifolds inherit a number
of properties that hold for their subgroup factors, such as the trivial identification of serial
mechanical generators, and the full-cycle linear dependence of joint twists that allows the
design of closed-chain mechanisms with guaranteed mobility. Since the wrench space exerted
by a persistent POE generator preserves its dimension and “shape” for finite motions, also the
synthesis of complex parallel mechanisms is highly benefited: plenty of examples can be found
in the literature [24].

5. Symmetric subspaces of SE(3)

So far, we have introduced two classes of persistent manifolds, namely the Lie subgroups
and the persistent POE manifolds. The latter may be considered a generalization of the former,
since both can be represented by the POE formula. However, there are mechanisms that defy
a description in terms of Lie subgroups or POE manifolds. For example, there are parallel
mechanisms whose end-effectors have a persistent twist subspace and whose chains are not
persistent POE manifold generators, but chains with peculiar symmetric properties.

The most relevant example is provided by homokinetic couplings (also known as constant-
velocity joints), which are parallel mechanisms used for connecting shafts with intersecting axes
(with or without plunging) [25, 23]. They have a special plane (called homokinetic plane) with
respect to which all chains are symmetric and whose motion embodies the rigid movement of a
persistent twist subspace. For example, Fig. 20(a) shows a homokinetic kinematic chain with
five R joints with joint axes being mirror-symmetric about plane Π. More precisely, the joint
axes `1, `2, `3, `

′
2 and `′1 are pairwise symmetric about Π, with `3 lying in Π. The corresponding

twist space T and wrench space W are both underlied by the fourth special three-system S3,4

for all configurations, as long as mirror symmetry is preserved, with zero-pitch screws lying in Π
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(a) (b) (c)

Figure 20: (a) Example of a 5-R homokinetic chain mirror-symmetric about the homokinetic plane Π; (b) and
(c) Two examples of symmetric space: (b) the unit 2-D sphere; (c) the Euclidean space Rm (m = 2 here).

and an infinite-pitch screw perpendicular to Π; the homokinetic chain is inherently redundant
and maintain the homokinetic (mirror-symmetry) condition only within a closed-loop (e.g.,
parallel) mechanism. As we shall shortly see, the congruence-invariance of the corresponding
3-D motion manifold arises from yet another class of persistent manifolds, called symmetric
subspaces.

5.1. Symmetric space preliminaries

Aside from being a 6-D Lie group, SE(3) also admits the structure of a symmetric space [26].
A symmetric space, again denoted M, is a manifold that can be isometrically point-reflected
onto itself about any point on the manifold. More precisely, we associate to each g ∈ M a
diffeomorphism called an inversion symmetry denoted sg : M→ M such that:

1. sg is an involution map, i.e., sg ◦ sg is the identity map on M for any g ∈ M;

2. the only fixed point of sg in a neighborhood of g is g itself;

3. sg is an isometry, i.e., it reverses every geodesic passing through g ∈ M.

Typical examples of symmetric spaces include: the unit 2-D sphere S2 (Fig. 20(b)), where
sg,g ∈ S2 is given by sg(h) , (I+ 2ĝ2)h,∀h ∈ S2; the Euclidean space Rm (Fig. 20(c)), where
sg,g ∈ Rm, is given by sg(h) , 2g − h,∀h ∈ Rm. It is less obvious that a Lie group such as
SE(3) is also a symmetric space, with sg,g ∈ SE(3) defined by sg(h) , gh−1g,∀h ∈ SE(3).

A manifold N of a symmetric space M is called a symmetric subspace of M, if it is closed
under inversion symmetry:

sg(h) = gh−1g ∈ N, ∀g,h ∈ N (82)

For example, Rn, with n < m, is a symmetric subspace of Rm.

5.2. Classification of symmetric subspaces of SE(3)

In [3], we have shown that a symmetric subspace M of SE(3) is always given by the expo-
nential image of a special type of twist subspace m called a Lie triple subsystem (LTS), which
is defined to be closed under double Lie brackets:

[[ξ1, ξ2], ξ3] ⊂ m, ∀ξ1, ξ2, ξ3 ∈ m (83)

All Lie subalgebras of se(3) are (trivial) LTSs, and accordingly all subgroups of SE(3) are
(trivial) symmetric subspaces of SE(3). In general, however, m need not be a Lie subalgebra
of se(3). All symmetric subspaces M = exp(m) of SE(3) share the following properties:
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Table 5: A complete list of the connected (non-trivial) symmetric subspaces of SE(3).

dim LTS m symmetric subspace completion group characteristics

2
m2A , {tz, rx}sp M2A , exp(m2A) G2A = E (x) xy-plane, x-direction

mp2A , {tz, rx + ptx}sp Mp
2A , exp(mp2A) Gp2A = Yp(x) xy-plane, x-direction

m2B , {rx, ry}sp M2B , exp(m2B) G2B = S xy-plane, center o

3
m3A , {tx, tz, rx}sp M3A , exp(m3A) G3A = X (x) xy-plane, x-direction

m3B , {rx, ry, tz}sp M3B , exp(m3B) G3B = SE(3) xy-plane

4 m4 , {tx, ty, rx, ry}sp M4 , exp(m4) G4 = SE(3) z-axis

5 m5 , {tx, ty, tz, rx, ry}sp M5 , exp(m5) G5 = SE(3) z-direction

1) For any LTS m, hm = [m,m] is a lie subalgebra of se(3) and is called derived algebra of m.

2) The sum of m and hm, denoted gm:

gm , m + hm (84)

is the completion algebra of m in se(3), i.e., the minimal Lie subalgebra that contains m;
the corresponding Lie subgroup GM , exp(gm) is the completion group of M in SE(3), i.e.,
the minimal Lie subgroup that contains M.

3) For any g in the Lie subgroup HM , exp(hm) generated by hm, i.e., g = eη for some η ∈ hm,
we have:

Cg(M) = M, ∀g ∈ HM (85)

and correspondingly
Adg(m) = m (86)

This property is very important for the synthesis of parallel mechanisms for symmetric
subspaces.

4) The twist subspace T(g) of M at g = eξ ∈ M is given by:

T(g) = Adexp(ξ/2)(T(I)) = Adexp(ξ/2)(m) (87)

The last property, known as the half-angle property in [3], is a special type of congruence-
invariance. However, non-trivial symmetric subspaces are fundamentally different from POE
manifolds (including Lie subgroups). A m-D POE manifold M =

∏m
i=1 exp({ξi}sp) always

admits the second canonical parameterization in Eq. (16) (i.e., the POE formula):

(θ1, . . . , θm) 7→ eθ1ξ1 · · · eθmξm (88)

where ξ1, . . . , ξm is a basis of T(I) = TI(M). When M is a Lie subgroup, the second canonical
parameterization is equivalent to the first canonical parameterization Eq. (15):

(θ1, . . . , θm) 7→ exp(θ1ξ1 + · · ·+ θmξm) (89)

However, in general, the two parameterizations are not equivalent (see [27] for a proof). While
a POE manifold comes with a natural POE parameterization, the exponential form of a sym-
metric subspace M , exp(m) naturally lends itself to the first canonical parameterization (c.f.
Eq. (15))

(θ1, . . . , θm) 7→ exp(θ1ξ1 + · · ·+ θmξm), {ξ1, . . . , ξm}sp = m (90)

Just as for the classification of Lie subgroups of SE(3), the classification of conjugacy classes
of symmetric subspaces of SE(3) can be accomplished by a classification of conjugacy classes
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(a) (b)

Figure 21: Physical interpretation of M3B (a) and M2A (b) motions.

of their corresponding LTSs in se(3) [28], leading to the discovery of a total of seven classes of
non-trivial symmetric subspaces of SE(3), which are listed in Tab. 5 for quick reference. We
shall follow [3] and denote a m-D LTS with finite-pitch screws parallel to a single direction
by mmA, and a m-D LTS with finite-pitch screws parallel to a single plane by mmB; the
corresponding symmetric subspace, derived algebra, completion algebra and completion group
shall be indicated by the same subscripts. When there is only one LTS for the specified
dimension, the subscript ()mA or ()mB will be simply written as ()m.

There are three classes of 2-D symmetric subspaces of SE(3):

i) M2A , exp({tz, rx}sp), with h2A = {ty}sp and g2A = {ty, tz, rx}sp = e(x); we have M2A ·
P (y) = E (x).

ii) Mp
2A , exp({tz, ip}sp), with h2A = {ty}sp and g2A = {ty, tz, ip}sp; if p = 0, Mp

2A = M2A. We
have Mp

2A · P (y) = Yp(x).

iii) M2B , exp({rx, ry}sp), with h2B = {rz}sp = r(z) and g2B = {rx, ry, rz}sp = s(o); we have
M2B ·R (z) = S (o).

There are three classes of 3-D symmetric subspaces of SE(3):

i) M3A , exp({tx, tz, rx}sp), with h3A = {ty}sp = {ty}sp and g3A = {tx, ty, tz, rx}sp = x(x);
we have M3A · P (y) = X (x). It is obvious that M3A contains M2A and Mp

2A as manifolds.

ii) M3B , exp({tz, rx, ry}sp), with h3B = {tx, ty, rz}sp = e(z), and g3B = se(3); we have
M3B ·E (z) = SE(3). It is obvious that M3B contains M2B as a manifold.

There is exactly one class of 4-D symmetric subspace of SE(3):

i) M4 , exp({tx, ty, rx, ry}sp), with h4 = {tz, rz}sp = c(z), and g4 = se(3); we have M4·C (z) =
SE(3). M4 contains all lower dimensional symmetric subspaces, except M3B.

There is exactly one class of 5-D symmetric subspace of SE(3):

i) M5 , exp({tx, ty, tz, rx, ry}sp), with h5 = {tx, ty, tz, rz}sp = x(z), and g5 = se(3); we have
M5 ·R (z) = SE(3). M5 contains all lower dimensional symmetric subspaces.

In [27], we gave a physical explanation of the type of motion represented by symmetric
subspaces of SE(3). For example, as shown in Fig. 21, M3B comprises non-redundant motions
of the xy-plane (called the characteristic plane) to a new location via a single rotation about
the intersection line of the two plane locations without incurring a redundant self-motion of
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Figure 22: A motion in M2B corresponds to the tilt of the symmetry-axis (the z-axis) via a rotation about an
axis in the xy-plane that is perpendicular to the initial and final location of the z-axis.

(a) (b)

Figure 23: Physical interpretation of M4 (a) and M3A (b).

the plane, represented by H3B = E (z). M2A may be considered a submanifold of M3B that
maintains the perpendicularity of the plane normal to the x-axis.

Similarly, M2B characterizes the rotation of an object that is axis symmetric about the z-
axis (called the characteristic direction) without incurring a redundant self-spin of the object,
represented by H2B = R (z) (see Fig. 22). If we augment M2B with all translational freedoms,
we arrive at the 5-D symmetric subspace M5.

Finally, M4 characterizes the motion of the z-axis (called the characteristic line) to a tar-
get location by twisting along the common perpendicular of the two lines without incurring
redundant self-spin and sliding, which is represented by H4 = C (z) (see Fig. 23). M3A may be
considered a submanifold of M4 that maintains the perpendicularity of the line to the x-axis.

5.3. Mechanism synthesis of symmetric subspaces of SE(3)

The key to synthesizing mechanisms for the seven symmetric subspaces lies in the inversion
symmetry property in Eq. (82) [3, 27].

Example 8 (M3B parallel mechanism). Consider the 3-D symmetric subspace M3B = exp({m3B}sp),
with the corresponding LTS given by m3B = {rx, ry, tz}sp. Due to the incompatibility of the
two canonical parameterizations in Eq. (15) and Eq. (16) for symmetric subspaces, we cannot
synthesize M3B by assigning an ordered basis (S1,S2,S3) to its LTS m3B and then generate
M3B by the corresponding serial mechanism: indeed, the resulting POE manifold exp({S1}sp)
exp({S2}sp) exp({S3}sp) will in general induce residual planar motion in the decomposition
SE(3) = M3BE (z).

On the other hand, by repeatedly applying the inversion symmetry property of M3B:

gh−1g ∈ M3B, ∀g,h ∈ M3B (91)
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(a) (b)

Figure 24: Two examples of symmetric chains for M3B .

we see that:
(θ1, θ2, θ3) 7→ eθ1S1eθ2S2e2θ3S3eθ2S2eθ1S1 ∈ M3B (92)

gives a valid parameterization of M3B.
Therefore, a symmetric chain of the form (S1,S2,S3,S2,S1) will generate M3B and maintain

the congruence-invariance of its twist subspace if each pair of joints with identical screw axes
move with equal joint angles. In [3, 27], we showed that the symmetric chain can be generalized
to have different but mirror-symmetric (about the characteristic plane) joint screws and still
generate the desired symmetric subspace M3B. More precisely, a general symmetric chain has
the following form:

(S+
1 ,S

+
2 ,S3,S

−
2 ,S

−
1 ) (93)

where: {
S+
i = ξi + ηi

S−i = ξi − ηi
ξi ∈ m3B,ηi ∈ e(z) (94)

for i = 1, 2 and so that {ξ1, ξ2,S3}sp = m3B. The 5-R chain we have seen in Fig. 20(a) is one
such example. Two more examples of symmetric chains for M3B are given in Fig. 24

The symmetric chain will not move with symmetric joint angles on its own. To ensure
symmetric joint movements, we can impose additional constraint by forming a parallel mech-
anism with multiple symmetric chains M i = (S+

i1,S
+
i2,Si3,S

−
i2,S

−
i1), i = 1, . . . , l. To ensure that

the chain motion manifolds Mi = exp({S+
i1}sp) exp({S+

i2}sp) exp({S3}sp) exp({S−i2}sp) · · · exp({
S−i1}sp) do contain the desired manifold M = M3B (step 2), it suffices to assemble the chains
so that they are all mirror-symmetric about the same characteristic plane of M3B, namely the
xy-plane, at the home configuration, as shown in Fig. 25(a). Since each chain M i has 5-DOFs,
it contributes to one basis wrench ζi. The wrench condition (step 3) is met if:

{ζ1, . . . , ζl}sp = W(I) = m⊥3B =

{(
x
0

)
,

(
y
0

)
,

(
0
z

)}
sp

(95)

In the case of 5-R symmetric chains (as shown in Fig. 25(a)), each ζi is a zero-pitch wrench
lying in the xy-plane. Consequently, a total of three chains is needed to form a valid parallel
mechanism for M3B, as shown in Fig. 25(b).

Hunt was the first to analyze the persistent mirror symmetry of M3B parallel mechanisms
when working on his general theory of parallel constant velocity couplings [23]. Carricato [25]
made further analysis of the synthesis condition for such parallel mechanisms. The theory was
finally completed in our recent publications [3, 27], where we also showed that the synthesis
procedure demonstrated here can be generalized to general symmetric subspaces in a similar
manner. ♦
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(a) (b)

Figure 25: Example of a M3B parallel mechanism: (a) chain geometry; (b) constraint wrenches.

6. Conclusion

In this paper, we provided a unified treatment of three important classes of motion manifolds
of SE(3) that admit a persistent twist subspace over the entire motion manifold (around the
identity):

1. a Lie subgroup G = exp(g) has, for any configuration g ∈ G, an invariant twist subspace
T(g) equal to its Lie algebra g for any g ∈ G.

2. a persistent POE manifold M ,
∏m

i=1 exp({ξi}sp) has, for any configuration g ∈ M, a
congruence-invariant twist subspace T(g) equal to Adg′(T(I)) = Adg′({ξ1, . . . , ξm}sp) for
a certain g′ ∈ SE(3), which is a conjugacy copy of its identity tangent space {ξ1, . . . , ξm}sp.

3. a symmetric subspace M = exp(m) has, for any configuration eξ ∈ M, a congruence-
invariant twist subspace T(eξ) equal to Adexp(ξ/2)(T(I)) = Adexp(ξ/2)(m), which is a con-
jugacy copy of its LTS m.

The persistence properties of twist subspaces arise from the persistence property of their un-
derlying manifold structure. Indeed, persistent motion manifolds are the maximal integral
manifolds of certain persistent distributions, which are spanned by persistent vector fields,
such as the left-invariant and right-invariant vector fields for Lie subgroups and binary prod-
ucts, and the derivations (a mixture of left and right-invariant vector fields) for symmetric
subspaces.

Due to space limit, we have intentionally left out further detailed treatment on mechanism
synthesis. However, we hope that this both introductory and summarizing treatment of persis-
tent motion manifolds has demonstrated the combined power of Lie theory of SE(3) and screw
theory of se(3) in the field of mechanism synthesis.
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