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Summary 

An increasing number of sleep applications are currently available and are being widely used for 

in-home sleep tracking. The present study assessed four smartphone applications (Sleep Cycle-

Acceloremeter, SCa; Sleep Cycle-Microphone, SCm; Sense, Se; Smart Alarm, SA) designed for 

sleep-wake detection through sound and movement sensors, by comparing their performance 

with polysomnography (PSG). Twenty-one healthy participants (6 males, 15 females) used the 

four sleep applications running on iPhone (provided by the experimenter) simultaneously with 

portable PSG recording at home, while sleeping alone for two consecutive nights. Whereas all 

apps showed a significant correlation with PSG-Time in Bed, only SA offered significant 

correlations for Sleep Efficacy. Furthermore, SA seemed to be quite effective in reliable 

detection of Total Sleep Time and also Light Sleep, however it underestimated Wake and 

partially overestimated Deep Sleep. None of the apps resulted capable of detecting and scoring 

REM sleep. To sum up, SC (functioning through both accelerometer and microphone) and Se did 

not result sufficiently reliable in sleep-wake detection compared to PSG. SA, the only application 

offering the possibility of an epoch-by-epoch analysis, showed higher accuracy than the other 

apps in comparison with PSG, but it still shows some limitations, particularly regarding wake 

and deep sleep detection. Developing scoring algorithms specific for smartphone sleep detection 

and adding external sensors to record other physiological parameters may overcome the present 

limits of sleep tracking through smart phone apps. 

 

Key words: Smartphone, sleep tracking, sleep applications, PSG,  
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1. INTRODUCTION 

Equipped with an array of high-quality precision sensors, current generation smartphones 

are increasingly boasting computational powers similar to those of miniaturized sleep labs. 

Given their ubiquity and personal nature, smartphones are indeed widely considered as the prime 

candidate for the purposes of low cost, large scale and long-term sleep monitoring outside the 

laboratory setting, both in general and clinical population (Behar, Roebuck, Domingo, Gederi & 

Clifford, 2013; Fino & Mazzetti, 2019; Penzel, Schobel & Fietze, 2018).  

Functioning through the support of in-built sensors (i.e., accelerometers, microphone, 

gyroscopes) or adjunct external sensor devices (some allowing even physiological signal 

recording such as heart rate and breathing frequency), sleep applications are able to analyze data 

online and yield complex sleep scoring reports that provide subjects with a real time feedback on 

their sleep quality and standard sleep parameters (Van de Water, Holmes & Hurley, 2011).  

Paralleling such developments, specialized data analysis algorithms are being developed by sleep 

researchers, in order to analyze and score sleep data recorded through smartphone-based sensor 

devices (Natale, Drejak, Erbacci, Tonetti, Fabbri & Martoni, 2012). 

Nonetheless, the growing number of sleep tracking applications and devices is hard to 

fathom as this is a constantly changing field (Van den Bulck, 2015). As pointed out by recent 

literature reviews (Baron, Duffecy, Berendsen, Mason, Lattie & Manalo, 2018; Choi, Demiris, 

Lin, Iribarren, Landis, Thompson, et al., 2018), the large number of sleep applications developed 

for assessing sleep is associated with relatively sparse validation studies and it seems the claims 

of most sleep tracking devices and applications currently outweigh the evidence to support them 

(Lee-Tobin, Ogeil, Savic & Lubman, 2017). Indeed, while a massive number of sleep apps are 

currently available at no cost in the market and are being widely used for sleep tracking functions 
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(Fietze, 2016; Ko, Kientz, Choe, Kay, Landis & Watson 2015; Ong & Gillespie, 2016), only a 

limited number have been successfully validated against polysomnography and/or wrist 

actigraphy (Bhat, Ferraris, Gupta, Mozafarian, DeBari, Gushway-Henry, et al., 2015; Natale et 

al., 2012; Toon, Davey, Hollis, Hons, Nixon, Home, et al., 2017). In particular, a satisfactory 

accuracy is found for a few applications that utilize multiple sensors and/or scoring algorithms 

that integrate such information, which probably gives them an advantage over single sensor-

based applications (Gu, Yang, Shangguan & Liu, 2016; Paalasmaa, Toivonen & Partinen 2015). 

Regrettably, most of sleep apps do not grant access to the data collected or the scoring process, 

which remain locked together inside a black box, due to proprietary rights, thus posing 

formidable barriers to researchers in this field (Lorenz & Williams, 2017). 

Considering the increasingly high number of sleep applications available in the market, 

their massive use by the general population and their potential clinical significance, further 

evaluating the reliability of smartphone-based sleep assessment remains a key issue and more 

validation studies with both healthy and patient populations are urgently needed, according with 

several recent researchers’ conclusion (Baron et al., 2018; Choi et al., 2018; Fino & Mazzetti, 

2019; Penzel et al., 2018). 

The aim of the present study was assessing the reliability of four smartphone applications 

(namely: Sleep Cycle-Acceloremeter, SCa; Sleep Cycle-Microphone, SCm; Sense, Se; Smart 

Alarm, SA) designed for sleep-wake detection through sound and movement sensors either 

inbuilt or external to the phone, by comparing their performance with polysomnography (PSG). 

In addition, for one of the apps (SA) we examined the accuracy of overall sleep-wake detection 

as well as discrimination between individual stages within sleep. 
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2. METHODS 

2.1 Participants 

Participants were 21 (six males, fifteen females) healthy adults recruited from an initial 

sample of 25 volunteers (see Statistical analyses section). Inclusion criteria were absence of any 

neurological, psychiatric or sleep disorders and having generally seven to nine hours of sleep per 

night without any major disruption of the sleep–wake cycle during the two months preceding 

enrolment. The study was approved by the Institutional Review Board of University of Bologna 

and all participants provided signed informed consent. 

 

2.2 Materials and Procedure  

Four iPhone applications widely used and available in the market al low or no cost at the 

time of the data collection were selected based on sensor features: Sleep Cycle (by Northcube; v. 

5.4) comes in two versions, functioning through accelerometer (SCa) and microphone (SCm), 

whereas Smart Alarm (SA, by Plus Sports; v. 8.4) and Sense (Se, by Hello; v. 2.1.0) function 

through an inbuilt and an external to the phone accelerometer, respectively.  

Subjects were recorded at home, while sleeping alone for two consecutive nights. The four 

smartphone applications (two per each night, in a cross-subjects counterbalanced order) were 

used simultaneously with portable PSG. All iPhones (iOS7) were provided by the experimenter 

and were placed near the pillow in a position that did neither restrict subject’s movement, nor 

interfere with the PSG recording. Polysomnographic recording were performed with the System 

‘98, Micromed® (Mogliano Veneto, Italy) including EEG (three channels, with a sample 

frequency of 128 Hz, Low- Frequency Filter set at 0.3 HZ  and  High Frequency Filter set at  35 
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Hz),  right and  left EOG, EMG mylohyoideus and tibial muscles and ECG. EEG electrodes were 

positioned according to the international 10-20 system.  

2.3 Data Analysis 

2.3.1 PSG Reports 

PSG records were manually sleep-staged into 30s epochs according to the American 

Academy of Sleep Medicine (AASM, 2014), yielding the following sleep parameters: Time in 

bed (TIB: minutes between start and end of PSG recording), Sleep Period Time (SPT: minutes 

between sleep onset and morning awakening), Total Sleep Time (TST: minutes scored as sleep 

within SPT), Wake (minutes scored as wake within TIB), Wake After Sleep Onset (WASO: 

minutes scored as wake within SPT), Sleep Efficiency (SE: TST/TIB, expressed as a 

percentage), Sleep Latency (SL: minutes from start of TIB to the first epoch of sleep), duration 

of REM sleep and NREM sleep stages (N1, N2 and slow wave sleep – SWS).  

2.3.2 Sleep Application Reports 

The absolute sleep parameters provided by the four applications were: TIB and Sleep Quality for 

Sleep Cycle; TIB, TST, Sleeping Soundly, Deep Sleep, Sleep Latency and Sleep Score for 

Sense; TIB, Sleep Quality, Light Sleep, Deep Sleep, Wake for Smart Alarm. All apps provided a 

graphic representation of the sleep recording through the night (see Figure.1). Sleep Quality and 

Sleep Score can be assumed as a measure of SE, whereas we considered Sleeping Soundly as 

Light Sleep (LS), given that the other index provided by Sense was Deep Sleep (DS).  

 

----- Insert Figure 1 about here ----- 

 

2.3.2.1 Epoch by epoch comparison data  
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None of the applications divided its recording into specific epochs and three out of four (SCm, 

SCa and Se) provided non-isomorphic hypnograms, hence an epoch-by epoch comparison with 

PSG was only possible for SA, whose sleep stage graph lend itself to being analyzed and was 

consequently transformed into 1-min epochs (see Figure 2) as per previous comparison studies 

(Bhat et al., 2016). Trimming of the data to match with the start and end times of the PSG was 

applied to SA as the start and end times of the sleep period (sleep period time, SPT).  

 

----- Insert Figure 2 about here ----- 

 

For every minute of recording, PSG and SA data were manually recoded as either sleep or wake 

(0 = wake, 1 = sleep). PSG provides data in 30-s epochs, so each minute of PSG data was 

manually rescored as wake if either one or both of the 30-s epochs in each 1-min block were 

scored as wake, as per previous comparison studies (Tal et al., 2017; Toon et al., 2016). Further, 

in order to perform an epoch-by-epoch comparison of sleep stage distribution through the night 

between PSG and SA, epoch scored as sleep were further recoded as light sleep or deep sleep 

(utilizing three codes:1 = wake, 2 = light sleep, 3 = deep sleep). For PSG scoring, we considered 

N1 and N2 as Light sleep and SWS as Deep sleep. In addition, given that SA does not offer a 

scoring of REM, we considered REM sleep as part of PSG Light sleep, in order to performed 

epoch by epoch comparisons. 

 

2.4 Statistical analysis 

From a total sample of 25 participants, we excluded subjects with “SE < 85” (n=4). 

Seven nights of recording were lost due to either technical problems with PSG data storage (3 



9 
 

nights) or erroneous use of the app by participants (4 nights). Thus, our final sample consisted of 

21 subjects and 42 nights, with each application being related to a different total number of PSG 

night recording, equally distributed between the first (n=16) and second (n=19) night session. 

2.4.1 Correlational analysis between the four Apps and PSG parameters 

Bivariate correlations (Spearman’s coefficient) were performed between the absolute 

parameters provided by each app (SCa, SCm, Se, SA) and their correspondent indices obtained 

from the PSG recording. Spearman coefficient was applied as PSG and app’s variables were not 

normally distributed, as indicated by Kolmogorov-Smirnov Test. 

Considering that two apps reported duration of ‘light sleep’ we obtained equivalent PSG values 

for ‘light sleep’ (LS) by adding the duration of N1 and N2 sleep. Thus, Deep Sleep was 

correlated to PSG-SWS, whereas Light Sleep with PSG-LS. Furthermore, as none of the apps 

provided a REM measure, we computed for Sleeping Soundly and Deep Sleep of Sense and for 

Light Sleep and Deep Sleep of Smart Alarm three additional correlations (with PSG-REM, PSG 

LS plus REM and PSG-SWS plus REM), to asses if the applications systematically considered 

REM within one sleep category or the other.  

2.4.2 Comparison between PSG and apps’ reports 

We performed four one-way repeated measures MANOVA analysis, with device (1st : 

PSG vs. SCa; 2ndPSG vs. SCm; 3rd: PSG vs. Se; 4th: PSG vs. SA) as within-subjects factor and 

sleep indices as dependent variables (1st: TIB and SE; 2nd: TIB and SE; 3rd: TIB, TST, SE, SL); 

4th: TIB, TST, SE, Wake), to compare absolute values of main parameters reported by PSG and 

applications.  

2.4.3 Epoch-by-epoch comparison between PSG and SA 
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Inter-rater reliability (IRR) of overall epoch-by-epoch matching between devices was 

assessed. We determined the sensitivity (i.e., ability of SA to detect true sleep when the PSG also 

scores sleep), specificity (i.e., ability of SA to detect true wakefulness when the PSG also scores 

wakefulness) and accuracy (i.e., the ability of SA to correctly detect sleep and wake), applying 

the formulas reported in Table 1 and previously used by Toon and colleagues (Toon et al., 2016). 

In addition, to assess the difference between PSG and SA in identifying sleep stages, two 

supplementary analyses were conducted: first, a MANOVA was carried out on (recoded) TST, 

Wake, Light Sleep (LS) and Deep Sleep (DS), with Device (PSG vs. SA) as within-subjects -

factor; and then, we used Bland-Altman plots (Bland & Altman, 1995) to examine the degree of 

agreement between (recoded) PSG and SA reports. A positive mean difference (or bias) indicates 

an underestimation of the sleep parameter, while a negative difference indicates an 

overestimation. All statistical analysis were conducted using SPSS version 22.0 (SPSS, Inc., 

Chicago, IL), results with p <0.05 were considered statistically significant.  

 

----- Insert Tables 1 & 2 about here ----- 

 

3. RESULTS 

3.1 Demographic and polysomnographic data 

Demographic characteristics and PSG data of participants are shown in Table2. Despite 

only participants with SE ≥ 85 were selected, the PSG data of the entire sample, in particular SL, 

WASO and SWS duration, seem to indicate the possibility that some subjects may have 

presented more sleep fragmentation or sleep pressure, compared to healthy population. 

3.2 Correlational analysis between the four Apps and PSG parameters  
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Significant correlations (Spearman rs) between absolute parameters provided by the apps 

and the PSG are reported in Table 3. All apps showed a significant correlation with PSG-TIB, 

whereas only SA offered significant correlations for SE. SA seemed to be quite effective in 

reliable detection of sleep, wake and also Light Sleep. None of the apps was capable to detect 

and score REM values; but while Se seemed to spread REM sleep between Sleeping Soundly 

and Deep Sleep, SA systematically considered REM as Light Sleep, as shown by significant 

correlation between this index and PSG-N1, N2 plus REM. 

3.3 Comparison between PSG and apps main sleep parameters 

The four MANOVAs computed on sleep parameters and the subsequent ANOVAs are 

reported in Table 4. In general, TIB and values scored by the apps were comparable to ones 

showed by PSG, whereas SE resulted significantly lower for SCa, SCm and Se and higher for SA 

compared to PSG and durations of wake resulted significantly lower for SA compared to PSG. 

TST were comparable to PSG for Se, whereas SA showed higher values in comparison with PSG. 

 

----- Insert Tables 3 & 4 about here ----- 

 

3.4 Epoch by epoch comparison between PSG and SA 

Further epoch by epoch analysis performed on SA data compared to PSG (i.e., on epochs 

scored as sleep or wake) showed an inter-rater reliability (IRR) range of 87% -97%. SA showed a 

high sensitivity in detecting sleep (range 91 - 97.4%) but a low specificity in detecting 

wakefulness (range 0 - 48 %), and an overall accuracy of 92.8% (range 85% - 95%).  

In addition, the MANOVA carried out on (recoded value of) TST, Wake, Light Sleep and Deep 

Sleep showed a main effect of Device (PSG vs. SA: Wilks’ Lambda = 0.649; F3,18=3.250; 
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p=0.046). As shown in Figure 3, subsequent ANOVAs revealed that the SA significantly 

underestimated Wake (F1,20=8.297; p =0.009) and showed a tendency to overestimate Deep 

sleep, although the difference was not significant (F1,20 = 3.938; p = 0.061). No significant 

differences were found for TST (F1,20=2.942; p = 0.102), nor for LS detection (F1,20 = 2.643; p= 

0.120.  

----- Insert Figure 3 about here ----- 

We further explored the per night distribution of sleep stages and sleep efficiency through Bland 

Altman plot profiles confirmed the direction of the bias (or difference) seen in Figure 3, with SA 

underestimating Wake and SE, while overestimating Deep sleep and TST compared with the 

PSG. The mean difference (or bias) and lower and upper limits of agreement (95% confidence 

interval = mean difference ± 2SD) are shown in Figure 4. 

----- Insert Figure 4 about here ----- 

4. DISCUSSION 

The aim of this study was assessing the overall performance of sleep tracking through the phone 

as well as the reliability of smartphone applications in sleep-wake and sleep stage detection 

compared to the reference PSG. Whereas all apps showed a significant correlation with PSG-

TIB, only SA offered significant correlations for SE. Furthermore, SA seemed to be quite 

effective in reliable detection of Total Sleep Time and also Light Sleep, but it seems to 

underestimate Wake and partially overestimate Deep Sleep. In addition, none of the apps was 

capable of detecting and scoring REM sleep. Nonetheless, correlational analyses indicated that 

Se spread REM sleep between Sleeping Soundly and Deep Sleep, whereas SA systematically 

considered REM as Light Sleep. 
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Considering the overall data reported, SC and Se seem less valid (in terms of reliability and 

accuracy in identifying absolute values of wake and sleep periods) than SA. Indeed, SA yielded 

reliable estimations of SE as showed by significant correlation and allowed for an epoch-by 

epoch comparison with PSG, resulting in overall satisfactory agreement. The current sleep - 

wake analysis results are in line with previous studies on accelerometer based sleep applications 

(Bhat et al., 2016; Tal, Shinar, Shaki, Codish & Goldbart, 2017; Toon et al., 2016): SA showed 

greater sensitivity, accurately assessing sleep 97% of the time, than specificity, accurately 

assessing wake at best 48 % of the time, although the specificity results in the current study were 

lower than those reported in previous works which suggested that sleep tracking through smart 

phone fared well compared to traditional wrist actigraphy (Cole, Kripke, Gruen, Mullaney & 

Gillin 1992). Furthermore, the discrepancy observed between sleep stage detection by the SA 

compared to PSG revealed by the ANOVAs (Figure 3) was confirmed through the Bland-Altman 

plots (Figure 4). The app underestimated Wake by 15 minutes and overestimated Deep sleep by 

42 min, which is consistent with previous validating studies on smartphone applications (Bhat et 

al., 2016; Natale et al., 2012). The low detection of wake as evidenced by the low specificity, 

and especially the difficulty in detecting wake during sleep could explain the app’s 

overestimation of deep sleep. Not surprisingly, this affected the app’s capacity to reliably asses 

sleep efficiency. Although correlations with PSG were significant the Bland Altman plot profile 

shows that SA underestimated SE by 5 %. In terms of sleep stage detection, our findings are in 

keeping with literature showing that sleep apps perform poorly when compared to PSG, 

putatively due to the fact that movement-based algorithms used in accelereometer-based sleep 

applications cannot reliably distinguish sleep stages (Choi et al., 2018; Lee-Tobin et al., 2017; 

Fino & Mazzetti, 2019). 
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In the same lines, it needs to be noted that there is a (potentially) massive utilization of 

smartphone applications for at home sleep monitoring purposes of children and adolescent 

populations. Empirical evidence on smartphone sleep assessment on children and adolescents 

(Patel, Kim & Brooks., 2017; Toon et al., 2016) reveal a low reliability of apps compared to the 

PSG, which is in line with our results. It is therefore crucial to highlight that the apps’ outputs 

should not be considered as diagnostic reports, especially in at home children sleep assessment, 

and that presence of sleep disorders especially at an early age should be evaluated exclusively in 

a clinical setting.  

Our study is not exempt of limitations. The black box nature of apps’ data collection and 

scoring analysis remains a key limitation in our study’s explanatory power. Access to the raw 

data and the development of scoring algorithms specific for smartphone sleep monitoring may 

enhance the apps’ capacity to yield accurate sleep-wake assessment (Natale et al.2012). It should 

also be noted that PSG reports seem to indicate the possibility that some of our subjects may 

present more sleep fragmentation or sleep pressure compared to healthy population. If fact, it 

may be that these very characteristics may have led the subjects to give their consent to 

monitoring their sleep quality. A random selection of a “not so normal” sample in our case may 

have influenced the results, given research showing increasing discrepancy to PSG the shorter 

and more fragmented the sleep (Tal et al., 2017; Fino and Mazzetti, 2019). Given that our sample 

cannot be considered as “very” representative of the normal population, future studies with 

healthy subjects are warranted to extend the validity of our findings together with the resulting 

implications. Another limitation of our study may refer to the lack of a group with sleep 

disturbances, which would have been a more stringent testing of the apps reliability to assess 

sleep. While this remains to be addressed by future research, findings from studies conducted on 
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both healthy and disordered sleep subjects (see Tal et al, 2017) have not yielded significantly 

different results in terms of reliability of apps compared to PSG and actigraphy in these two 

populations.  

Despite these limitations the current study has a number of strengths, one of which being 

that of simultaneously testing four widely used sleep applications, one of which functioning 

through two different sensor modalities (accelerometer and microphone). Furthermore, subjects 

were recorded at home, in a naturalistic setting, which further extends the validity of present 

results.  

 

5.  CONCLUSION  

To sum up, SC (functioning through both accelerometer and microphone) and Se did not result 

sufficiently reliable in sleep-wake detection compared to PSG. SA, the only application offering 

the possibility of an epoch-by-epoch analysis in comparison with PSG showed higher accuracy. 

Still, important validity limitations need to be considered. Compared to available data on sleep 

tracking through accelerometer-based smartphone applications, SA showed similar sensitivity but 

lower specificity, suggesting that it could not be ‘smart’ enough for a reliable use for these 

purposes or as an alternative to actigraphy. Although estimates of SE correlated significantly 

with those of the PSG, the significant differences observed in sleep stage detection shed light on 

the necessity to use SA with an understanding of its limitations, in particular the weakness in 

wakefulness and deep sleep identification. Developing scoring algorithms specific for 

smartphone sleep detection and adding external sensors to record other physiological parameters 

may certainly overcome the present limits of sleep tracking through the phone and correct 

inherent biases in sleep stage detection. More importantly, as the adoption of apps and devices 
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for sleep tracking purposes by the general public and potentially sleep disordered patients is on 

steady increase (as pointed out by Van den Bulck, 2015), it is of vital importance that future 

research keep monitoring developments in this field and examining sleep applications’ 

effectiveness and reliability. 
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