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power–law fluid: the effect of an open boundary
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Abstract

An infinitely wide horizontal porous layer saturated by a power–law fluid is heated from below by an imposed
heat flux. The basic stationary state is characterised by a horizontal throughflow and a constant temperature
gradient along the vertical direction. A linear stability analysis is performed by employing the method
of normal modes. The eigenvalue problem obtained is solved by employing two different approaches: a
hybrid analytical/numerical technique and a fully numerical technique. The critical values defining the
threshold configurations for the onset of thermal convection are presented. These threshold values display a
non monotonic dependence on the basic flow rate while they are monotonically increasing functions of the
power–law index.
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1. Introduction

The onset of thermal convection in fluid saturated porous media is a topic that draws attention from
theoretical research areas, such as applied mathematics, and from engineering oriented research areas, such
as the analysis of geothermal resources and the design of repositories for nuclear debris, [1].

A cornerstone study within this research topic is the problem originally investigated by Horton and
Rogers [2] and Lapwood [3] (HRL). The HRL problem is the analogue, for fluid saturated porous media, of
the Rayleigh–Bénard problem. Since Darcy’s law is employed to model the momentum transport, the HRL
problem is also called the Darcy–Bénard problem. The threshold value of the governing parameter, i.e. the
Darcy–Rayleigh number, evaluated by the linear stability analysis is 4π2. This value does not change when
a basic throughflow is added to the stationary basic state. The pioneering study regarding this configuration
was presented by Prats [4]. In both the Darcy–Bénard problem and in the Prats problem, the porous medium
is saturated by a Newtonian fluid. The literature relative to convection in porous media, in fact, mainly
deals with Newtonian fluids [1]. Nonetheless, the non–Newtonian fluids are extremely common and they
have widespread applications: from food industry processes to bioengineering and oil extraction engineering
[5]. A review of heat transfer in porous media saturated by non–Newtonian fluids is can be found in Shenoy
[6]. Some further work on the stability analysis relative to non–Newtonian fluids saturating a porous layer
has been carried out by Barletta and Nield [7], by Celli et al. [8]. Further papers relative to buoyant flows
of power–law fluids in porous media are by Nakayama and Shenoy [9] and by Shenoy [10].

This paper presents the linear stability analysis of a modified Prats problem where a power–law fluid
saturates the horizontal porous layer. Other differences, as compared to the Prats problem, are the assump-
tions of an open upper boundary and of a uniform heat flux at the lower boundary. To the best of the
authors knowledge, this is the first study regarding the stability analysis of the throughflow of a power–law
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fluid saturating a porous layer with a permeable boundary. This configuration can be relevant for the in-
vestigation of heat and mass transfer in underground fluid reservoirs where hydrocarbons may be modelled
as non–Newtonian fluids. A well–known effect of assuming open boundaries is the lower value of the critical
Darcy–Rayleigh number with respect to that for impermeable boundaries [1]. In other words, the effect of
open boundaries is a destabilisation of the basic fluid flow. The aim of the present analysis is investigating
the effect of an open boundary on the onset of thermal convection when a power–law fluid saturated porous
medium is involved.

2. Mathematical model

A horizontal porous layer saturated by a power–law fluid is heated from below by a constant heat flux.
The layer is infinitely wide in the x and z directions and confined in the y direction by an impermeable lower
boundary and an isothermal open upper boundary. A sketch of the porous layer is presented in Fig. 1. For
a power–law fluid, the shear stress, τ , depends nonlinearly on the shear rate, γ̇,

τ = η γ̇n, (1)

where η is the consistency index measured in Pa sn, and n is the power–law index. Equation (1) yields the
following definition of apparent viscosity µ̃:

µ̃ = η γ̇n−1. (2)

For a power–law fluid, a modified Darcy’s law has been formulated [11, 12] which, in a dimensionless form,
can be written as

∇×
(
|u|n−1u

)
= R∇× (Tey) , (3)

where the buoyancy force is modelled by means of the Oberbeck–Boussinesq approximation, x = (x, y, z) is
the Cartesian position vector, u = (u, v, w) is the filtration velocity vector, R is the modified Darcy–Rayleigh
number, T is the temperature and ey is the unit vector in the y direction. The curl operator is applied to
the momentum balance equation to encompass the contribution of the pressure gradient.
The energy balance equation employed to model the heat transfer is the convection/conduction equation
where no source/sink term is considered. Thus, the dimensionless governing equations are given by

∇ · u = 0,

∇×
(
|u|n−1u

)
= R∇× (Tey) ,

∂T

∂t
+ u ·∇T = ∇2T,

y = 0 : v = 0,
∂T

∂y
= −1,

y = 1 :
∂v

∂y
= 0, T = 0.

(4)

The dimensionless formulation presented in Eq. (4) relies on the following scaling:

x

H
→ x,

χ

σH2
t → t,

H

χ
u → u,

T − T0

∆T
→ T, (5)

where ∆T = q0 H/keff , H is the porous layer height, σ is the heat capacity ratio, χ is the ratio between the
effective thermal conductivity keff of the fluid saturated porous medium and the heat capacity of the fluid,
T0 is the temperature of the upper boundary while q0 is the heat flux prescribed at the lower boundary.
More precisely, σ, keff and χ, are defined as

σ =
φρfcf + (1− φ) ρs cs

ρf cf
, keff = φkf + (1− φ) ks, χ =

keff
ρf cf

. (6)
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Figure 1: A sketch of the horizontal porous layer

In Eq. (4), the modified Darcy–Rayleigh number is given by

R =
ρf g β∆T K Hn

η χn
, σ =

φρfcf + (1− φ) ρs cs
ρf cf

, keff = φkf + (1− φ) ks, χ =
keff
ρf cf

. (7)

In Eqs. (6) and (7), ρf is the fluid density evaluated at the reference temperature T0, g is the modulus of the
gravitational acceleration vector g (see Fig. 1), β is the thermal expansion coefficient relative to the fluid, K
is the generalised permeability of the porous medium measured in mn+1, φ is the porosity, cf is the specific
heat capacity of the fluid, cs is the specific heat capacity of the porous medium, ρs is the density of the
porous medium, kf is the thermal conductivity of the fluid and ks is the thermal conductivity of the porous
medium.

2.1. Basic state
The system of partial differential equations defined by (4) admits a stationary solution characterised by

a uniform velocity profile directed along the x axis, namely

ub = (Pe, 0, 0), (8)

where the subscript b denotes the quantities relative to the basic state and Pe is the Péclet number. Con-
sistently with Eq. (8), the temperature profile depends only on y direction. From Eq. (4), one obtains the
basic temperature profile, namely

Tb = 1− y. (9)

3. Linear stability analysis

With the aim of investigating the linear stability of the system described in Section 2, the basic state
described in Eqs. (8) and (9) is perturbed by small amplitude disturbances. The amplitude of such distur-
bances changes with time and, depending on the governing parameters, it may decay (yielding a stable basic
state) or it may grow (producing a buoyancy–induced cellular flow). In the following analysis, the thresh-
old between decaying and growing disturbances defines the so–called neutral stability condition. Thus, the
velocity and temperature fields are written as

u = ub + εU, T = Tb + εΘ, (10)
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where ε ≪ 1. By substituting Eq. (10) into Eq. (4) and by neglecting terms O(ε2) or higher, one obtains
the linearised governing equations describing the dynamics of disturbances,

∂U

∂x
+

∂V

∂y
+

∂W

∂z
= 0,

∂V

∂z
− ∂W

∂y
=

R

Pen−1

∂Θ

∂z
,

n
∂U

∂z
− ∂W

∂x
= 0,

n
∂U

∂y
− ∂V

∂x
= − R

Pen−1

∂Θ

∂x
,

∂Θ

∂t
+ Pe

∂Θ

∂x
− V = ∇2Θ,

y = 0 : V = 0,
∂Θ

∂y
= −1,

y = 1 :
∂V

∂y
= 0, Θ = 0.

(11)

By manipulating Eq. (11), one may obtain a simplified system of equations which contains only the two
fields (V,Θ), namely

∂2V

∂x2
+ n

∂2V

∂y2
+ n

∂2V

∂z2
=

R

Pen−1

(
∂2Θ

∂x2
+ n

∂2Θ

∂z2

)
,

∂Θ

∂t
+ Pe

∂Θ

∂x
− V = ∇2Θ,

y = 0 : V = 0,
∂Θ

∂y
= −1,

y = 1 :
∂V

∂y
= 0, Θ = 0.

(12)

We assume solutions of Eq. (12) having the form of normal modes,

V (x, y, z, t) = f(y)eη tei(αxx+αzz−ωt),

Θ(x, y, z, t) = h(y)eη tei(αxx+αzz−ωt),
(13)

where η is the growth/decay rate, α = (αx, 0, αz) is the wave vector and ω is the angular frequency. The
parameters (αx, αz, η, ω) are real while (f, h) are, in general, complex functions. The growth rate η marks the
difference between stability (η < 0) and instability (η > 0). The neutrally stable configuration is identified
with η = 0. The condition of minimum R̃ among the neutrally stable modes defines the critical values αcr

and R̃cr.
By substituting definitions (13) into Eq. (12), one obtains the eigenvalue problem for neutrally stable modes,

f ′′ − α2 + (n− 1)α2
z

n
(f − R̃ h) = 0,

h′′ −
(
α2 − i ω̃

)
h+ f = 0,

y = 0 : f = 0, h′ = 0,

y = 1 : f ′ = 0, h = 0,

(14)

where α = (α2
x + α2

z)
1/2 is the wave number of the disturbances. Moreover, the parameters R̃ and ω̃ are

defined as

R̃ =
R

Pen−1 , ω̃ = ω − αxPe. (15)
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By denoting with ϕ the inclination angle of the wave vector α = (αx, 0, αz) to the x axis, one obtains
αx = α cosϕ and αz = α sinϕ. The inclination angle ϕ = 0 defines the transverse rolls while ϕ = π/2 defines
the longitudinal rolls. One may introduce a modified power–law index ñ given by

ñ =
n

1 + (n− 1) sin2 ϕ
. (16)

The governing equations (14) can now be simplified as

f ′′ − α2

ñ
(f − R̃ h) = 0, (17a)

h′′ −
(
α2 − i ω̃

)
h+ f = 0, (17b)

y = 0 : f = 0, h′ = 0,

y = 1 : f ′ = 0, h = 0.
(17c)

3.1. A proof that the stability eigenvalue problem is self–adjoint
We aim to prove that ω̃ = 0 and thus that the eigenvalue problem (17) is self–adjoint, namely that the

eigenfunctions (f, h) are real–valued. On multiplying Eq. (17a) by the complex conjugate of function f and
integrating by parts over the domain [0, 1], one obtains∫ 1

0

|f ′|2dy + α2

ñ

∫ 1

0

|f |2dy − α2R̃

ñ

∫ 1

0

f∗hdy = 0, (18)

where the complex conjugate is denoted by a star. Since (α, R̃, ñ) are real parameters, Eq. (18) yields∫ 1

0

f∗hdy ∈ ℜ, (19)

so that one obtains ∫ 1

0

h∗f dy ∈ ℜ. (20)

On multiplying Eq. (17b) by the complex conjugate of function h and integrating by parts one obtains∫ 1

0

|h′|2 dy + (α2 − iω̃)

∫ 1

0

|h|2 dy −
∫ 1

0

h∗f dy = 0. (21)

By taking the imaginary part of Eq. (21), one may conclude that

ω̃

∫ 1

0

|h|2 dy = 0. (22)

Equation (22) may be satisfied when either h = 0 or ω̃ = 0. The first option can be excluded since it yields
the trivial solution f = h = 0. Thus we have proved that ω̃ = 0. This conclusion, together with Eq. (15),
yields ω = αx Pe = αPe cosϕ. In other words, the transverse rolls travel at the same velocity as the basic
flow, while the longitudinal rolls are non–travelling.

4. Solution techniques

The eigenvalue problem (17) involves two ordinary differential equations at constant coefficients. There-
fore, it can be solved analytically by the elementary method of the characteristic equation. Then, the
constraint that the solution be non–trivial yields a dispersion relation linking implicitly R̃ to α and ñ. This
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R̃c αc

ñ Hybrid Numerical Hybrid Numerical
0.1 7.09731575835505 7.09731575835494 1.07387719502812 1.07387719502818
0.2 8.91340448172414 8.91340448172405 1.22085343036798 1.22085343036801
0.3 10.3596927079765 10.3596927079764 1.32569911277239 1.32569911277227
0.4 11.6242074657406 11.6242074657404 1.41041580820013 1.41041580820012
0.5 12.7757161614035 12.7757161614034 1.48272234233180 1.48272234233181
0.6 13.8482400250468 13.8482400250467 1.54644147613404 1.54644147613405
0.7 14.8614997771314 14.8614997771314 1.60379713170813 1.60379713170815
0.8 15.8281205764997 15.8281205764996 1.65621450328595 1.65621450328596
0.9 16.7567581741586 16.7567581741586 1.70466901727952 1.70466901727953
1. 17.6536526097729 17.6536526097728 1.74986116307449 1.74986116307451
1.1 18.5234787451774 18.5234787451773 1.79231289340109 1.79231289340111
1.2 19.3698469531193 19.3698469531192 1.83242468865091 1.83242468865093
1.3 20.1956150748759 20.1956150748759 1.87051124793934 1.87051124793936
1.4 21.0030918653443 21.0030918653443 1.90682481943564 1.90682481943566
1.5 21.7941747467272 21.7941747467271 1.94157101406833 1.94157101406834
1.6 22.5704460614859 22.5704460614858 1.97491985509503 1.97491985509505
1.7 23.3332421492141 23.3332421492141 2.00701370114979 2.00701370114981
1.8 24.0837040741284 24.0837040741283 2.03797305559185 2.03797305559187
1.9 24.8228156306884 24.8228156306883 2.06790090969595 2.06790090969598
2. 25.5514323228069 25.5514323228068 2.09688604575922 2.09688604575925

Table 1: R̃c and αc obtained for different values of ñ and by means of two different solution techniques: hybrid analyti-
cal/numerical and fully numerical

analytical dispersion relation is rather complicated thus, for the sake of brevity, we do not report it here.
A numerical root–finding algorithm can be employed to detect the numerical value of R̃ for any given pair
(α, ñ). This allows one to draw the neutral stability curves R̃(α) for different values of ñ. This, then, is the
hybrid analytical/numerical approach to the solution of Eq. (17). We mention here that the root–finding
algorithm is based on the Newton–Raphson method.

The second approach is entirely numerical. We transform the eigenvalue problem (17) into an initial
value problem by completing the initial conditions set at y = 0,

f ′′ − α2

ñ
(f − R̃ h) = 0,

h′′ − α2h+ f = 0,

y = 0 : f = 0, f ′ = ξ, h = 1, h′ = 0,

(23)

where ξ is an unknown real parameter the scale–fixing condition h = 1 can be imposed because the sys-
tem (17) is homogeneous. The Runge–Kutta method is employed to solve the initial value problem (23).
The eigenfunctions depend on the parameters (α, ñ, R̃, ξ). Then, the shooting method is employed to obtain,
for given (α, ñ), the pair (R̃, ξ) using the target conditions f ′ = 0 and h = 0 at y = 1. Again, a root–finding
algorithm serves to evaluate R̃ and ξ.

These solution methods are compared in Table 1. In this table, the critical values of R̃ and α are reported
for given ñ. The results presented are obtained by employing 15 digits of precision. Table 1 allows one to
conclude that the two different methods yield, within at least 13 significant figures, the same results. Since
the hybrid analytical/numerical method displays a better performance, namely a shorter computational time
and the ability to explore very small values of ñ, any further results presented here are obtained by this
method.

The neutral stability curves R̃(α) are reported in Fig. 2. These curves move upward and rightward
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Figure 2: Neutral stability curves R̃(α) for fixed values of ñ

monotonically with increasing values of the parameter ñ. This behaviour can be found again in Fig. 3 where
the critical values of R̃ and α are plotted versus ñ. The limiting case ñ → 0 deserves some particular
attention.

4.1. Asymptotic solution for ñ → 0

When the parameter ñ → 0, the eigenvalue problem (17) degenerates into a second differential problem,

h′′ − (α2 − R̃)h = 0, h′(0) = 0, h(1) = 0. (24)

The solution of the differential equation (24) satisfying the initial condition h′(0) = 0 is, up to an arbitrary
multiplicative constant,

h = cosh
(
y
√
α2 − R̃

)
. (25)

By imposing the boundary condition h′(1) = 0, one obtains an expression for R̃, namely

R̃ = α2 +
π2

4
(2m+ 1)2, m = 0, 1, 2, . . . (26)

With m = 0, one obtains the neutral stability curve for ñ → 0 presented in Fig. 2. Moreover, one may
evaluate the critical values R̃c = π2/4 and αc = 0.

5. Results

A easier interpretation of the results is drawn when they are expressed in terms of the parameters n and
R. Equation (15) allows one to conclude that, for given values of n and Pe, the value of Rc is immediately
obtained from the value of R̃c. From Fig. 3, one infers that R̃c is a monotonic increasing function of ñ.
Moreover, Eq. (16) implies that ñ is a monotonic increasing function of ϕ when n < 1 while it is a monotonic
decreasing function of ϕ when n > 1. Thus, our conclusion is that, the most unstable condition is attained
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Figure 3: Critical values of R̃ and α versus ñ

with transverse rolls (ϕ = 0) for n < 1, and with longitudinal rolls (ϕ = π/2) for n > 1. Just the same
conclusion has been reported in [7].
For n < 1, we consider transverse rolls which yield ñ = n and thus

n < 1 −→ Rc = R̃c(n)Pen−1, αc = αc(n). (27)

In the limiting case n → 0, we obtained R̃c = π2/4 so that Eq. (27) yields Rc = π2/(4Pe).
For a Newtonian fluid, one obtains ñ = 1 and thus, on account of the data reported in Table 1, one has

n = 1 −→ Rc = 17.653653, αc = 1.7498612. (28)

It is worth noting for Newtonian fluids Rc and αc are independent of ϕ. The critical values in Eq. (28) agree
with those reported in Table 6.1 of Nield and Bejan [1] for the same boundary conditions.
For n > 1, we consider longitudinal rolls which yield ñ = 1 and thus

n > 1 −→ Rc = 17.653653Pen−1, αc = 1.7498612. (29)

The results reported in Eqs. (27)–(29) are presented in Fig. 4. The critical values of the modified Darcy–
Rayleigh number are reported versus the power–law index n for different values of the Péclet number. From
Fig. 4, one may conclude that the Péclet number has a destabilising effect for pseudoplastic fluids while it
has a stabilising effect for dilatant fluids. On the other hand, the power–law index n has a stabilising effect
for the basic state when Pe ⩾ 0.60653066 while, when Pe < 0.60653066, n has a non monotonic effect on
the value of Rc.

6. Conclusions

The basic horizontal throughflow across a fluid saturated porous layer, parametrised by the Péclet number
Pe, has been studied with a special focus on buoyancy–induced thermal convection. The saturating fluid
is non–Newtonian, described by a power–law model. The lower boundary of the layer is uniformly heated
and impermeable, while the upper boundary is assumed to be open and isothermal. The basic state is
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Figure 4: Critical values of R and α versus the power–law index n for fixed values of Pe

perturbed by means of plane wave disturbances inclined arbitrarily to the direction of the basic flow. The
linear stability analysis of such disturbances is carried out by employing two different techniques: a hybrid
analytical/numerical method and a fully numerical method. The critical values of the governing parameters,
the modified Darcy–Rayleigh number R and the wavenumber α, are obtained. The main results are the
following:

• When a Newtonian fluid is considered, the critical values of the modified Darcy–Rayleigh number and
of the wavenumber match those reported in the literature [1]: Rc = 17.653653 and αc = 1.7498612.

• For pseudoplastic fluids, the transverse rolls are the most unstable modes while, for dilatant fluids, the
most unstable disturbances are the longitudinal rolls.

• The longitudinal rolls are non–travelling plane waves while the transverse rolls travel with the same
dimensionless velocity as the basic flow.

• For the limiting case of a vanishingly small power–law index, the critical values are obtained analyti-
cally: Rc = π2/(4Pe) and αc = 0.

• An increasing power–law index has a stabilising effect for the basic state with Pe > 0.60653066, while
it has a non–monotonic effect for Pe ⩾ 0.60653066.

• The Péclet number is a destabilising parameter for pseudoplastic fluids, while it is a stabilising param-
eter for dilatant fluids.

• The critical value of the wavenumber independent of Pe. This value is a monotonic increasing function
of the power–law index for pseudoplastic fluids, while it is constant for dilatant fluids.
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