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Abstract

The water injection is one of the technologies assessed in the development of new internal combustion engines fulfilling new
emission regulation and policy on Auxiliary Emission Strategy assessment. Besides all the positive aspects about the reduction
of mixture temperature at top dead centre and exhaust gases temperature at turbine inlet, it is well known that the water vapour
acts as a mixture diluter, thus diminishing the reactants burning rate. A common methodology employed for the RANS CFD
simulation of  the reciprocating internal  combustion engines  turbulent  combustion relies  on the flamelet  approach,  which
requires  the  knowledge of  the  laminar  flame speed  and  thickness.  Typically,  these  properties  are  calculated  by mean of
correlation laws, but they do not keep into account the presence of water mass fraction. A more precise methodology for the
definition of both the laminar flame speed and thickness is thus required. The interrogation of a previously computed look-up
table of such properties during run time seems to be a suitable and more accurate method than using correlations. In order to
generate a database with all the possible combinations of chemical and physical properties that can be reached during the
simulation of internal combustion engines, including the presence of a given mass fraction of water vapour and exhaust gases,
a very high number of detailed chemical kinetics simulations needs to be performed. The present work aims to introduce a new
methodology for the fast generation of laminar flame characteristics look-up tables that account also for the presence of water
vapour in the reacting mixture. By using this new approach, engine designers will have the possibility to generate look-up
tables of laminar flame characteristics for different fuels with the same computational cost that is currently required to generate
a single table.

1. Introduction

1.1 Water injection in internal combustion engines

The water  injection in  reciprocating internal  combustion engines  is  viewed by many researchers  as  one of  the technical
solutions to the critical issues introduced to reduce CO2  and NOx emissions, such as stoichiometric combustion, downsizing
and higher compression ratios. In fact, most og these strategies lead to an increase in knock and pre-ignition tendencies inside
the engine that must be carefully avoided, and to an increase in TiT (Turbine Inlet Temperature), in the case of a turbocharged
powertrain [1]. 

Besides pure thermodynamics considerations and engine cycle analyses [2], the addition of water has a large impact on the
combustion process.  In particular,  the addition of a diluent is expected to reduce the LFS (Laminar Flame Speed) of the
reacting mixture, which is an essential property required to calculate the reaction rate in most combustion models such as:
ECFM-3Z [3] and G-Equation [4], which are based on the flamelet assumption. State of the art combustion models, however,
rely on experimental  correlations for the LFS [5],  that  present several  shortcomings with respect  to the sensitivity to the
chemical properties of the mixture, and do not keep in to account the presence of water vapour as a diluent. This is the reason
why several authors [6][7] have proposed to refer to databases of LFS generated by mean of detailed chemical simulations,
rather than to classical correlations. The generated datasets can be used during simulation by direct interpolation [6] or with the
use of new correlations fitting the new data [7]. 

1.2 Aim of the activity

The computational cost required to generate a database of LFS at given conditions is directly proportional to the chemical
kinetics  scheme  adopted,  and  to  the  number  of  single  values  (breakpoints)  considered  for  each  variable,  i.e.  Pressure,
Temperature of the unburnt mixture, Equivalence ratio between fuel and fresh air, EGR (Exhaust Gas Recirculation) and Water



mass fractions. It is straightforward to notice that reducing the number of breakpoints even for only one variable can lead to a
significant time reduction, but also to a lack in the accuracy of the method. The focus of the present work is to analyse the
properties of a database of laminar flame speed, where the effect of water addition is accounted for, and define a new strategy
for the more rapid development of new look-up tables, based on such observations. In particular, machine learning algorithms
will be adopted to account for the effect of water vapour addition to the unburnt gas mixture definition, in order to strongly
reduce the number of simulated points required to capture the relationship between LFS and water mass fraction.

2. Laminar flame speed modelling

2.1 Correlation law for laminar flame speed

The LFS of  a  reacting  mixture  is  defined  in  literature  [8]  as  a  function  of  the  physical  properties  P (Pressure)  and  T u

(Temperature of the unburnt gas) and chemical characteristics ϕ  (Equivalence ratio) and X EGR  (mass fraction of the

diluent) of the fresh mixture with the profile of Equation 1:
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where  T 0  is  the  reference  unburnt  gas  temperature  and  P0  the reference  pressure  values  at  which  sL
0  was

calculated (the values of T 0  and P0  are usually taken at ambient conditions). The factor k ∙ XEGR  is a correction

term introduced to account for the presence of EGR as inert ( k  has values found in literature between 1.7 and 2.3 [8]). The

value  ϕm  corresponds to the equivalence ratio at which the maximum LFS was found, while the other coefficients in

Equations 2,  3,  4  must  be  modified  as  a  function of  the chosen  fuel  and  correlation (usually  Metghalchi  and  Keck [9],
Heywood [8] or Gülder [10]).

2.2 Effect of the addition of EGR and water

Recently, a new correlation was proposed for keeping into account also the effect of water vapour as a diluent, based on
detailed chemical simulations performed on relevant conditions that are reached during engine operation [11]. The results of
the  correlation,  in  terms  of  sensitivity  to  the  diluent  effect  of  water  addition  at  relevant  conditions,  were  adequately  in
agreement with the values of the detailed chemical simulations. On the other hand, it resulted that the use of a literature-
standard power-law function for higher P and Tu values led to the prediction of unphysical values of LFS for ϕ  greater than
stoichiometric. The effect of the addition of water and EGR in reducing the LFS was, however, captured well by using a linear
correlation, in the form of Equation 5:

sL
sL0

=(1−k EGR ∙X EGR ) ∙ (1−kwat ∙ XH 2O )
(5)

where sL  is the actual LFS, sL0  indicates LFS at the same P, Tu and ϕ  but with X EGR=0  (EGR mass fraction)

and X H 2O=0  (water vapour mass fraction), and k EGR  and kwat  are the correlation coefficients.

3. Chemical simulations of laminar flames 

3.1 Characteristics of the simulations

The detailed chemical simulation for the definition of laminar flame speed and thickness at each given condition is performed 
in a one-dimensional domain with successive mesh refinement. The free flame is considered adiabatic, planar and steady, 
reached by a mass flow of fresh mixture, whose velocity corresponds to the displacement speed of the reaction zone [5]. Since 
the simulation is performed for an unstrained steady flame, the displacement speed can be considered corresponding to the 
reaction speed, and therefore, its value represents the LFS required for the combustion models [5]. The definition of the species
that constitute the unburnt mixture is performed based on the equivalence ratio between fuel and air (composed only by O2 and
N2) and on the presence of EGR and water vapour addition. The composition of EGR is calculated based on a complete 



stoichiometric combustion, therefore from a combination of O2, N2 and H2O whose mass fractions only depend on the fuel 
formulation.

The adopted methodology for the database generation and the chemical simulations is based on the work by Cazzoli et al. [6],
which relies on the Cantera [12] implementation in Python and requires to choose other three key aspects of the simulations:
the chemical kinetics mechanism, the fuel surrogate  and the breakpoints for all the accounted variables.

3.2 Choice of the chemical kinetics scheme

The selection of the chemical kinetics scheme must keep into account three parameters:

- the presence of reactions for all the species of the chosen surrogate;
- the number of species and reactions considered, under the point of view of the completeness of the mechanism
- the computing time required to run a simulation.

The chemical kinetics schemes considered in the present work for the generation of the database are reported in Table 1 and
they were developed for simulating the reacting features of gasoline under both high and low temperature conditions. The
observations reported by Cazzoli et al. [11], and an initial testing to perform a time estimate for the simulations have led to the
decision of referring the present activity to results obtained with the complete POLIMI [13] scheme. 

The data related to computing times are obtained with a benchmark performed on ten successive simulations on a computer
with Intel Xeon Platinum with 3.0 GHz, 36 cores, 144 GB ram, Cantera version 2.3.0 and Python version 3.7.2. The time
required  for  the  computation  is  proportional  to  the  number  of  species  and  reactions  present  in  the  chemical  kinetics
mechanism, but also to the physical and chemical properties of the simulated point, since the simulation might require more
iterations to converge. On average, a set of simulations performed using the POLIMI scheme [14] has required 1000 seconds
per point.

Table 1 Description of the tested chemical kinetics mechanisms.

Time/Sim Species  Reactions
POLIMI red. [14] 0.15 x REF 156 3465
POLIMI [13] REF 451 8153
LLNL [15] >3 x REF 1387 10481

The LLNL mechanism [15] would have required unaffordable computing resources, while the POLIMI reduced scheme [14]
was found to produce less accurate results with respect to experimental data, in terms of laminar flame speed, as reported in
Figure 1. 

Figure 1 Comparison of Polimi and Polimi reduced mechanisms with experimental data [15] for the prediction of LFS of PRF87 at P=20 bar,
T=353 K.

3.3 Choice of the surrogate fuel

Since the aim of the activity is to generate a database of LFS for the simulation of gasoline combustion, the analysis is mainly
conducted on the fuel surrogate named  TAE7000 (composition reported in Table 2) which was experimentally designed to
provide similar values of reaction speed to a TOTAL commercial gasoline [16]. 



For validating the robustness of the methodology, with respect to the adopted surrogate, it was chosen to perform the same
computations also for other two fuels with different composition, namely PRF87 [17] and TRF95-2 [18], described in Table 2.

Table 2 Description of the composition of the analysed surrogates.

SURROGATE COMPOSITION RON

TAE_7000 [16]
i-C8H18 (42.9%) 
n-C7H16 (13.7%) 
C7H8 (43.4%)

95.1

PRF87 [17]
i-C8H18 (87.0%) 
n-C7H16 (13.0%)

87

TRF95-2 [18]
i-C8H18 (82.04%) 
n-C7H16 (7.96%) 
C7H8 (10%)

95

The values of LFS for a reference operating point and different equivalence ratios are reported in Figure 2, to emphasise the
differences between the chosen fuel surrogates.

Figure 2 LFS of the different fuel surrogates at P=50 bar, T=600 K, EGR=0% and XH2O=0%.

3.4 Choice of the simulated points

A complete LFS database must present values for all the conditions that can be encountered during the simulation of the
combustion process in terms of P, Tu, ϕ  and mass fraction of EGR and Water. Since the range of mixture equivalence ratio
inside the combustion chamber might be wide, and that the look-up table should be applicable to both low load and full load
engine conditions, the simulations were performed for all the combinations of the five variables and their limits are reported in
Table 3. The number of break points for each variable was chosen to adequately capture the main trends, with a focus on those
regarding the mass fraction of each mixture component.

Table 3 Description of the breakpoints used for generating the dataset of LFS.

Min Max # Points
¿̄
P ¿

4 290 8

Tun(K ) 358 700 5

−¿
ϕ ¿

0.3 1.8 14

X egr (%) 0 20 10

X H 2O (%) 0 6 7



The water mass fraction is limited to 6% because it was reported in [1] that, during engine operations, it is not feasible to use a
higher amount  of  water  than  of  fuel  at  stoichiometric  conditions,  mainly because  of  the evaporation times of  the liquid
droplets. The parameter s, defined as the ratio of injected water mass and stoichiometric fuel quantity should remain under 1.0,
which corresponds, assuming C8H18 as fuel representative, to a water mass fraction of approximately 6.23%, not including the
EGR mass fraction. 

4. Effect of water addition on LFS 

The analysis reported in this section refers to the simulations performed on the  TAE7000 surrogate but can be qualitatively
extended to the other fuels. It can be noticed that the effect of the addition of water vapour to the unburnt mixture definition

leads to a decrease in terms of LFS. This effect, as reported for two combinations of P and Tu  in Figure 3 and 4, is higher

for near stoichiometric reacting mixtures. This behaviour was found also in literature [19] and was represented by Cazzoli et al.
[11] as a linear dependence on the water mass fraction.

Figure 3 LFS function of Phi and XH2O at P=50 bar, T=600 K and EGR=1%.

Figure 4 LFS function of Phi and XH2O at P=90 bar, T=700 K and EGR=3%.

4.1 Evaluation of the hypothesis of linear dependence 

From Equation 5, the effective value of  kwat  can be calculated from the simulated values of laminar flame speed, as in

Equation 6, where sL  represents the actual LFS with a mass fraction of water vapour equal to XH2O and sL0  the LFS at

the same conditions of P, Tu, ϕ  and Xegr without water addition:

kwat=(1−
sL
sL0 )/X H 2O

(6)



In Figures 5, 6 the behaviour of the actual  kwat  calculated from Equation 6 is represented, with respect to water mass

fraction and equivalence ratio at specific conditions of P, Tu  and EGR. The two surfaces are qualitatively representative of

the behaviour of the full database and are characterized by:

- a local constant value, near stoichiometric conditions and values of XH2O smaller than 4%;

- a value function only of ϕ  for rich conditions (i.e. ϕ ≥1.5 );

- a value function of both ϕ  and X H 2O  for lean conditions (i.e. ϕ ≤0.75 ).

Figure 5 kwat function of Phi, XH2O at P=50 bar, T=600 K, EGR=1%.

Figure 6 kwat function of Phi, XH2O at P=90 bar, T=700 K, EGR=3%.

This behaviour underlines how the hypothesis of a linear correction to account for the presence of water in the reacting mixture
represents a good approximation, if the mixture equivalence ratio is  near stoichiometric and the value of the water mass
fraction is limited to 4%. The distribution of the relative error committed in calculating the LFS on the full database, using a

single value of kwat  with respect to the output of the simulations is reported in Figure 7. It can be noticed that the peak of

the distribution is near 0, which derived from the choice of the best fitting value of  kwat , but in more than 50% of the

simulated points the effect of water addition is overestimated.



Figure 7 Distribution of the relative error committed on the evaluation of kwat considering a fixed value.

5. Strategies considered for generating laminar flame speed lookup table

5.1 Computational cost analysis 

As reported in Section 3, the dataset of LFS for applications to Internal Combustion Engine simulations must represent all the
combinations of the five variables that the flame front can encounter during combustion. A first approach would be to perform
detailed chemical simulations for the full array of combinations, which corresponds to 39200 simulations, for the number of
reference points reported in Table 3. Several hypotheses can be assumed in order to reduce the time requirements for the
generation of the dataset:

- some combinations of P and Tu and EGR are unrealistic when applied to engine operating conditions [7], thus the
calculation of the LFS in those points (high pressure and low temperature, or the opposite) can be omitted,

- the solution can be reached in a fraction of the computing time if using a reduced chemical kinetics scheme.

The first hypothesis would reduce the computing time by a limited fraction, while on the other hand, the second option would
lead to a reduced accuracy of the results. One additional assumption can be applied, considering the effect of water to have a
linear relation with its mass fraction, in the case of the generation of an LFS dataset accounting for the presence of water
vapour in the reacting mixture. In this way, just two different values of the variable XH2O would be required, in order to compute
the value of kwat to be used for the definition of the generation of the intermediate combinations. This assumption would reduce
the number of necessary simulated points by more than 70%, but would induce several errors, like those reported in Figure 7. 

A different approach will be outlined in next sections, where the effect of the water addition is predicted by mean of machine
learning algorithms trained on reference conditions. The aim of employing such methodologies is to further reduce the time
requirements to generate the dataset while maintaining a high level of accuracy. 

5.2 Integration of machine learning algorithm into the workflow

The  integration  between  machine  learning  algorithms  and  the  dataset  of  LFS  with  the  aim  of  reducing  the  number  of
simulations required for the its generation can be performed following several strategies. In particular, it was chosen to focus

on two of  them,  which  require  the  generation of  a  look-up table  of  LFS for  all  values  of  P ,T u ,ϕ , XEGR  without

accounting for the addition of water, and a limited number of additional reference points where the mixture contains a fraction
of water vapour. The additional computing effort required for the calculation of the LFS at the reference points with water
vapour  is  expected  to  represent  a  fraction  of  the  simulation  time  of  the  full  dataset,  leading  to  a  time  reduction  of
approximately 80%.

The analysed strategies are summarised in Equations 6, 7, where ~sL  represents the predicted LFS, sL0  is the value of

LFS at  X H 2O=0 ,  ηML  is  the  machine  learning  predicted  effect  of  the  water  mass  fraction and  kML  is  the

proportionality coefficient of the effect of X H 2O , also predicted by a machine learning model. 

~sL=sL0 ⋅ηML (P ,T u ,ϕ , XEGR , X H2O ) (6)
~sL=sL0 ⋅ (1−kML (P ,T u ,ϕ , XEGR , X H2O ) ∙ X H2O)(7)



Even if the algorithms to be followed for the application of both methodologies are similar, the ideas underlying each of them
are deeply different. In fact, in strategy #1, the effect of the water addition is entirely predicted by the algorithm, which must,
therefore, be reliable on the full dataset extension. This aspect implies that, for example, in the case of the absence of water
mass fraction the algorithm might still provide values that are slightly lower than the actual LFS. Obviously, this condition can
be avoided by performing an adequate training of the machine learning model, but the results in the case of low water mass
fractions might still be underestimated.

As far as the strategy #2 is concerned, the additional hypothesis of a linear correlation of LFS with X H 2O , as reported in

Section 4, is applied. Differently from the previous works [11] the proportionality coefficient kML  is defined as a function

of the operating characteristics and of the diluent mass fractions. Even if the effect of  X H 2O  is considered to be linearly

dependent, it  was necessary to include also the water mass fraction as a variable for the definition of the proportionality

coefficient, in order to capture the non-linearities described in Section 4, for lean mixtures and values of  X H 2O  greater

than 4%.

By analysing the values of ηML  and kML  for the full dataset available, reported in Figure 8 for their normalized values,

it emerges how the distribution of the former looks widespread through the full range of possible values, while the latter is
more normally distributed, with two distinct peaks. These distributions anticipate the fact that a regression algorithm should be

capable of predicting more efficiently the values of kML  than those of ηML .

Figure 8 Distribution of the normalized values of kML and ηML  for the full dataset of TAE7000.

6. Definition of the best machine learning model

The results reported in the following sections refer to the best performance obtained from a machine learning algorithm chosen
between a  list  of  available  models  and  tuned  to  enhance  its  capabilities.  In  particular,  the  algorithm should  present  the
following characteristics:

- it must be capable of performing a supervised regression, since it will be trained on available data and it must provide
a continuous value,

- it should not be prone to overfitting, since some data may present very different values from the main trends.

The  list  of  the  analysed  algorithms  contains  standard  regression  models,  such  as  Multivariate  Linear  Regression  [20],
Regression tree [20],  Gaussian Processes for regression [21],   Support Vector Regression with both linear and non-linear
kernels; ensemble methods such as Random Forest [22], AdaBoost [23] and Gradient Boost [24]; and Neural Networks with
different architectures and activation functions [25].

The regression models are applied on a previously processed version of each dataset. In particular, the method followed for the
definition of the most suitable algorithm is the following:

- all variables are normalized with mean value set to 0 and standard deviation set to 1, 
- all points of the dataset where the effect of the addition of water is considered unphysical (but possibly related to

numerical reasons, i.e. those far from the mean value more than 3 times the standard deviation) are removed,



- each regression model, with several values for each tuning coefficient is cross-validated using the k-fold approach,
which consists in randomly dividing the dataset into k groups of approximately equal size and perform validation on
one set and training on the remaining data [20].

- after enough repeated cross validations, the model and relative tuning coefficients providing the best  accuracy is
chosen for the application.

After performing this procedure, the most suitable machine learning algorithm resulted to be AdaBoost, using the parameters
reported in Table 4.

Table 4 Description of the main tuned features of AdaBoost.

Base Learner Regression Tree
Feature of base learner Maximum depth = 10
# of estimators 50
Learning rate 0.8

The AdaBoost (Adaptive Boost) algorithm is an ensemble method aimed at combining the outputs of a series of weak models
(base learners) to perform a better prediction. This is achieved by consequently training the base learners on a weighted version
of the training set, where more importance is given to the values that the previous base learners could not capture adequately. 

The Regression Tree, used as base learner, is a supervised regression model, based on a tree-like graph where each node
indicates a condition on one attribute, and the external nodes, called leaves, represent the output of the model. The choice of
the regression tree as base learner for AdaBoost is quite common [23] because of its simplicity, while the other coefficients
were defined on the ground of the best performance during the cross-validation.

7. Results with strategy #1

7.1 Results on TAE7000

The available dataset of LFS for TAE7000 was generated for a large sample of the total combinations, consisting of 17000
points, obtained by reducing the number of simulated points with EGR mass fraction higher than 6%.

The performance of the methodology, reported in Table 5 was evaluated by splitting the database into a training set and a test
set, with different proportions. The training set is used to fit the coefficients of the machine learning model, while the test set is
used to assess the performance of the predictions with respect to the real values. The split is performed randomly, but in order
to maintain a distribution in the target values (ηML) similar to that of the full database for both sets. The accuracy of the
methodology, reported in Table 5, is assessed with three metrics:

- MAE (Mean Absolute Error), which is the mean absolute difference between the target and the predicted value; 
- RMSE (Root Mean Square Error) which is the square root of the mean squared difference between the target and

predicted value;

- R2 (determination coefficient) which is calculated in its general form as in Equation 8, where  y i  is the target

value, ý  is the mean observed data, and f i  is the predicted value:

R2
=1−

∑
i

( y i−f i)
2

∑
i

( y i− ý )2

(8)

All the metrics are calculated for both sets on the target value of the machine learning model (ηML) and for the LFS obtained by
inverting Equation 6.

The results demonstrate that a high level of accuracy in the determination of the LFS can be reached by using only 5% of the
available database as training set, and the performance on a test set composed of more than 10000 points shows a value of R2

higher than 0.99 and MAE lower than 2 mm/s, which is below 2% of the mean LFS of the database.



In Figure 9, the accuracy in the prediction of ηML is reported for train and test set, further underlying that the test set, composed
by 95% of the available dataset is fully captured by the model, and there are no particular regions of interest where the model
is less predictive.

Table 5 Determination coefficients for train and test sets with different splits.

TRAIN SET TEST SET
Fraction 0.5 0.5
R2 for ηML  (-) 9.99E-1 9.99E-1

R2 LFS (-) 9.99E-1 1.00
MAE kML (-) 1.68E-3 2.6E-3
MAE LFS (m/s) 3.75E-4 3.85E-4
RMSE kML (-) 2.27E-3 3.62E-3
RMSE LFS (m/s) 3.20E-5 3.91E-5
Fraction 0.2 0.8
R2 for ηML (-) 9.99E-1 9.99E-1

R2 for LFS (-) 1.00 9.99E-1
MAE kML (-) 1.34E-3 3.80E-3
MAE LFS (m/s) 4.93E-4 5.81E-4
RMSE kML (-) 1.96E-3 5.87E-3
RMSE LFS (m/s) 8.37E-4 1.09E-3
Fraction 0.05 0.95
R2 for ηML (-) 1.00 9.83E-1

R2 for LFS (-) 1.00 9.99E-1
MAE kML(-) 5.83E-4 7.81E-3
MAE LFS (m/s) 2.78E-4 1.16E-3
RMSE kML(-) 1.29E-3 1.28E-2
RMSE LFS (m/s) 3.45E-4 1.97E-3

Figure 9 Scatter plot of the values of ηML  for TAE7000.

7.2 Results with other reference fuels

In order to further validate the presented methodology, the same process has been applied on reduced forms of the dataset
generated for other reference fuels, described in Table 2. The distribution of the simulated points has been varied, focusing
more attention on less and more spread values of EGR (0%, 5%, 10%, 30%), and XH2O (0%, 1%, 3%, 6%) but more breakpoints
of P, Tu  and  ϕ  especially in the range usually reached in internal combustion engine applications. The total number of
simulated points is 2100, and the results reported refer to a split of the database that lead to a test set composed by 75% of the
full dataset (i.e. fitting of the model performed on about 500 points, which is the same size of the train set used for TAE7000).

The results on PRF87 are displayed in Figure 10, reporting the accuracy of the machine learning predictions on the target

variable  ηML ,  while  in  Figure  11  the  same  comparison  is  reported  for  the  surrogate  TRF95-2.  In  both  cases  the



performance is aligned with the results obtained with TAE7000 and the results in terms of determination coefficient of the
prediction of the actual value of LFS are higher (R2 test = 0.985 for LFS of PRF87 and R2 test = 0.981 for LFS of TRF95-2)

Figure 10 Scatter plot of the values of ηML  for PRF87.

Figure 11 Scatter plot of the values of ηML  for TPRF95-2.

8. Results with strategy #2

8.1 Results on TAE7000

The same machine learning algorithm and tuning coefficients described in Section 7 resulted to be the best performing also for
Strategy #2. The results of determination coefficient, MAE and RMSE for the target variable (kML) and for the LFS obtained by
splitting the  database  into train  and test  sets  with different  proportions are reported  in  Table 6.  The performance of  the
algorithm is similar  to  that  reached for  methodology #1 and provides  extremely positive results in terms of  accuracy in
predicting the LFS values, with no particular region of error, as displayed in Figure 12.

Table 6 Determination coefficients for train and test sets with different splits.

TRAIN SET TEST SET
Fraction 0.5 0.5
R2 kML(-) 9.98E-1 9.91E-1
R2 LFS (-) 1.00 9.99E-1
MAE kML(-) 4.38E-2 8.22E-2
MAE LFS (m/s) 2.71E-4 4.08E-3
RMSE kML(-) 5.92E-2 1.31E-1
RMSE LFS (m/s) 5.37E-4 7.50E-4
Fraction 0.2 0.8
R2 for kML(-) 9.99E-1 9.86E-1
R2 for LFS (-) 1.00 9.99E-1



MAE kML(-) 2.96E-2 1.02E-1
MAE LFS (m/s)  2.41E-4 4.63E-4
RMSE kML(-) 4.48E-2 1.62E-1
RMSE LFS (m/s) 7.30E-4 8.09E-4
Fraction 0.05 0.95
R2 for kML (-) 1.00 9.66E-1
R2 for LFS (-) 1.00 9.98E-1
MAE kML (-) 1.32E-1 1.66E-3
MAE LFS (m/s) 1.96E-4 7.98E-4
RMSE kML (-) 2.79E-2 2.63E-1
RMSE LFS (m/s) 4.92E-4 1.43E-3

Figure 12 Scatter plot of the values of kML  for TAE7000.

8.2 Results with other reference fuels

The application on the other reference fuels followed the same steps described in Section 7, and the results in the prediction of
kML for each surrogate are reported in Figure 13 and 14. In both cases, the accuracy of the prediction is worse than for the

prediction of ηML , however, the fact that the process of inverting Equation 7 does not only rely on the prediction of the

machine learning algorithm, but also on the knowledge of XH2O, the overall performance in predicting the LFS of methodology
#2 is slightly better (R2 test = 0.989 for LFS of PRF87 and R2 test = 0.985 for LFS of TRF95-2).

Figure 13 Scatter plot of the values of kML  for PRF87.



Figure 14 Scatter plot of the values of kML  for TPRF95-2.

9. Output of the two strategies

As reported in Section 7 and 8, both strategies can generate values of LFS that account for the presence of water vapour in the
reacting mixture with an absolute relative error below 4% for all surrogate fuels. As showed in Figure 15, the methodology that
employs kwat  performs slightly better than the other, thanks to the fact that it relies also on the physical interpretation of the
behaviour  of  the  LFS,  with  an  imposed  linear  correlation,  and  not  only  on  the  pure  machine  learning  prediction.

Figure 15 Distribution of the relative error committed by both methodologies on the full dataset for TAE7000 surrogate.

A further test has been performed, to investigate the applicability of the machine learning algorithm trained on the dataset
generated for TAE7000 on the points simulated with the other two fuel surrogates. This strategy, referred to as transfer learning
[24] might lead to a further reduction in the computational cost to generate a full look-up table, since it would remove the

requirements to perform any simulation with X H 2O>0  .

The results, however, as reported in Figure 16 for the PRF87 and Figure 17 for the TRF95-2, show that the absolute relative
error committed in predicting the values of LFS with a given water mass fraction can reach values up to 20%. These results
confirm the need to perform the fitting phase of the model for each surrogate on enough training points, in order to obtain a
better performance with both methodologies.



 

Figure 16 Distribution of the relative error committed by applying transfer learning for both methodologies on PRF87 surrogate.

Figure 17 Distribution of the relative error committed by applying transfer learning for both methodologies on TPRF95-2 surrogate.

10. Focus on laminar flame thickness

9.1 Definition of laminar flame thickness

The application of a flamelet combustion model based on the flame surface density transport requires not only the knowledge
of the LFS, but also of the LFT (laminar flame thickness), in order to account for the efficiency of the turbulent vortices to
wrinkle the flame [5]. The definition of LFT in literature has several meanings, but many authors agree that the most useful in
combustion modelling is the thermal thickness [5], which is derived from the temperature profile inside the reaction zone

(represented in Figure 18) as defined in Equation 9, where T2  represents the temperature of the burnt gases and T1  is

the temperature of the fresh mixture.

δ L
0
=

T2−T1

max(|dTdx|)
(9)



Figure 18 Normalized profile of temperature and mass fractions of the main components of the reacting mixture near the flame front in a
simulated flat flame.

A correlation based on scaling laws [27] was introduced to overcome the lack of experimental data regarding the LFT, as
proposed in Equation 10, calculated with the properties of the fresh mixture, where λ  is the thermal conductivity of the

gas, ρ  is its density, CP  the specific heat at constant pressure and sL  is the laminar flame speed in that condition.

δ L
0
=

λ
ρCP sL

(10)

Blint [27] corrected the previous correlation by introducing a correction factor based on the burnt gas temperature, leading to
Equation 11, where subscript 1 indicates that the property refers to the fresh mixture, and subscript 2 is the condition of the
burnt zone.

δ L
Blint

=δ L
0 (λ/CP )2

(λ/CP )1

(11)

9.2 Applicability of Blint's correlation

Since the value of the LFT in turbulent combustion modelling is extremely important, the accuracy of the Blint’s correlation
reported in Equation 11 was evaluated under engine relevant conditions, with the presence of EGR and water vapour. It was
chosen to focus only on the data available for the TAE7000 surrogate fuel, and the results from a correlation analysis are

reported in Table 7, as a function of the water mass fraction for values in the range 4 ¿̄ P<140 ¿̄ ,  300<T u<700 ,

0.5<ϕ<1.6  and 0%<X EGR<30% .

Table 7 Slope and determination coefficient of the linear correlation between the two possible values of LFT.

X H 2O (%)Slope R2 MAE
(m)

RMSE (m)

0 0.626 9.91E-1 2.11E-5 5.07E-5
1 0.624 9.93E-1 1.53E-5 3.27E-5
2 0.624 9.92E-1 1.65E-5 3.53E-5
3 0.623 9.92E-1 1.78E-5 3.79E-5
4 0.623 9.91E-1 1.93E-5 4.09E-5
5 0.622 9.90E-1 2.07E-5 4.38E-5
6 0.623 9.90E-1 2.23E-5 4.69E-5

The slope is the proportionality coefficient between the calculated thermal thickness and that obtained from the temperature
profile, which can be used as a constant of proportionality. Besides the requirement for a scaling factor, the addition of water
does not introduce a source of error in the Blint’s correlation, which can be employed with the relative error distribution
reported in Figure 19.



Figure 19 Relative error distribution between scaled values of LFT calculated with Blint’s correlation and from temperature profile.

11. Conclusion

With the present work, the effect of the water vapour on the laminar flame speed of reacting mixtures has been evaluated from
the results provided by detailed chemical kinetics simulations. This effect can be well captured with a linear correlation, within

engine relevant conditions and for a given range of ϕ  and X H 2O , but it has been showed that the linear coefficient

must be a function of the operating condition (P, Tu, ϕ , X EGR ) and not a constant value. 

A regression machine learning algorithm can be fruitfully applied to predict the effect of the water addition, or the value of kwat

after a proper training phase, performed on a limited number of simulated points. An analysis on the best algorithms and
strategies has been performed, with the aim of defining a new methodology for the more rapid generation of a full LFS
database accounting also for the effect of the water vapour. The final proposal can reduce by 81.5% the time required to
produce a full look-up table, maintaining the relative error committed below 4%, as reported in Figure 15. When compared
with the strategies presented in section 5, the proposed methodology results more time reducing and accurate than limiting the
size of the dataset or using a reduced chemical kinetics scheme. However, a combination of these methods would lead to a
further reduction in the time required to generate the full database.

This methodology has been tested on a reduced version of the LFS database for different surrogate fuels obtaining similar
results in terms of accuracy, which demonstrates the applicability of this approach to other fuel surrogates. 

An additional assessment has been performed on the definition of laminar flame thickness, which is another essential property
of the reacting mixture in turbulent combustion models based on the flamelet approach. The value of the LFT can be derived
from the temperature profile  of the detailed chemical  simulation, or it  can be calculated using Blint’s  correlation,  which
requires  only  the  knowledge  of  the  properties  of  the  mixture.  Even though the  correlation  was  developed  for  reference
conditions [5], its validity has been verified also for engine relevant pressure and temperature values and in cases where the
mass fractions of EGR and water vapour are relevant.

12. Future developments

The presented methodology can allow researchers and engineers to efficiently generate new databases of laminar flame speed
under water injection conditions for a variety of fuel surrogates, from which just a few have been analysed. The effect of the
application of the look-up tables generated with this methodology, in place of classic  correlations for engine combustion
simulations,  must  be  tested  and  future  work  should  focus  on  the  effect  of  the  choice  of  the  fuel  surrogate  on  engine
performance. 
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Contact Information

For further information/details please contact:

DEFINITIONS / ABBREVIATIONS

CFD – Computational Fluid Dynamics

RANS – Reynolds Averaged Navier-Stokes

TIT – Temperature at Inlet of Turbine

LFS – Laminar Flame Speed

LFT – Laminar Flame Thickness

EGR – Exhaust Gas Recirculation

MAE – Mean Absolute Error

RMSE – Root Mean Square Error

P  – Pressure

Tu  – Temperature

ϕ  - Equivalence ratio

X EGR  - Mass fraction of the diluent

S l0  – Laminar flame speed at reference conditions

https://doi.org/10.1080/00102208608923903


P0 – Reference pressure

T0 – Reference temperature

Sl0 – Laminar flame speed without water addition

K egr  – Proportionality coefficient of EGR fraction

Kwat  – Proportionality coefficient of water fraction

XH2O – Water vapour mass fraction inside mixture

~sL  – Laminar flame speed after correctio

δ L
0

 – Laminar flame thickness

δL
Blint

 –  Laminar flame thickness using Blint’s relation

λ  – Thermal conductivity

CP  – Specific heat at constant pressure

ρ  – Density


