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Chapter 41 M)
A Graph Signal Processing Technique Sthas
for Vibration Analysis with Clustered

Sensor Networks

Federica Zonzini, Alberto Girolami, Davide Brunelli, Nicola Testoni,
Alessandro Marzani and Luca De Marchi

Abstract The modal analysis of large structures, because of spatial and electrical
constraints, generally requires cluster-based networks of sensors. In such solutions,
dedicated procedures are required to reconstruct the global mode shapes of vibra-
tion starting from the local mode shapes computed on individual groups of sensors.
Commonly adopted strategies are based on overlapped schemes, in which at least one
sensing position is shared among neighbour clusters. In this paper, a non-overlapping
monitoring approach is proposed. It relies on the intrinsic capability of graph sig-
nal processing to encode structural connectivity on edge weights and exploits the
maximization of the global graph signal smoothness to define the best set of scaling
factors between adjacent networks. Experiments on a pinned-pinned steel beam in
condition of free vibrations proved that the proposed method is consistent with re-
spect to numerical predictions, showing great potential for distributed monitoring of
complex structures.

Keywords Graph signal processing + Cluster-based modal analysis - Mode shape
assembly
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41.1 Introduction

Operational Modal Analysis (OMA) is commonly applied to inspect the dynamic
behaviour of structures, spanning from civil engineering to industrial applications [1].
The extraction of modal parameters, such as natural frequencies and mode shapes,
is complicated in large scale monitoring scenarios, where the huge amount of data
combined with the intrinsic structural complexity requires advanced and versatile
solutions.

In such a context, clustered sensor networks, thanks to their capability to easy
adapt to the geometric characteristics of the inspected structure, have been gradually
considered as viable solutions to reduce the computational and energy budget asso-
ciated to the gathering of sensor data and their transmission to a central processing
unit. Nevertheless, this network architectural approach implies the development of
dedicated post-processing methods to assemble the locally extracted modal informa-
tion.

With reference to mode shape reconstruction, after modal coordinates have been
obtained for each group of sensors, an optimal set of scaling factors between adjacent
clusters must be computed. State-of-the-art solutions are based on overlapped sensor
configurations, therefore at least one sampling location is shared among neighboring
clusters. In [2], three covariance-driven methods were compared for modal shapes
merging, showing similar satisfying performances in reconstructing vertical and lat-
eral bending modes of bridges. Similarly, a least-squares minimization algorithm was
implemented in [3] to assemble the modal coordinates of a bi-dimensional fan-shaped
slab. Alternatively, a joint state space model was proposed in [4] to combine modal
information from overlapping network configurations. All the above mentioned ap-
proaches suffer from some drawbacks, the most important of them concerning the
increase in power consumption and computational efforts inherently related to the
presence of superimposed sampling locations.

In this paper, a novel strategy based on non-overlapping clusters of sensors is
proposed. Taking advantage of the Graph Signal Processing (GSP) techniques, the
connections between the modal parameters extracted by different clusters are dealt
with by purposely defining edge weights between adjacent sensors and then by max-
imizing the global graph signal smoothness. Beyond the obvious reduction in the
number of sensors to be employed and the consequent energy saving, such a tech-
nique clearly encompasses some other electrical advantages. In detail, while con-
sidering large or even harsh environments, sometimes it might be difficult to install
overlapped clusters due to physical or communication limitations (i.e. maximum
distance between the closest devices, admitted connectivity ranges, geometrical ob-
stacles). In addition, there are also some computational benefits associated to the
minimization of data dimension while preserving the accuracy of the measurements.
The implemented mode shape assembly algorithm was experimentally tested on a
steel beam instrumented by means of clustered and irregularly spaced accelerom-
eters. The results show satisfactory accuracy performances and perfect coherence
with respect to the numerical predictions.
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41.2 Graph-Defined Mode Shape Assembling

The analysis of signals defined on graphs has been gaining increasing attention due to
its capability of modeling inherent patterns coded in the acquired data as similarities
between adjacent vertices on a graph [5, 6]. Several application fields have recently
benefited from this emerging signal representation, including smart cities, traffic
networks and environmental processes [7]. Furthermore, a number of mathematical
techniques have been developed, including the Graph Fourier Transform (GFT) and
the Graph Laplacian (GL) operators, which can be used to transpose classical spectral
characterization methods in equivalent tools for the vertex-frequency domain [8].
A graph is a mathematical entity described by a set of vertices connected by edges,
whose Algebraic representation is expressed through the Adjacency and Degree
matrices [5]. The weighted Adjacency matrix W expresses the vertex connectivity
between two generic nodes n and m by means of a correspondent edge weight
wpm. Conversely, each entry of the Degree matrix D is given by the sum of all the
weights incident on a specific vertex. The eigendecomposition of the graph Laplacian
operator L = D — W is an extremely useful tool to extract meaningful information
from graph signals. In particular, it can be seen as the graph counterpart of the second-
order derivative operator. Besides, a Fourier-like transform has been developed for
graph spectral characterization, which consists of projecting graph signals on the
Laplacian eigenvectors. The eigenvalues of the Laplacian matrix are also inherently
related to the global graph signal smoothness of a generic function f sampled on the

graph vertices:
| VoIl
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which quantifies the cumulative energy of signal changes sensed at different
vertices [9].

41.2.1 Graph-Based Mode Shape Assembling

In vibration-based structural monitoring, spatially varying modal coordinates can be
mapped as values on the vertices of an undirected arbitrary graph. Once a specif-
ic sampling grid has been deployed, edge weights can be defined as the inverse of
the sampling points’ spatial distance. In this context, no specific requirement about
sensor density is additionally required apart from having the minimum cluster-size
compliant to the number of modes to be investigated [ 10]. Given the quasi-sinusoidal
dynamic regime typical of civil structures, which corresponds to smooth modal curves
independently from the nature of the exciting force, the developed GSP technique
iteratively tries to maximize the global graph signal smoothness introduced in E-
g- (41.1) by correspondingly adapting a scaling factor «, for each cluster, where sub-
script c = 1, ..., N, identifies one of the N, subsets of sensors. The implemented
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Fig. 41.1 Experimental setup with pinpointed sampling positions

algorithm comprises the following steps. During the starting phase, (i) a vector con-
sisting of unitary scaling values is considered as the initial guess. Then, after the
currently assembled mode shapes have been normalized (ii), the fitness function A is
computed (iii) according to (41.1). In particular, some of the graph data processing
procedures from GSPBOX [11] were exploited. Finally, a prediction phase (iv) up-
dates the scaling coefficients. More specifically, the values o 41 predicted at iteration
k are computed as ox 1 = ax — 1V f (o), in which r and V f respectively represent
the updating ratio and the gradient operator. Steps (ii—iv) are repeated until a con-
vergence criterion is met, which is intended in the current approach as a smoothness
variation between subsequent iterations inferior to a predefined threshold €.

41.3 Experimental Validation

The effectiveness of the implemented graph-based mode shape assembly algorithm
is tested on an instrumented steel beam, which was left to vibrate (free-vibration)
after an initial stimulus. An extensive description of the geometric and physical
properties of the structure, together with a detailed illustration of the employed
electronic equipment, can be found in [12]. In particular, the circuitry consisted of
low-cost tri-axial MEMS accelerometers capable of transmitting real-time data in a
strictly synchronized manner by means of a CAN bus, each of them embedding an
STMicroelectronics STM32L.433 microcontroller unit.

Clusters of sensors were modelled on an undirected path graph of non homoge-
neous dimensions, the vertices of which holding modal coordinates extracted with
conventional mode shape-extraction methods. As already discussed in [13], both
classical Time or Frequency Domain Decomposition (TDD/FDD) methods and the
unsupervised Second Order Blind Identification (SOBI) approach can be applied
for this purpose. Considering that the predicted first three natural frequencies of vi-
bration of the beam were below 50Hz, a sampling frequency f; 100 Hz was used;
accordingly, clusters comprising at least three sensor nodes were used. Nine sam-
pling positions were uniformly distributed along the beam length at a spatial step of
214 mm.
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Four different configurations of two clustered networks were considered with
various inter and intra-cluster distances between sensors. The sensor-to-cluster as-
signment adopted in each considered case is depicted in Fig.41.1, from which it
can be inferred that all the configurations except one (case 1) are non-overlapping.
A maximum variation € = 10™* in successive evaluations of the fitness function
was empirically estimated to be sufficient to achieve the best trade-off between the
resulting modal accuracy and the convergence velocity.

To numerically quantify the level of superposition between theoretically predicted
and graph-assembled modal curves, the Modal Assurance Criterion (MAC) [13] was
computed, providing the modal correspondence indexes summarized in Table41.1.
Such quantities may range from O to 100, the latter value meaning a perfect recovery.
An example of graph-combined mode shapes (¢;),i = 1, 2, 3, is drawn in Fig.41.2,
where raw modal coordinates are extracted through the SOBI technique starting
from sensing positions of case 4. Independently from the spatial distribution of the
sensors and the adopted clustering scheme, making use of GSP tools a proper graph
topology can be derived. As it can be observed, results yield to an almost perfect
fitting between graph-assembled curves and numerical expectations, proved by a
MAC value always above 95% (see Table41.1). Additionally, it can be concluded
that the sensor distribution and their relative distances seem not to affect the overall
quality of the modal shape estimated for each specific mode under investigation.
It is also worth noting that the performance of the proposed algorithm attains high
scores with supervised (FDD and TDD) and unsupervised (SOBI) modal inspection
methods. Furthermore, the number of iterations necessary to meet the convergence
condition was always less than 15, thus limiting the required computational effort.

Table41.1 MAC percentages between experimental and graph assembled mode shapes from over-
lapped and disjoint cluster network

Case 1 Case 2 Case 3 Case 4

1 $ P3| $ P | ¢ P |d1 |2 |3
FDD |95.87 {99.62 | 99.22 |99.61 |99.87 | 99.36 | 97.03 | 99.73 | 99.74 | 99.70 | 99.07 | 98.93
TDD |99.87 [99.41 | 99.62 |99.81 |99.77 | 99.70 | 96.73 | 99.87 | 99.46 | 99.85 | 98.82 | 99.66
SOBI | 95.29 [99.77 | 99.34 | 99.79 | 99.94 | 99.43 | 97.47 | 99.86 | 99.55 | 99.83 | 99.24 | 99.09

¢ Theo
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Fig. 41.2 Graph-assembled mode shapes at sensing locations chosen for case 4 exploiting SOBI
modal reconstruction technique



360 FE. Zonzini et al.

41.4 Conclusions

This paper proposes a new approach for mode shape assembly of vibrating structures
based on clustered sensor networks. Exploiting the advantages of graph signal domain
to account for the underlying connectivity, the described method appears to be a
powerful strategy to overcome the current limitation of state-of-the-art overlapped
solutions. Different sampling grids were tested on the array of 9 sensors installed
on a vibrating steel beam, assessing the robustness of the developed processing
scheme in different spatial configurations. The consistency of the obtained results
corroborates the possibility to deploy accelerometer sensor networks in large and
complex civil structures. Future developments will address the validation of the
proposed data fusion method in setups including damaged scenarios, to verify that the
proposed approach does not affect the damage detection performance. Concurrently,
denser sensor networks will be considered, allowing for a computational evaluation
(e.g. convergence time, required processing resources) of the method under more
complicated situations.
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