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Spatial Pythagorean-Hodograph B–Spline curves and

3D point data interpolation

Gudrun Albrechta,∗, Carolina Vittoria Beccarib, Lucia Romanib

aEscuela de Matemáticas, Universidad Nacional de Colombia, Sede Medelĺın, Carrera 65 Nro. 59A - 110, Medelĺın,

Colombia
bDepartment of Mathematics, University of Bologna, P.zza Porta San Donato 5, 40127 Bologna, Italy

Abstract

This article deals with the spatial counterpart of the recently introduced class of planar Pythagorean-
Hodograph (PH) B–Spline curves. Spatial Pythagorean-Hodograph B–Spline curves are odd-degree, non-
uniform, parametric spatial B–Spline curves whose arc length is a B–Spline function of the curve parameter
and can thus be computed explicitly without numerical quadrature. After giving a general definition for
this new class of curves, we exploit quaternion algebra to provide an elegant description of their coordinate
components and useful formulae for the construction of their control polygon. We hence consider the
interpolation of spatial point data by clamped and closed PH B–Spline curves of arbitrary odd degree and
discuss how degree-(2n + 1), Cn-continuous PH B–Spline curves can be computed by optimizing several
scale-invariant fairness measures with interpolation constraints.

Keywords: Non-uniform B–Spline, Space curve, Pythagorean-Hodograph, Interpolation, Fairness
measure, Constrained minimization, Pipe surface

1. Introduction

Aim of this paper is to provide a general approach for constructing spatial Pythagorean-Hodograph (PH)
B–Spline curves. The essential characteristic of this new class of curves –which extends to the 3D case the
recently introduced class of planar Pythagorean-Hodograph B–Spline curves [1]– is that the Euclidean norm
of their hodograph is a B–Spline function, thus yielding a B–Spline representation also for their arc length.
In virtue of their high generality and this key property, spatial Pythagorean-Hodograph B–Spline curves
have great potential for application in many design and manufacturing contexts as well as in robotics,
animation, NC machining, etc. Moreover, since the B–Spline representation generalizes the polynomial
Bézier representation, spatial PH B–Spline curves of arbitrary odd degree, defined over arbitrary knot
sequences, generalize the odd-degree spatial PH polynomial Bézier curves proposed by Farouki and Sakkalis
in [2].
In order to obtain the general expression for the control points of a spatial PH B–Spline curve, the quaternion
representation is exploited. For unfamiliar readers, the basics of quaternion algebra are briefly recalled in
section 2. In section 3, we present the general framework of spatial PH B–Spline curves. As an example, we
derive the control points of cubic and quintic such splines on clamped and closed partitions (subsections 3.2.1
and 3.2.2). To illustrate the usefulness and potential of this class, in section 4 we discuss the interpolation of
an arbitrary sequence of 3D data points by clamped and closed PH B–Spline curves of arbitrary odd degree.
The control points are computed by minimizing a scale-invariant fairness functional subject to interpolation
constraints, thus allowing to identify the optimal solution among the infinitely many PH B–Spline curves
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passing through the data points. Differently from previous papers [3–8], where specific instances of PH
splines are considered, our main contribution lies in the generality of the framework, which allows for
obtaining spline curves of degree 2n + 1 and continuity Cn, for any arbitrary n ≥ 1, on both clamped and
periodic partitions. We exhibit a number of numerical examples, demonstrating the nice quality of the
resulting curves. As a further application, in section 5 we introduce the notion of Euler–Rodrigues frame of
a PH B–Spline curve and discuss the generation of rational pipe surfaces. Such surfaces can conveniently be
constructed by minimizing the rotation of the frame, thus avoiding distortions that may well occur otherwise.
Section 6 summarizes the obtained results and identifies issues that deserve further investigation.

2. Spatial Pythagorean-Hodograph B–Spline curves: definition and quaternion form

For the background knowledge needed to introduce the definition of spatial Pythagorean-Hodograph B–
Spline curves, the reader is referred to [1, Section 2] where a concise review of the key properties of non-
uniform B–Spline basis functions and the resulting spline curves can be found. We thus define our object of
interest as follows.

Definition 2.1. Let n, p ∈ N with p ≥ n, and let

µ := {ti ∈ R | ti ≤ ti+1}i=0,...,p+n+1 (1)

be a partition of R. Denote by Nn
i,µ(t) the i-th normalized B–Spline basis function of degree n on the partition

µ, and define via the coefficients ui, vi, gi, hi ∈ R, i = 0, . . . , p the nonzero degree-n spline functions u(t) :=
∑p

i=0 uiN
n
i,µ(t), v(t) :=

∑p
i=0 viN

n
i,µ(t), g(t) :=

∑p
i=0 giN

n
i,µ(t), h(t) :=

∑p
i=0 hiN

n
i,µ(t), t ∈

[tn, tp+1]. Then, the spatial parametric curve (x(t), y(t), z(t)) satisfying

x′(t) = u2(t) + v2(t)− g2(t)− h2(t) , y′(t) = 2(u(t)h(t) + v(t)g(t))

and z′(t) = 2(v(t)h(t)− u(t)g(t)), (2)

is a spatial B–Spline curve of degree 2n + 1 that is called spatial Pythagorean-Hodograph B–Spline curve
or, more shortly, spatial PH B–Spline curve of degree 2n+ 1.

As a consequence of (2), the parametric speed
σ(t) :=

√

(x′(t))2 + (y′(t))2 + (z′(t))2 of the curve (x(t), y(t), z(t)), and the first derivatives of its coor-
dinate components satisfy the Pythagorean condition (see, e.g., [2])

(x′(t))2 + (y′(t))2 + (z′(t))2 = (σ(t))2 withσ(t) = u2(t) + v2(t) + g2(t) + h2(t) . (3)

As it has previously been done for spatial PH Bézier curves, e.g., in [2], in order to elegantly manipulate
spatial PH B–Spline curves we use the so-called quaternions. For the sake of making this paper self–contained
we briefly recall the basics of quaternion algebra in the following remark.

Remark 2.1. Quaternion algebra We consider the algebra of quaternions as the four-dimensional vector
space R

4 with the canonical basis 1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0), k = (0, 0, 0, 1) for which the
following multiplication rules are satisfied:

i 2 = j 2 = k 2 = i j k = −1 , (4)

where 1 is the identity element. The rules (4) imply

i j = − j i = k , j k = −k j = i , k i = − i k = j .

Let A = 1 a + i ax + j ay + k az be a general quaternion. In analogy to complex numbers, we interpret A
to be composed by the scalar or real part 1 a, which we shortly write as a, and the vector or imaginary part
i ax + j ay + k az. By defining the conjugate A∗ of the quaternion A to be A∗ = 1 a − i ax − j ay − k az
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and introducing the quaternion B as B = 1 b+ i bx+ j by+ k bz, we recall the following rules for quaternion
addition and multiplication:

A+ B = (a+ b) + i (ax + bx) + j (ay + by) + k (az + bz) ,
AB = (ab− axbx − ayby − azbz) + i (abx + axb+ aybz − azby)

+ j (aby − axbz + ayb+ azbx) + k (abz + axby − aybx + azb) ,
AB 6= BA , in general
AA∗ = A∗A = |A|2 = a2 + a2x + a2y + a2z ,

(AB)∗ = B∗A∗.

From these rules it can easily be deduced that A iA∗ and A iB∗ + B iA∗ are pure vector quaternions, i.e.,
their respective scalar part vanishes. In particular, we have

A iA∗ = i (a2 + a2x − a2y − a2z) + j 2(aaz + axay)

+k 2(axaz − aay) ,

A iB∗ + B iA∗ = i 2(ab+ axbx − ayby − azbz)

+ j 2(axby + aybx + abz + azb)

+k 2(axbz + azbx − aby − ayb). (5)

While for planar PH B–Spline curves the coordinate components of their hodograph are identified with
the real and imaginary parts of the square of a complex spline function (see [1]), in the case of spatial PH
B–Spline curves the representation in (2) may be obtained by the quaternion multiplication Z(t) iZ∗(t)
using the quaternion

Z(t) := u(t) + i v(t) + j g(t) + kh(t) (6)

yielding

Z(t) iZ∗(t) = i (u2(t) + v2(t)− g2(t)− h2(t)) + j 2(u(t)h(t) + v(t)g(t))

+k 2(v(t)h(t)− u(t)g(t)).

In other words, the coordinate components x′(t), y′(t), z′(t) of the hodograph r′(t) of the spatial PH B–Spline
curve r(t) = (x(t), y(t), z(t)) are identified by the imaginary parts of a pure vector quaternion, obtained by
the product of a quaternion spline function and its conjugate, with an interposed element of the quaternion
basis. Hereafter we will use this quaternion notation, and thus write

r′(t) = ix′(t) + j y′(t) + k z′(t)
= i (u2(t) + v2(t)− g2(t)− h2(t)) + j 2(u(t)h(t) + v(t)g(t))

+k 2(v(t)h(t)− u(t)g(t))
= Z(t) iZ∗(t) ,

as also previously done for spatial PH Bézier curves [2]. The PH B–Spline curve r(t) =
∫

r′(t)dt thus results
to have degree 2n+ 1. In the next section we present the general construction of this curve by deriving its
knot vector and its control points.

3. Construction and properties of spatial Pythagorean–Hodograph B–Spline curves: the very

general case

3.1. Knot setting and control points computation

According to Definition 2.1, the degree-n quaternion spline function Z(t) in (6) can be written as

Z(t) =

p
∑

i=0

ZiN
n
i,µ(t) , t ∈ [tn, tp+1] , (7)

3



where Zi = ui+ i vi+ j gi+ khi, i = 0, . . . , p are quaternion coefficients and µ the underlying knot partition
defined in (1). According to [9, 10] the knot partition of the B–Spline curve

p(t) := Z(t) iZ∗(t) =

p
∑

i=0

p
∑

j=0

Zi iZ
∗
j N

n
i,µ(t)N

n
j,µ(t) (8)

is
ν := {si}i=0,...,(p+n+2)(n+1)−1 = {< ti >

n+1}i=0,...,p+n+1 , (9)

where < ti >
n+1 denotes the knot ti taken with multiplicity n+1. Thus the quaternion product p(t) in (8)

is indeed a spatial B–Spline curve of degree 2n defined on the knot partition ν, and can be written as

p(t) =

q
∑

k=0

pkN
2n
k,ν (t) ,

with q = (p+n)(n+1) and pk, k = 0, . . . , q suitably defined 3D coefficients. In order to express the control
points pk, k = 0, . . . , q in terms of the assigned quaternion coefficients Zi, i = 0, . . . , p, we compute the
unknown real coefficients χi,j := (χi,j

0 , χ
i,j
1 , . . . , χi,j

q )T , 0 ≤ i, j ≤ p that allow us to write

Nn
i,µ(t)N

n
j,µ(t) =

q
∑

k=0

χ
i,j
k N2n

k,ν (t) . (10)

Following the computational strategy proposed in [1, Section 3.1], for each fixed pair i, j, the q + 1 entries
χ
i,j
0 , χ

i,j
1 , . . . , χi,j

q of χi,j can be worked out by solving the (q + 1) × (q + 1) linear equation system of the
form

Aχi,j = bi,j , (11)

with

A = (ak,l)k,l=0,...,q, ak,l :=

∫ tp+n+1

t0

N2n
k,ν (t)N

2n
l,ν (t) dt

and

bi,j = (bi,jl )l=0,...,q, b
i,j
l :=

∫ tp+n+1

t0

Nn
i,µ(t)N

n
j,µ(t)N

2n
l,ν (t) dt.

From the computed expressions of χi,j
k , 0 ≤ i, j ≤ p, k = 0, . . . , q, we thus obtain

pk =

p
∑

i=0

p
∑

j=0

χ
i,j
k Zi iZ

∗
j , k = 0, . . . , q. (12)

Remark 3.1. Since, in light of (5), the quaternion product Z(t) iZ∗(t) is a pure vector quaternion, thus
r′(t) = p(t) is a pure vector quaternion. It follows that, for all k = 0, . . . , q, pk must be a pure vector
quaternion, which is ensured by the fulfillment of the condition

p
∑

i=0

p
∑

j=0

χ
i,j
k (uivj − viuj + higj − gihj) = 0 , ∀k = 0, . . . , q.

Remark 3.2. If in the definition of the quaternion Z(t) from (6) we consider any of the following cases

(i) u(t) ≡ h(t) ≡ 0

(ii) u(t) ≡ g(t) ≡ 0

(iii) v(t) ≡ g(t) ≡ 0

the quaternion product Z(t) iZ∗(t) becomes

4



(i) Z(t) iZ∗(t) = i (v(t)2 − g(t)2) + j 2v(t)g(t)

(ii) Z(t) iZ∗(t) = i (v(t)2 − h(t)2) + k 2v(t)h(t)

(iii) Z(t) iZ∗(t) = i (u(t)2 − h(t)2) + j 2u(t)h(t)

thus degenerating into a simple square of a complex number. In the same way the quantities Zi iZ
∗
j in (12)

reduce to a simple multiplication of complex numbers zizj. Thus, restriction to a planar setting reproduces
the formulae from [1].

Once the expressions in (12) are known, we integrate p(t), obtaining the degree-(2n + 1) spatial B–Spline
curve

r(t) =

∫

p(t)dt =

q+1
∑

i=0

riN
2n+1
i,ρ (t) , t ∈ [tn, tp+1] , (13)

with knot partition

ρ := {s′i}i=0,...,(p+n+2)(n+1)+1 = {t−1, {< tk >n+1}k=0,...,p+n+1, tp+n+2}, (14)

where s′i = si−1 for i = 1, . . . , (p+n+2)(n+1) and the knots s′0 = t−1, s
′
(p+n+2)(n+1)+1 = tp+n+2 are freely

chosen in accordance with the conditions s′0 ≤ s′1 and s′(p+n+2)(n+1)+1 ≥ s′(p+n+2)(n+1), respectively. From

the knots of the partition ρ in (14), the 3D control points of r(t) are computed by the recurrence

ri+1 = ri +
s′i+2n+2 − s′i+1

2n+ 1
pi = ri +

si+2n+1 − si

2n+ 1
pi , i = 0, . . . , q (15)

starting from an arbitrary r0 ∈ R
3.

Remark 3.3. 1. The three B–Spline curves Z(t), r′(t) = p(t) and r(t) are all defined on the interval
[tn, tp+1], where the curves Z(t) and r′(t) are Cn−1–continuous and r(t) is Cn–continuous, if the
partition µ consists of single inner knots.

2. The resulting expressions for parametric speed

σ(t) = |r′(t)| = |Z(t) iZ∗(t)| = |Z(t)|2 = Z(t)Z∗(t) .

and arc length
∫

σ(t)dt =

q+1
∑

i=0

liN
2n+1
i,ρ (t) , t ∈ [tn, tp+1] ,

can directly be carried over from the 2D case, see [1].

3.2. A further analysis of spatial Pythagorean–Hodograph B–Spline curves: the clamped and closed cases

The generation of clamped and closed spatial PH B–Spline curves follows along the same lines of the
planar case, being independent of the dimension of the control points. To facilitate reproduction of the
methods in this paper, in the following we provide as an example the control points for cubic and quintic
spatial PH B–Spline curves.

3.2.1. The clamped case

We will use an important consequence of Proposition 1-a) from [1] which is the following Corollary; its
proof is a duplicate of [1, Corollary 1].

Corollary 3.1. Let Z(t) =
∑m

i=0ZiN
n
i,µ(t) , t ∈ [tn, tm+1] be a quaternion spline function over the clamped

knot partition
µ = {< tn >n+1, {ti}i=n+1,...,m, < tm+1 >

n+1}.
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Then, for the B–Spline curve in (8), we have

p(t) =

q
∑

k=0

pkN
2n
k,ν (t) , t ∈ [tn, tm+1],

where q = 2n+ (n+ 1)(m− n) and

ν = {si}i=0,...,4n+1+(n+1)(m−n) = {< tn >2n+1, {< ti >
n+1}i=n+1,...,m, < tm+1 >

2n+1} .

As a consequence, the PH B–Spline curve r(t) in (13) is defined over the knot partition

ρ = {s′i}i=0,...,4n+3+(n+1)(m−n) = {< tn >2n+2, {< ti >
n+1}i=n+1,...,m, < tm+1 >

2n+2} , (16)

where

s′i =







s0, if i = 0, 1 ,
si−1, if i = 2, . . . , 4n+ 1 + (n+ 1)(m− n) ,
s4n+1+(n+1)(m−n), if i = 4n+ 2 + (n+ 1)(m− n), 4n+ 3 + (n+ 1)(m− n) ,

and has the expression

r(t) =

q+1
∑

i=0

riN
2n+1
i,ρ (t) , t ∈ [tn, tm+1],

with control points ri computed by (15).

Remark 3.4. The above corollary entails that a degree-(2n+1) clamped PH B–Spline curve be of continuity
class Cn. It can easily be verified that for n = m = 1 and t2 = t3 = 1, respectively n = m = 2 and
t3 = t4 = t5 = 1, the control points from (15) are exactly those of the spatial PH Bézier cubic, respectively
quintic, from [2].

Corollary 3.1 yields the expressions of control points for clamped PH B–Splines of any odd degree, which will
come in handy for solving the 3D point data interpolation problem addressed in section 4. As an instance,
for arbitrary values of m ≥ 1, the control points of the cubic clamped PH B–Spline curve

r(t) =

2m+1
∑

i=0

riN
3
i,ρ(t) , t ∈ [t1, tm+1] (t1 = 0)

are given by

r1 = r0 +
d1

3
p0,

r2j+2 = r2j+1 +
dj+1

3
p2j+1, j = 0, . . . ,m− 1 ,

r2j+3 = r2j+2 +
dj+1 + dj+2

3
p2j+2, j = 0, . . . ,m− 2 ,

r2m+1 = r2m +
dm

3
p2m,

(17)

where r0 is an arbitrary 3D point, {di, i = 1, . . . ,m} are the knot-intervals of µ and

p2j = Zj iZ
∗
j , j = 0, . . . ,m ,

p2j+1 =
1

2
(Zj iZ

∗
j+1 + Zj+1 iZ

∗
j ), j = 0, . . . ,m− 1 ,

(18)

are the control points of p(t) = r′(t), obtained via (12) by means of the coefficients {χi,j
k }

0≤i,j≤m
0≤k≤2m .

Analogously, for arbitrary values of m ≥ 2, the control points of the quintic clamped PH B–Spline curve

6



r(t) =
3m−1
∑

i=0

riN
5
i,ρ(t) , t ∈ [t2, tm+1] (t2 = 0)

satisfy the relations

r1 = r0 +
d1

5
p0,

r2 = r1 +
d1

5
p1,

r3j = r3j−1 +
dj

5
p3j−1, j = 1, . . . ,m− 1 ,

r3j+1 = r3j +
dj + dj+1

5
p3j , j = 1, . . . ,m− 2 ,

r3j+2 = r3j+1 +
dj + dj+1

5
p3j+1, j = 1, . . . ,m− 2 ,

r3m−2 = r3m−3 +
dm−1

5
p3m−3,

r3m−1 = r3m−2 +
dm−1

5
p3m−2 ,

(19)

where r0 is an arbitrary 3D point, d0 = dm = 0, {di, i = 1, . . . ,m− 1} are the knot-intervals of µ and

p0 = Z0 iZ
∗
0 ,

p1 =
1

2
(Z0 iZ

∗
1 + Z1 iZ

∗
0 ),

p3j−1 = α1,j (Zj−1 iZ
∗
j + Zj iZ

∗
j−1) + α2,j (Zj−1 iZ

∗
j+1 + Zj+1 iZ

∗
j−1)

+α3,j (Zj iZ
∗
j ) + α4,j (Zj iZ

∗
j+1 + Zj+1 iZ

∗
j ) , j = 1, . . . ,m− 1 ,

p3j = β1,j (Zj iZ
∗
j ) + β2,j (Zj iZ

∗
j+1 + Zj+1 iZ

∗
j ) , j = 1, . . . ,m− 2 ,

p3j+1 =
1

2
β1,j (Zj iZ

∗
j+1 + Zj+1 iZ

∗
j ) + 2β2,j (Zj+1 iZ

∗
j+1) , j = 1, . . . ,m− 2 ,

p3m−3 =
1

2
(Zm−1 iZ

∗
m + Zm iZ∗m−1) ,

p3m−2 = Zm iZ∗m

(20)

with

α1,j =
1

6

dj dj+1

(dj−1 + dj) (dj + dj+1)
, α2,j =

1

6

(dj)
2

(dj−1 + dj)(dj + dj+1)
,

α3,j =
2

3
+
1

3

dj−1 dj+1

(dj−1 + dj) (dj + dj+1)
, α4,j =

1

6

dj−1 dj

(dj−1 + dj) (dj + dj+1)
,

β1,j =
dj+1

dj + dj+1
, β2,j =

1

2

dj

dj + dj+1

(21)

are the control points of p(t) = r′(t), obtained via (12) by means of the coefficients {χi,j
k }

0≤i,j≤m
0≤k≤3m−2.

3.2.2. The closed case

The computation of control points of closed PH B–Spline curves follows along the same lines of the
planar case addressed in [1, Proposition 1-b)], of which the following result is the spatial counterpart.

Proposition 3.1. Let r(t) be the degree-(2n+1) PH B–Spline curve in (13) defined over the knot partition
ρ in (14) with p = m + n. For r(t) to be closed and of continuity class Cn at the junction point r(tn) =
r(tm+n+1), the following two conditions must hold:

(m+n+1)(n+1)−k−1
∑

j=n(n+1)−k

(sj+2n+1 − sj) pj = 0 , for k = 0, . . . , n, (22)

7



and
tm+1+k − tm+k = tk − tk−1 , for k = n, n+ 1. (23)

In the subcase n = 1, resp. n = 2, we obtain C1 closed PH B–Spline curves of degree 3, resp. C2 closed
PH B–Spline curves of degree 5.
In particular, the control points of a cubic closed PH B–Spline curve

r(t) =
2m+5
∑

i=0

riN
3
i,ρ(t), t ∈ [t1, tm+2] (t0 = 0)

satisfy the relations

r1 = r0,

r2j+2 = r2j+1 +
dj+1 + dj+2

3
p2j+1, j = 0, . . . ,m+ 1 ,

r2j+3 = r2j+2 +
dj+2

3
p2j+2, j = 0, . . . ,m ,

r2m+5 = r2m+4 ,

(24)

where r0 is an arbitrary 3D point, {di, i = 1, . . . ,m + 3} (with dm+2 = d1 and dm+3 = d2) are the knot-
intervals of µ, and

p0 = 0,
p2j+1 = Zj iZ

∗
j , j = 0, . . . ,m+ 1 ,

p2j+2 =
1

2
(Zj iZ

∗
j+1 + Zj+1 iZ

∗
j ) , j = 0, . . . ,m ,

p2m+4 = 0

(25)

are the control points of p(t) = r′(t), obtained via (12) by means of the coefficients {χi,j
k }

0≤i,j≤m+1
0≤k≤2m+4 .

Analogously, the control points of the quintic closed PH B–Spline curve

r(t) =

3m+13
∑

i=0

riN
5
i,ρ(t) , t ∈ [t2, tm+3] (t0 = 0)

satisfy the relations

r2 = r1 = r0,

r3 = r2 +
d1

5
Z0 iZ

∗
0 ,

r3j+1 = r3j +
dj+1

5
p3j , j = 1, . . . ,m+ 3 ,

r3j+2 = r3j+1 +
dj+1 + dj+2

5
p3j+1 , j = 1, . . . ,m+ 2 ,

r3j+3 = r3j+2 +
dj+1 + dj+2

5
p3j+2 , j = 1, . . . ,m+ 2 ,

r3m+11 = r3m+10 +
dm+5

5
Zm+2 iZ

∗
m+2,

r3m+13 = r3m+12 = r3m+11 ,

(26)

where r0 is an arbitrary 3D point, {di, i = 1, . . . ,m + 5} are the knot-intervals of µ (with dm+3 = d2 and
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dm+4 = d3), and

p0 = p1 = 0,

p2 =
d1

d1 + d2
Z0 iZ

∗
0 ,

p3j−3 = α1,j (Zj−3 iZ
∗
j−2 + Zj−2 iZ

∗
j−3) + α2,j (Zj−3 iZ

∗
j−1 + Zj−1 iZ

∗
j−3)

+α3,j (Zj−2 iZ
∗
j−2) + α4,j (Zj−2 iZ

∗
j−1 + Zj−1 iZ

∗
j−2) , j = 2, . . . ,m+ 4 ,

p3j−2 = β1,j (Zj−2 iZ
∗
j−2) + β2,j (Zj−2 iZ

∗
j−1 + Zj−1 iZ

∗
j−2) , j = 2, . . . ,m+ 3 ,

p3j−1 =
1

2
β1,j (Zj−2 iZ

∗
j−1 + Zj−1 iZ

∗
j−2) + 2β2,j (Zj−1 iZ

∗
j−1) , j = 2, . . . ,m+ 3 ,

p3m+10 =
dm+5

dm+4 + dm+5
Zm+2 iZ

∗
m+2 ,

p3m+11 = p3m+12 = 0

(27)

with αl,j , l = 1, 2, 3, 4, and βh,j , h = 1, 2 in (21), are the control points of p(t) = r′(t), obtained via (12) by

means of the coefficients {χi,j
k }

0≤i,j≤m+2
0≤k≤3m+12. Note that in the above formula we assume Z−1 = Zm+3 = 0.

4. Interpolation by spatial PH B–Spline curves

To show that our interest in studying spatial PH B–Spline curves is not merely academic, we consider the
practical problem of interpolating a sequence of 3D data points, which often arises, for example, in robotics
and motion control applications. Due to the arbitrariness of the degree and the possibility of managing both
clamped and periodic partitions, this turns out to be a much more challenging setting compared to previous
papers (see, e.g., [6]). Moreover a PH B–Spline provides more degrees of freedom than those necessary to
satisfy the interpolation conditions. To identify a solution, one may thus have several reasonable options
such as:

(a) ask, in addition, for interpolation of associated first derivatives;

(b) prescribe arc-length constraints for each spline segment;

(c) optimize the interpolant according to different shape or fairness measures.

The first two choices have been considered in [11] and [7], respectively, in less general settings. Precisely,
paper [11] is concerned with interpolation of first-order Hermite data by spatial Pythagorean-Hodograph
Bézier quintics, whereas [7] studies the construction of C2, interpolating, PH quintics subject to prescribed
constraints on the arc length of each curve segment. Our construction is instead based on option (c), which
is more general and standard practice in the spline field, see, e.g., [12–14] as well as the survey [15] on
invariant fairness measures and references therein.

In the next two subsections we first focus our attention on the derivation of the system of quaternion
equations that represent the interpolation constraints in the clamped and closed cases. Successively, we
introduce convenient scale-invariant shape measures to be optimized by the PH B–Spline interpolants.

In order to solve the resulting system of quaternion equations we need the following Lemma from [4]
(Lemma 1) which was originally formulated in [11].

Lemma 4.1. Let c be a given pure vector quaternion. All the solutions of the equation

A iA∗ = c (28)

form a one-parameter family
A(c, φ) = Ap(c)Qφ ,
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where Qφ = cos(φ) + i sin(φ) with φ ∈ [−π, π), and

Ap(c) =















√

|c|

c

|c| + i
∣

∣

∣

c

|c| + i

∣

∣

∣

, if c

|c| 6= − i

√

|c|k , if c

|c| = − i

is a particular solution of (28).

Remark 4.1. If in Lemma 4.1 c is a pure 2D vector quaternion, e.g.,

c = |c|( i cos(ω) + k sin(ω)) , (29)

where ω = arg(c), we obtain

A(c, φ) =















√

|c|
2+2 cos(ω) (− sin(φ)(1 + cos(ω)) + cos(φ)(1 + cos(ω)) i

+sin(φ) sin(ω) j + cos(φ) sin(ω)k ) , if c

|c| 6= − i
√

|c|(sin(φ) j + cos(φ)k ) , if c

|c| = − i

(30)

For the product A iA∗ to meet the form (29) according to Remark 3.2 the condition sin(φ) = 0 has to be
satisfied yielding

A(c, φ) = ±
√

|c|
(

i cos
(ω

2

)

+ k sin
(ω

2

))

,

the well known de Moivre solution to the complex number equation A2 = c in the planar case.

4.1. Interpolation by clamped, arbitrary degree PH B–Spline curves

On account of the fact that the q + 2 control points of the clamped PH B–Spline curve r(t) of degree
2n+ 1 depend on the m+ 1 quaternions Zi for i = 0, . . . ,m, (Corollary 3.1) we shall consider the following
interpolation problem:

Given m− n+ 2 3D points ck, k = n, . . . ,m+ 1, seek a PH B-spline curve r such that

r(tk) = ck , k = n, . . . ,m+ 1 . (31)

The knots tk, k = n, . . . ,m + 1, are chosen in accordance with the distribution of the interpolation points
ck and the application needs, e.g., by either uniform, chordal or centripetal parametrization. This amounts
to computing

τ0 = 0, τi = τi−1 + ‖cn+i − cn+i−1‖
θ
2, i = 1, . . . ,m− n+ 1, θ ∈

{

0,
1

2
, 1

}

and then setting tk :=
τk−n

τm−n+1
, k = n, . . . ,m+ 1, t0 = . . . = tn−1 = tn, tm+1 = tm+2 = . . . = tm+n+1.

Since tn and tm+1 are (2n+ 2)-fold knots in the partition ρ, the border control points of r(t) from (13),
are interpolated, i.e.,

r(tn) = r0 = cn , r(tm+1) = rq+1 = cm+1 .

After introducing the abbreviations ∆i := si+2n+1 − si, i = 0, . . . , q, we can write:

- Case 1 (m = n):
∆i = tn+1 − tn , i = 0, . . . , q

- Case 2 (m = n+ 1):

∆i =







tn+1 − tn , i = 0, . . . , n
tn+2 − tn , i = n+ 1, . . . , 2n
tn+2 − tn+1 , i = 2n+ 1, . . . , q
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- Case 3 (m ≥ n+ 2):

∆i =











tn+1+⌊ i
n+1

⌋ − tn , i = 0, . . . , 2n

tn+1+⌊ i
n+1

⌋ − tn−1+⌊ i+1

n+1
⌋ , i = 2n+ 1, . . . , (n+ 1)(m− n)− 1

tm+1 − tn−1+⌊ i+1

n+1
⌋ , i = (n+ 1)(m− n), . . . , q

where, for x ∈ R, ⌊x⌋ denotes the largest integer that is less than or equal to x.

The control points from (15) thus read as

ri = r0 +
1

2n+ 1

i−1
∑

j=0

∆jpj , i = 1, . . . , q + 1.

Due to the local support of the normalized B–Splines, for k = n+ 1, . . . ,m, we have

N2n+1
i,ρ (tk)

{

6= 0 , if i = (k − n)(n+ 1), . . . , (k − n)(n+ 1) + n

= 0 , otherwise

as well as

N2n+1
i,ρ (tn)

{

= 1 , if i = 0
= 0 , otherwise

and N2n+1
i,ρ (tm+1)

{

= 1 , if i = q + 1
= 0 , otherwise.

The equation system (31) thus becomes

(k−n)(n+1)+n−1
∑

j=0

Γj,kpj = ck − cn , k = n+ 1, . . . ,m+ 1 , (32)

with

Γj,k =































∆j

2n+ 1
, j = 0, . . . , (k − n)(n+ 1)− 1 ; k = n+ 1, . . . ,m

and j = 0, . . . , q ; k = m+ 1

∆j

n
∑

l=j−((k−n)(n+1)−1)

N2n+1
(k−n)(n+1)+l,ρ(tk)

2n+ 1
, j = (k − n)(n+ 1), . . . , (k − n)(n+ 1) + n− 1

where the B–Spline basis functions involved in (32) fulfill the conditions

(k−n)(n+1)+n
∑

i=(k−n)(n+1)

N2n+1
i,ρ (tk) = 1 for all k = n+ 1, . . . ,m.

The non-linear equation system (32) amounts to m − n + 1 vector valued equations for m + 1 quaternion
unknowns Zi, i = 0, . . . ,m. There are thus m + 3n + 1 (scalar) free parameters, which means that we can
construct more than one interpolant for each considered data set. All distinct interpolants share the same
degree 2n + 1 and the same knot partition ρ, but differ in the arrangement of the control points which
provides different shapes. Compared to the proposal presented in [6], that is limited to the case n = 2, the
control polygon of the quintic spatial PH interpolants we construct, is made of q + 2 = 3m control points
instead of 5m− 4, as by the piecewise quintic Bézier representation used in [6] entails.

Due to the special dependency of the pj on the unknown quaternions Zi, i = 0, . . . ,m this equation
system (32) allows a symbolic solution as we illustrate in the case n = 1. In this case the system (32) reduces
to

2(k−1)
∑

j=0

Γj,kpj = ck − c1 , k = 2, . . . ,m+ 1 . (33)
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By using (18) equations (33) may equivalently be written as

(Zk−1 +
Γ2k−3,k
2Γ2k−2,k

Zk−2) i (Z
∗
k−1 +

Γ2k−3,k
2Γ2k−2,k

Z∗k−2) = Ωk(Z0, . . . ,Zk−2) , (34)

where

Ωk(Z0, . . . ,Zk−2) =
ck − c1

Γ2k−2,k
−

[(

Γ2k−4,k
Γ2k−2,k

−

(

Γ2k−3,k
2Γ2k−2,k

)2
)

Zk−2 iZ
∗
k−2 (35)

+
1

Γ2k−2,k

(

k−3
∑

l=0

Γ2l,kZl iZ
∗
l +

k−2
∑

l=1

Γ2l−1,k
2

(Zl−1 iZ
∗
l + Zl iZ

∗
l−1)

)]

.

Applying Lemma 4.1 to (34) with A = Zk−1 +
Γ2k−3,k
2Γ2k−2,k

Zk−2 and c = Ωk(Z0, . . . ,Zk−2) yields

Zk−1 = −
Γ2k−3,k
2Γ2k−2,k

Zk−2 +A(Ωk(Z0, . . . ,Zk−2), φk−1) , k = 2, . . . ,m+ 1 . (36)

We can thus freely choose Z0, φ1, . . . , φm (which correspond to m+4 scalar free parameters) and determine
the remaining unknowns from them by (36). For an illustration, see the first two columns of Figure 1.
Analogously, one can proceed in the cases n ≥ 2.

4.2. Interpolation by closed, arbitrary degree PH B–Spline curves

Since, according to Proposition 3.1, the q + 2 control points of the closed PH B–Spline curve of degree
2n+1 depend on the m+n+1 quaternions Zi, i = 0, . . . ,m+n, we shall consider the following interpolation
problem:

Given m+ 1 3D points ck, k = n, . . . ,m+ n, determine a PH B–Spline curve r such that

r(tk) = ck , k = n, . . . ,m+ n+ 1 , (37)

where cm+n+1 = cn. As in the previous subsection, the knots tk, k = n, . . . ,m+n+1, can be computed by
standard parametrization techniques, with the only precaution of enforcing periodicity by Proposition 3.1.
This means that we shall first compute

τ0 = 0, τi = τi−1 + ‖cn+i − cn+i−1‖
θ
2, i = 1, . . . ,m+ 1, θ ∈

{

0,
1

2
, 1

}

and then set, for k = n, . . . ,m+ n+ 1,

tk :=
τk−n

τm+1
, and tn−1 := tn − (tm+n+1 − tm+n), tm+n+2 := tm+n+1 + (tn+1 − tn). (38)

The additional knots t0, . . . , tn−2 and tm+n+3, . . . , tm+2n+1 may have any arbitrary location complying with
the ascending ordering of knots. Due to the periodicity of the knot vector defined via (38), the condition

r(tn) = r(tm+n+1) = cn

is fulfilled.
As in the clamped case, we consider the abbreviations ∆i := si+2n+1 − si, i = 0, . . . , q and, recalling the
relationship between the knots si and tj , we write

∆i = t⌊ i+2n+1

n+1
⌋ − t⌊ i

n+1
⌋.
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Exploiting this notation, the control points in (15) thus read as

ri = r0 +
1

2n+ 1

i−1
∑

j=0

∆jpj , i = 1, . . . , q + 1.

Due to the local support of the normalized B–Splines we have

N2n+1
i,ρ (tk)

{

6= 0 , if i = k(n+ 1)− n, . . . , k(n+ 1)
= 0 , otherwise.

for k = n, . . . ,m+ n+ 1.

The equation system (37) thus becomes

k(n+1)−1
∑

j=0

Γj,kpj = ck − r0 , k = n, . . . ,m+ n , (39)

with

Γj,k =























∆j

2n+ 1
, j = 0, . . . , (k − 1)(n+ 1) ; k = n, . . . ,m+ n

∆j

n
∑

l=j−(k−1)(n+1)

N2n+1
k(n+1)−n+l,ρ(tk)

2n+ 1
, j = k(n+ 1)− n, . . . , k(n+ 1)− 1

where the involved B–Spline basis functions fulfill the m+ 1 conditions

k(n+1)
∑

i=k(n+1)−n

N2n+1
i,ρ (tk) = 1 for all k = n, . . . ,m+ n.

Note that in (39) the equation for k = m + n + 1 does not yield any new constraint due to the closing
conditions of Proposition 3.1. The non-linear equation system (39) thus amounts to m + 1 vector valued
equations. Together with the n+ 1 equations from Proposition 3.1

(m+n+1)(n+1)−k−1
∑

j=n(n+1)−k

∆j pj = 0 , k = 0, . . . , n, (40)

guaranteeing the closure of the curve, we thus havem+n+2 vector valued equations form+n+1 quaternion
unknowns Zi, i = 0, . . . ,m+ n, which yields m+ n− 2 (scalar) free parameters. Moreover, three additional
degrees of freedom are provided by the 3D coordinates of the point r0 (see (15)). Therefore there remain
m+ n+ 1 degrees of freedom.

As in the clamped case the system (39), (40) allows a closed form solution. For example, for n = 1
equations (39) are equivalent to

A iA∗ = Ωk(Z0, . . . ,Zk−2, r0) , k = 1, . . . ,m+ 1 , (41)

where A = Zk−1 +
Γ2k−2,k

2Γ2k−1,k
Zk−2 and

Ωk(Z0, . . . ,Zk−2, r0) =
1

Γ2k−1,k

[

ck − r0 −

k−3
∑

l=0

(

Γ2l+1,k Zl iZ
∗
l +

Γ2l+2,k
2

(Zl iZ
∗
l+1 + Zl+1 iZ

∗
l )

)

]

+

[

(

Γ2k−2,k
2Γ2k−1,k

)2

−
Γ2k−3,k
Γ2k−1,k

]

Zk−2 iZ
∗
k−2 , (42)
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and considering Zl = 0 for l < 0. By Lemma 4.1 (41) has the solutions

Zk−1 = −
Γ2k−2,k
2Γ2k−1,k

Zk−2+A(Ωk(Z0, . . . ,Zk−2, r0), φk−1) =: Fk−1(Z0, . . . ,Zk−2, r0, φk−1) , k = 1, . . . ,m+1 .

(43)
Considering the recursive nature of these solutions we have

Fk−1(Z0, . . . ,Zk−2, r0, φk−1) = Fk−1(r0, φ0, . . . , φk−1) , k = 1, . . . ,m+ 1. (44)

Similarly, the first of the two equations (40) yields the solution

Zm+1 = −
∆2m+2

2∆2m+3
Zm +A(Ωm+2(Z0, . . . ,Zm), φm+1) =: Fm+1(r0, φ0, . . . , φm+1) , (45)

where

Ωm+2(Z0, . . . ,Zm) = −
1

∆2m+3

(

m−1
∑

l=1

∆2l+1Zl iZ
∗
l +

m−1
∑

l=0

∆2l+2

2
(Zl iZ

∗
l+1 + Zl+1 iZ

∗
l )

)

+

[

(

∆2m+2

2∆2m+3

)2

−
∆2m+1

∆2m+3

]

Zm iZ∗m . (46)

Replacing Zm+1 from (45) into the difference of the first and the second equation of (40) yields the following
condition for r0:

∆2m+3Fm+1(r0, φ0, . . . , φm+1) iF
∗
m+1(r0, φ0, . . . , φm+1)−∆1F0(r0, φ0) iF

∗
0 (r0, φ0) = 0 (47)

We can thus freely choose φ0, . . . , φm+1, amounting tom+2 degrees of freedom, and determine Z0, . . . ,Zm+1

recursively from them by (43) and (45) analytically and finally obtain r0 from (47) numerically. For an
illustration, see the last two columns of Figure 1. We may proceed in an analogous way for n ≥ 2.

In order to identify the best interpolant within the family of interpolants, with respect to a suitable
criterium, in the next section we propose an optimization approach where we use the unknown quaternions
as degrees of freedom in order to unify the computation for arbitrary values of n.

4.3. Numerical method for solving the interpolation problems
The considered interpolation problems produce an underdetermined system of N nonlinear equations

involving M quaternion unknowns (M > N). Introducing the notation Zj ∈ R
4 \ 0, j = 0, . . . ,M − 1, to

refer to the jth quaternion unknown and the vector notation Z = (Z0,Z1, · · · ,ZM−1)
T , we can write the

system of equations (32) or (39) as
Fi(Z) = 0, i = 1, . . . , N. (48)

To identify an optimal solution to the interpolation problem we minimize a scale-invariant fairness mea-
sure Ê(Z) subject to the N equality constraints specified in (48). This entails solving the constrained
minimization problem

minimize Ê(Z)

subject to Fi(Z) = 0, i = 1, . . . , N.
(49)

To optimize spline curves it is common, see, e.g., [14, 15] and references therein, to consider fairness measures
based on curvature and possibly torsion, such as

E1(Z) =

∫ tp+1

tn

κ2(t)|r′(t)| dt,

E2(Z) =

∫ tp+1

tn

(κ2(t) + τ2(t))|r′(t)| dt,

E3(Z) =

∫ tp+1

tn

κ′2(t)

|r′(t)|
dt,

E4(Z) =

∫ tp+1

tn

κ′2(t)

|r′(t)|
+ κ2(t)τ2(t)|r′(t)| dt,

(50)
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where, for a PH B–Spline curve r(t), the curvature and torsion have the well-known expressions

κ(t) =
|r′(t)× r′′(t)|

|r′(t)|3
=
|p(t)× p′(t)|

|p(t)|3
, τ(t) =

(

r′(t)× r′′(t)
)

· r′′′(t)

|r′(t)× r′′(t)|2
=

(

p(t)× p′(t)
)

· p′′(t)

|p(t)× p′(t)|2
.

In our setting, the above functionals depend on the free quaternion unknowns Z. Moreover, under scaling
of Z by η ∈ R \ {0}, they behave as (see [15])

E1(ηZ) =
1

η2
E1(Z) , E2(ηZ) =

1

η2
E2(Z),

E3(ηZ) =
1

η6
E3(Z) , E4(ηZ) =

1

η6
E4(Z) .

On the other hand, the total arc length of r(t), t ∈ [tn, tp+1], given by

G(Z) =

∫ tp+1

tn

|r′(t)| dt,

behaves under the same scaling as
G(ηZ) = η2G(Z).

Thus, scale-invariant counterparts of the fairness measures (50), read as

Ê1(Z) = G(Z)E1(Z),

Ê2(Z) = G(Z)E2(Z),

Ê3(Z) = (G(Z))3E3(Z),

Ê4(Z) = (G(Z))3E4(Z).

We can hence select Ê in (49) to be either one of Êj , j = 1, . . . , 4. In this respect, it should be noted that

the integrand in Ê1 is a continuous function for n ≥ 2 while the integrands of Ê2, Ê3, Ê4 are continuous for
n ≥ 3. As a consequence, for smaller values of n integration should be performed numerically.

A sample of the obtained results is presented in Figs. 2 to 4. Each row shows the solution to the
interpolation problem, obtained by minimizing either one of the scale-invariant functionals Ê1 (red - first
row), Ê2 (orange - second row), Ê3 (green - third row), Ê4 (purple - fourth row). For each curve the control
points of the B–Spline representation as well as the curvature and torsion plots are displayed along with the
curvature and torsion of the curve from which the interpolation points were taken (dotted line).

5. Rational B–Spline Euler–Rodrigues frame and rational tensor product B–Spline pipe sur-

faces

For polynomial PH curves a rational adapted frame, the so–called Euler–Rodrigues frame (ERF) has
been a subject of several studies, see, e.g., [16–18]. Since the ERF is rational for PH curves and is defined in
all curve points, it is better suited for multiple applications than the usual, well–known Frenet-Serret frame.

For a regular PH B–Spline curve, we can define an analogous frame, dubbed rational B–Spline Euler–
Rodrigues frame (RBSERF), given by the trihedron

(e1(t), e2(t), e3(t)) =

(

Z(t) iZ∗(t),Z(t) jZ∗(t),Z(t)kZ∗(t)
)

|Z(t)|2
. (51)

As in [18] its derivatives may be written as

e′i = ω × ei , i = 1, 2, 3 (52)
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where the Darboux vector ω = (ω1, ω2, ω3)
T has the components ω1 = e3 · e

′
2, ω2 = e1 · e

′
3 and ω3 = e2 · e

′
1.

Rational representations of pipe surfaces are of interest in many applications and have been studied, e.g.,
in [2, 19, 20]. Since the Euler-Rodrigues frame from (51) of the spatial PH B–Spline curve r(t) from (13)
is a rational B–Spline frame, it is well suited for defining a pipe surface of radius d along r(t) as has been
done in [2] for polynomial curves:

x(u, t) = r(t) + d
(1− u2) e2(t) + 2u e3(t)

1 + u2
. (53)

For its integration in a NURBS based CAD system it is useful to provide a rational tensor product B–Spline
representation of this pipe surface. To this end, we first write el(t), l ∈ {2, 3} from (51) as

el(t) =
Z(t) l lZ

∗(t)

Z(t)Z∗(t)
=

q
∑

k=0

pl
kN

2n
k,ν (t)

q
∑

k=0

vkN
2n
k,ν (t)

,

with

pl
k =

p
∑

i=0

p
∑

j=0

χ
i,j
k Zi l l Z

∗
j , l ∈ {2, 3} , vk =

p
∑

i=0

p
∑

j=0

χ
i,j
k ZiZ

∗
j , (54)

and l 2 standing for j while l 3 for k , respectively. Then we recall that the minimal degree for a rational
C1 continuous parametrization of a circle is four [21]. Using the definition of a closed B–Spline curve (see,
e.g, [1]) we thus write it as

c(s) =

(

c1(s)
c2(s)

)

=

∑l+4
i=0 wiciN

4
i,ζ
(s)

∑l+4
i=0 wiN

4
i,ζ
(s)

, s ∈ [s4, sl+5] , (55)

where ζ = {si}
l+9
i=0 is the knot partition satisfying the periodicity conditions

sl+1+k − sl+k = sl − sl−1 , k = 2, . . . , 7 ,

while ci = (c1i , c
2
i )

T ∈ R
2 and wi ∈ R are the control points and the weights satisfying respectively the

periodicity conditions

cl+1 = c0 , . . . , cl+4 = c3 , wl+1 = w0 , . . . , wl+4 = w3,

in order to guarantee that c(s4) = c(sl+5). By adapting the results from [21] to the representation (55) we
obtain for κ ∈ N, κ ≥ 2 that the knot partition is

ζ = {si}
3κ+8
i=0 = {< 0 >3, < 1 >3, . . . , < κ+ 2 >3}. (56)

Moreover, introducing the notation

α =
π

2κ
, β =

(2− κ)π

2κ
, γ =

1

cos(α)
, δ =

cos2(α) + 2

3 cos2(α)
, ε =

2 cos4(α)− cos2(α) + 2

3 cos2(α)
, (57)

the following control points and weights are obtained for k = 0, . . . ,
⌊

3κ−1
3

⌋

:

c3k =
δ

ε

(

cos(β + 4kα)
sin(β + 4kα)

)

, w3k = ε ,

c3k+1 = γ

(

cos(β + (4k + 1)α)
sin(β + (4k + 1)α)

)

, w3k+1 = 1 , (58)

c3k+2 = γ

(

cos(β + (4k + 3)α)
sin(β + (4k + 3)α)

)

, w3k+2 = 1 .
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In this way, the pipe surface from (53) has the rational tensor-product B–Spline representation

x(s, t) =

3κ+3
∑

i=0

w
∑

j=0

wi (Rj + dZi,j)N
4
i,ζ(s)N

4n+1
j,τ (t)

3κ+3
∑

i=0

w
∑

j=0

wi γjN
4
i,ζ(s)N

4n+1
j,τ (t)

, (s, t) ∈ [1, κ+ 1]× [tn, tp+1] (59)

with τ = {< t−1 >2n+1, {< tk >3n+2}k=0,...,p+n+1, < tp+n+2 >2n+1} and w = (3n + 2)(p + n + 2) − 1 as
in [1, section 4.2], ζ as in (56), wi as in (58) and

Rj =

q+1
∑

h=0

q
∑

k=0

ζ
h,k
j vkrh , Zi,j =

q+1
∑

h=0

q
∑

k=0

ζ
h,k
j (c1ip

2
k + c2ip

3
k), γj =

q+1
∑

h=0

q
∑

k=0

ζ
h,k
j vk

with ζ
h,k
j calculated as in [1, section 4.2], p2k,p

3
k, vk from (54) and rh from (15).

Remark 5.1. If we suppose the curve r(t) to be planar, e.g., to lie in the xz–plane, by Remark 3.2 (ii)
we have Z(t) = i v(t) + kh(t), and thus e1(t) and e3(t) frame the curve in the xz–plane and e2(t) shows
in y–direction for all t ∈ R. The rational pipe surface in the form (53) yields the offset curves of r(t) for
1− u2 = 0 as

x(±1, t) = r(t)± d e3(t) .

After reparametrization of the circle
(

1−u2

1+u2 ,
2u

1+u2

)T

to (55) condition 1− u2 = 0 becomes

c1(s) =

∑l+4
i=0 wic

1
iN

4
i,ζ
(s)

∑l+4
i=0 wiN

4
i,ζ
(s)

= 0 .

By additionally considering (c1(s))2 + (c2(s))2 = 1 we recover from (59) the formulae for the offsets of a
planar PH B–Spline curve given in [1].

The ERF on polynomial PH curves has also been used as reference frame in the investigation for identi-
fying those PH curves that admit rational rotation-minimizing frames, see, e.g., [17, 22–25]. This turns out
to be a rather difficult task which is far from being fully accomplished.

In [16] the authors investigate whether for a given polynomial PH space curve the ERF is rotation
minimizing and find that the minimal degree for the curve to have a rotation minimizing ERF is 7.

As a first approach in the investigation of rotation minimizing frames for PH B–Spline curves we remark
that the condition ω1 = 0 for the ERF to be rotation minimizing is equivalent to requiring Z iZ ′∗ to be a
pure vector quaternion or

f(t) := u(t)v′(t)− u′(t)v(t)− g(t)h′(t) + g′(t)h(t) = 0 , (60)

where

Z ′(t) = u′(t) + i v′(t) + j g′(t) + kh′(t) = n

p
∑

i=1

Z ′iN
n−1
i,µ′ (t) (61)

with Z ′i = u′i + i v′i + j g′i + kh′i =
Zi−Zi−1

ti+n−ti
and µ′ = {t1, . . . , tp+n}. Equation (60) is thus equivalent to

w
∑

k=0





p
∑

i=0

p
∑

j=1

ξ
i,j
k cij



N2n−1
k,τ (t) = 0 , (62)
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where w = (p+n)(n+1)−1, τ = {< t0 >
n, < t1 >

n+1, . . . , < tp+n >n+1, < tp+n+1 >
n}, cij = uiv

′
j − viu

′
j −

gih
′
j + hig

′
j and the coefficients ξ

i,j
k are such that

w
∑

k=0

ξ
i,j
k N2n−1

k,τ (t) = Nn
i,µ(t)N

n−1
j,µ′ (t) .

Since in the case of PH B–Spline curves not only the degree of the curve, but also the knot partition is
involved in the questions whether the RBSERF is rotation minimizing on the one hand, and the existence
investigation and possible construction of rational B–Spline rotation minimizing frames on the other hand,
the complexity of these investigations is expected to be rather high and is postponed to future work.

However condition (60) can conveniently be used within the interpolation framework presented in section
4, to construct curves whose ERF is as rotation minimizing as possible. Accordingly, we may seek to minimize
the rotation of the frame represented by the functional

E0(Z) =

∫ tp+1

tn

(

u(t)v′(t)− u′(t)v(t)− g(t)h′(t) + g′(t)h(t)
)2

dt .

Observing that the above functional is scale-dependent, since, for η ∈ R \ {0},

E0(ηZ) = η4E0(Z) ,

one may derive a convenient scale-invariant functional by composing E0 with either one of the fairness
measures in (50). This generates a scale-invariant fairness and rotation measure, as e.g.,

Ê0(Z) = E0(Z)(E1(Z))
2 ,

which can be inserted in place of Ê in (49). Minimization of Ê0 subject to the interpolation constraints
in (48) yields a PH B–Spline curve that interpolates a given sequence of 3D points and, according to (60),
minimizes the rotation of the Euler–Rodrigues frame. This spine curve prevents an unwanted distortion of
a corresponding pipe surface that might occur when a different PH B–Spline curve is used instead. This
difference in the results can easily be observed in the behavior of the control nets and the parameter lines
of the corresponding rational pipe surfaces in Figures 5 and 6. Therein we display in the first column the
PH B–Spline curve obtained by minimizing functional Ê0(Z), a corresponding rational tensor product pipe
surface for κ = 2, as well as the plot of the function f(t) from (60). In the second column we have the
same visual data of an example of an interpolating curve obtained by minimizing functional Ê1(Z) in the
clamped case and by pure point interpolation without minimization in the closed case. In the examples of
Figure 5 the value of the functional Ê0 is 55.1340 in the first case and 1.1681 · 10

5 in the second case. In
the examples of Figure 6 the value of the functional Ê0 is 31.9416 in the first case and 1.3713 · 10

6 in the
second case.

6. Conclusions and future work

While for representing and constructing planar PH B–Spline curves a complex model is adopted, in the
case of spatial PH B–Spline curves more involved algebraic structures are exploited. Precisely, we have
shown that the construction of the very general class of spatial Pythagorean-Hodograph (PH) B–Spline
curves entails a quaternion model that allows the user to efficiently calculate their control points and their
arc length. We have also provided the exact representation of rational tensor product B–Spline pipe surfaces
having the constructed PH B–Spline curve as spine curve by using the newly introduced notion of rational
B–Spline Euler–Rodrigues frames.

As a first practical application of this new class of curves, we have discussed how to interpolate an
arbitrary sequence of 3D points by clamped or closed PH B–Spline curves of arbitrary degree 2n+ 1, n ≥ 1
and corresponding smoothness Cn. Among the infinitely many PH B–Spline curves passing through the
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data points, we have selected the one that minimizes a scale-invariant fairness functional based on curvature
and possibly torsion. The nice behavior of the curves obtained by such a constrained minimization problem
has been illustrated by several numerical examples. We have also visualized corresponding rational tensor
product B–Spline pipe surfaces. By the distortion behaviour of their parameter lines and control nets
the effect of minimizing the rotation of the underlying Euler-Rodrigues frame by means of an appropriate
scale-invariant fairness functional is illustrated.

We believe this new class of spatial B–Spline curves to be very suitable for many more applications and
think worthy of consideration for future work, among others, the investigation of conditions for identifying
those PH B–Spline curves that admit rational rotation-minimizing frames, and the construction and study
of Pythagorean B–Spline curves, where the Pythagorean condition applies to the curve itself and not to its
hodograph.
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[20] Z. Š́ır, B. Jüttler, Spatial Pythagorean Hodograph Quintics and the Approximation of Pipe Surfaces, in: R. Martin,

H. Bez, M. Sabin (Eds.), Mathematics of Surfaces 2005, Springer- Veralg, Berlin Heidelberg, 2005, pp. 364–380.
[21] C. Bangert, H. Prautzsch, Circle and sphere as rational splines, Neural, Parallel & Scientific Computations - computer

aided geometric design 5(1-2) (1997) 153–162.
[22] R. Farouki, C. Han, Rational approximation schemes for rotation–minimizing frames on pythagorean–hodograph curves,

Computer Aided Geometric Design 20 (2003) 435–454.

19



[23] R. Farouki, C. Giannelli, C. Manni, A. Sestini, Quintic space curves with rotation–minimizing frames, Computer Aided
Geometric Design 26 (2009) 580–592.

[24] R. Farouki, T. Sakkalis, Rational rotation–minimizing frames on polynomial space curves of arbitrary degree, Journal of
Symbolic Computation 45 (2010) 844–856.

[25] R. Farouki, T. Sakkalis, A complete classification of quintic space curves with rational rotation–minimizing frames, Journal
of Symbolic Computation 47 (2012) 214–226.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Clamped and closed PH B-spline curves corresponding to n = 1 without (first row) and with control polygon (second
row). From left to right: clamped spatial curves obtained with m = 4 and different values of φi and Z0; clamped curve lying
on the xz plane obtained with m = 4, Z0 = (0, 3, 0, 4) and φi = 0, ∀i; closed spatial curves obtained with m = 4 and different
values of φi (for this curve, the initial guess for the numerical solver is the zero vector); closed curve lying on the xz plane
obtained with m = 6 and φi = 0, ∀i (for this curve, the initial guess for the numerical solver is the vector (1, 0) of the xz

plane).
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Figure 2: Septic C3 PH B–Spline curves, corresponding to n = 3 and m = 11, with uniform parametrization and clamped
knot partition. The interpolation points are obtained by sampling at equi-spaced parameter values the curve (cos t, sin t, t),
t ∈

[

0, 47

10
π
]

. Columns 3 and 4 contain the graphs of curvature and torsion, respectively.
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Figure 3: Cubic C1 PH B–Spline curves, corresponding to n = 1 and m = 7, with chordal parametrization and periodic knot
partition. The interpolation points are obtained by sampling at equi-spaced parameter values the curve (3 cos t, 3 sin t, sin 2t),
t ∈ [0, 2π]. Columns 3 and 4 contain the graphs of curvature and torsion, respectively.
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Figure 4: Quintic C2 PH B–Spline curves, corresponding to n = 2 and m = 9, with chordal parametrization and periodic knot
partition. The interpolation points are obtained by sampling at equi-spaced parameter values the curve (cos2 t, cos t sin t, sin t),
t ∈ [0, 2π]. Columns 3 and 4 contain the graphs of curvature and torsion, respectively.

23



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-40

-35

-30

-25

-20

-15

-10

-5

Figure 5: Quintic C2 PH B–Spline curves, corresponding to n = 2 and m = 5, with chordal parametrization and clamped knot
partition. The interpolation points are obtained by sampling at equi-spaced parameter values the curve (cos2 t, cos t sin t, sin t),

t ∈ [π
3
, 5π

3
]. The first column contains the result obtained by minimizing functional Ê0, the second column displays the result

obtained by minimizing functional Ê1. First row: interpolation curve, second row: rational tensor product pipe surface with
control net, third row: graph of f(t) from (60).
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Figure 6: Quintic C2 PH B–Spline curves, corresponding to n = 2 and m = 11, with chordal parametrization and periodic knot
partition. The interpolation points are obtained by sampling at equi-spaced parameter values the curve (cos2 t, cos t sin t, sin t),

t ∈ [0, 2π]. The first column contains the result obtained by minimizing functional Ê0, the second column displays the result
obtained without minimization. First row: interpolation curve, second row: rational tensor product pipe surface with control
net, third row: graph of f(t) from (60).
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