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LOW DEGREE MORPHISMS OF E(5; 10)-GENERALIZED VERMA
MODULES

NICOLETTA CANTARINI AND FABRIZIO CASELLI∗

Abstract. In this paper we face the study of the representations of the exceptional Lie
superalgebra E(5, 10). We recall the construction of generalized Verma modules and give a
combinatorial description of the restriction to sl5 of the Verma module induced by the trivial
representation. We use this description to classify morphisms between Verma modules of
degree one, two and three proving in these cases a conjecture given by Rudakov [8]. A key
tool is the notion of dual morphism between Verma modules.

1. Introduction

Infinite dimensional linearly compact simple Lie superalgebras over the complex numbers
were classified by Victor Kac in 1998 [3]. A complete list, up to isomorphisms, consists of ten
infinite series and five exceptions, denoted by E(1; 6), E(3; 6), E(3; 8), E(5; 10) and E(4; 4).
See also [1, 9, 10, 11] for the genesis of these superalgebras. Some years later Kac and Rudakov
initiated the study of the representations of these algebras [4, 5, 7, 6] developing a general
theory of Verma modules that we briefly recall.

Let L = �j2ZLj be a Z-graded Lie superalgebra, let L� = �j<0Lj, L+ = �j>0Lj and
L�0 = L0 � L+. We denote by U(L) the universal enveloping algebra of L. If F is an
irreducible L0-module we define

M(F ) = U(L)
U(L�0) F

where we extend the action of L0 to L�0 by letting L+ act trivially on F . We call M(F ) a
minimal generalized Verma module associated to F . If M(F ) is not irreducible we say that
it is degenerate.

In [4, 5, 7, 6], a complete description of the degenerate Verma modules for E(3; 6) and
E(3; 8) is given, as well as of their unique irreducible quotients. In [6] some basic ideas
and constructions are settled also for E(5; 10). In this case Kac and Rudakov conjecture a
complete list of L0-modules which give rise to the degenerate Verma modules (see Conjecture
4.6).

In 2010 Rudakov tackled the proof of the conjecture through the study of morphisms
between Verma modules. The existence of a degenerate Verma module is indeed strictly
related to the existence of such morphisms of positive degree (see Proposition 3.5). In [8]
Rudakov classified morphisms of degree one and gave some examples of morphisms of degree
at most 5. He also conjectured that there exists no morphism of higher degree and that
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2 NICOLETTA CANTARINI AND FABRIZIO CASELLI�

his list exhausts all the examples. A more general family of modules, possibly induced from
infinite-dimensional sl5-modules, had been studied in [2], where some of Rudakov’s examples
in degree one and two had been obtained through the use of the computer.

In this paper we study morphisms between generalized Verma modules and to this aim we
analyze the structure of the universal enveloping algebra U� = U(L�) as an L0-module. This
analysis has its own interest and provides an explicit combinatorial description of the action
of L0. This description is the main ingredient in our study of morphisms, together with a
systematic use of the dominance order of the weights of the L0-modules. Our main result is
the proof of Rudakov’s conjecture in degree two and three (see Theorems 9.8, 10.15). A useful
observation that we made is that if there exists a morphism ’ : M(V ) ! M(W ) between
generalized Verma modules of degree d, then there exists a dual morphism  : M(W �) !
M(V �) of the same degree. This duality is here proved in low degree for the purpose of this
work but it holds in a much wider context as a consequence of the fact that the conformal
dual of a Verma module is itself a Verma module. This will be shown in a forthcoming paper.

The paper is organized as follows: in Section 2 we recall the basic definitions and fix the
notation. Section 3 is dedicated to Verma modules. Here we characterize degenerate Verma
modules in terms of singular vectors and morphisms. In Section 4, following [8], we give
examples of morphisms of degree one, two and three. Section 5 contains our first main result
on the structure of U� as an L0-module: we construct an explicit basis of U� and describe
its combinatorial properties. Section 6 is dedicated to the analysis of the dominance order of
the weights of the basis elements of U�. In Section 7 we develop the idea of dual morphism
between generalized Verma modules and establish sufficient conditions for the existence of
such a morphism (see Remark 7.2). Finally, Sections 8, 9 and 10 contain the classification of
morphisms of degree one, two and three, respectively.

We thank Victor Kac for useful discussions.

2. Preliminaries

We let N = f0; 1; 2; 3; : : : g be the set of non-negative integers and for n 2 N we set
[n] = fi 2 N j 1 � i � ng.

If P is a proposition we let �P = 1 if P is true and �P = 0 if P is false.
We consider the simple, linearly compact Lie superalgebra of exceptional type L = E(5; 10)

whose even and odd parts are as follows: L�0 consists of zero-divergence vector fields in five
(even) indeterminates x1; : : : ; x5, i.e.,

L�0 = S5 = fX =
5X
i=1

fi@i j fi 2 C[[x1; : : : ; x5]]; div(X) = 0g;

where @i = @xi , and L�1 = Ω2
cl consists of closed two-forms in the five indeterminates x1; : : : ; x5.

The bracket between a vector field and a form is given by the Lie derivative and for f; g 2
C[[x1; : : : ; x5]] we have

[fdxi ^ dxj; gdxk ^ dxl] = "ijklfg@tijkl

where, for i; j; k; l 2 [5], "ijkl and tijkl are defined as follows: if jfi; j; k; lgj = 4 we let tijkl 2 [5]
be such that jfi; j; k; l; tijklgj = 5 and "ijkl be the sign of the permutation (i; j; k; l; tijkl). If
jfi; j; k; lgj < 4 we let tijkl = 1 (this choice will be irrelevant) and "ijkl = 0.

From now on we shall denote dxi ^ dxj simply by dij.
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The Lie superalgebra L has a consistent, irreducible, transitive Z-grading of depth 2 where,
for k 2 N,

L2k�2 = hf@i j i = 1; : : : ; 5; f 2 C[[x1; : : : ; x5]]ki \ S5

L2k�1 = hfdij j i; j = 1; : : : ; 5; f 2 C[[x1; : : : ; x5]]ki \ Ω2
cl

where by C[[x1; : : : ; x5]]k we denote the homogeneous component of C[[x1; : : : ; x5]] of degree
k.

Note that L0
�= sl5, L�2

�= (C5)�, L�1
�=
V2C5 as L0-modules (where C5 denotes the

standard sl5-module). We set L� = L�2 � L�1, L+ = �j>0Lj and L�0 = L0 � L+. We
denote by U (resp. U�) the universal enveloping algebra of L (resp. L�). Note that U� is an
L0-module with respect to the adjoint action: for x 2 L0 and u 2 U�,

x:u = [x; u] = xu� ux:

We also point out that the Z-grading of L induces a Z-grading on the enveloping algebra
U�. It is customary, though, to invert the sign of the degrees hence getting a grading over
N. Note that the homogeneous component (U�)d of degree d of U� under this grading is an
L0-submodule. Section 3 will be dedicated to the study of these homogeneous components.

We fix the Borel subalgebra hxi@j; hij = xi@i � xj@j j i < ji of L0 and we consider the
usual base of the corresponding root system given by f�12; : : : ; �45g. We let Λ be the weight
lattice of sl5 and we express all weights of sl5 using their coordinates with respect to the
fundamental weights !12; !23; !34; !45, i.e., for � 2 Λ we write � = (�12; : : : ; �45) for some
�i i+1 2 Z to mean � = �12!12 + � � �+ �45!45.

For i < j we denote as usual

�ij =

j�1X
k=i

�k k+1

and �ji = ��ij. For notational convenience we also let �ii = 0. Viewed as elements in the
weight lattice we have

�12 = (2;�1; 0; 0); �23 = (�1; 2;�1; 0); �34 = (0;�1; 2;�1); �45 = (0; 0;�1; 2):

If � 2 Λ is a weight, we use the following convention: for all 1 � i < j � 5 we let

�ij =

j�1X
k=i

�k k+1:

If V is a sl5-module and v 2 V is a weight vector we denote by �(v) the weight of v and by
�ij(v) = (�(v))ij.

If � = (a; b; c; d) 2 Λ is a dominant weight, i.e. a; b; c; d � 0, let us denote by F (�) =
F (a; b; c; d) the irreducible sl5-module of highest weight �. In this paper we always think of
F (a; b; c; d) as the irreducible submodule of

Syma(C5)
 Symb(
^2

(C5))
 Symc(
^2

(C5)�)
 Symd((C5)�)

generated by the highest weight vector xa1x
b
12x
�
45
cx�5

d where fx1; : : : ; x5g denotes the standard
basis of C5, xij = xi ^ xj, and x�i and x�ij are the corresponding dual basis elements. Besides,
for a weight � = (a; b; c; d) we let �� = (d; c; b; a), so that F (�)� �= F (��).
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Notice that L1
�= F (1; 1; 0; 0) and that x5d45 is a lowest weight vector in L1. Moreover, for

j � 1, we have Lj = Lj1.

3. Generalized Verma modules and morphisms

We recall the definition of generalized Verma modules introduced in [4]. For the reader’s
convenience we also sketch some proofs of basic results. Given an L0-module V we extend it
to an L�0-module by letting L+ act trivially, and define

M(V ) = U 
U(L�0) V:

Note that M(V ) has a L-module structure by multiplication on the left, and is called the
(generalized) Verma module associated to V . We also observe that M(V ) �= U� 
C V as
C-vector spaces.

If V is finite-dimensional and irreducible, then M(V ) is called a minimal Verma module.
We denote by M(�) the minimal Verma module M(F (�)). A minimal Verma module is said
to be non-degenerate if it is irreducible and degenerate if it is not irreducible.

De�nition 3.1. We say that an element w 2 M(V ) is homogeneous of degree d if w 2
(U�)d 
 V .

De�nition 3.2. A vector w 2 M(V ) is called a singular vector if it satisfies the following
conditions:

(i) xi@i+1w = 0 for every i = 1; : : : ; 4;
(ii) zw = 0 for every z 2 L1;
(iii) w does not lie in V .

We observe that the homogeneous components of positive degree of a singular vector are
singular vectors. The same holds for its weight components. From now on we will thus assume
that a singular vector is a homogeneous weight vector unless otherwise specified. Notice that
if condition (i) is satisfied then condition (ii) holds if x5d45w = 0 since x5d45 is a lowest weight
vector in L1.

Proposition 3.3. A minimal Verma module M(V ) is degenerate if and only if it contains a
singular vector.

Proof. Let w 2M(V ) be a singular vector. We may assume that w is homogeneous of degree
d > 0. Hence the singular vector w generates a submodule of M(V ) which is proper since it
is contained in �k�d(U�)k 
 V .

On the other hand, if M(V ) is degenerate let us consider a proper non-zero submodule W
of M(V ). Let z 2 W be a non-zero vector. By repeatedly applying L1 to z if necessary we can
find a non-zero element w 2 W such that L1w = 0, since the action of L1 lowers the degree
of the homogeneous components of z by 1. We observe that L1 vanishes on the L0-module
generated by w. Any highest weight vector in such a module is a singular vector. �

Degenerate Verma modules can also be described in terms of morphisms. A linear map
’ : M(V )!M(W ) can always be associated to an element Φ 2 U�
Hom(V;W ) as follows:
for u 2 U� and v 2 V we let

’(u
 v) = uΦ(v)
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where, if Φ =
P

i ui
 �i with ui 2 U�, �i 2 Hom(V;W ); we let Φ(v) =
P

i ui
 �i(v). We will
say that ’ (or Φ) is a morphism of degree d if ui 2 (U�)d for every i.

The following proposition characterizes morphisms between Verma modules.

Proposition 3.4. [8] Let ’ : M(V )!M(W ) be the linear map associated with the element
Φ 2 U� 
 Hom(V;W ). Then ’ is a morphism of L-modules if and only if the following
conditions hold:

(a) L0:Φ = 0;
(b) tΦ(v) = 0 for every t 2 L1 and for every v 2 V .

We observe that if M(V ) is a minimal Verma module and condition (a) holds it is enough
to verify condition (b) for an element t generating L1 as an L0-module and for v a highest
weight vector in V .

Proposition 3.5. Let M(�) be a minimal Verma module. Then the following are equivalent:

(a) M(�) is degenerate;
(b) M(�) contains a singular vector;
(c) there exists a minimal Verma module M(�) and a morphism ’ : M(�) ! M(�) of

positive degree.

Proof. We already know that condition (a) is equivalent to condition (b) by Proposition 3.3.
Assume condition (c) holds: if s 2 F (�) is a highest weight vector, then ’(1
 s) is a singular
vector in M(�).

On the other hand, if w is a singular vector in M(�), we can define ’ : M(�(w))!M(�)
as the unique morphism of L-modules such that ’(1
s) = w, s being a highest weight vector
in M(�(w)). �

Remark 3.6. Let ’ : M(V )!M(W ) be a linear map of degree d associated to an element
Φ 2 U� 
 Hom(V;W ) that satisfies condition (a) of Proposition 3.4. Then there exists an
L0-morphism  : (U�)�d ! Hom(V;W ) such that Φ =

P
i ui 
  (u�i ) where fui; i 2 Ig is any

basis of (U�)d and fu�i ; i 2 Ig is the corresponding dual basis.

De�nition 3.7. Let M(�) be a minimal Verma module and let � : M(�)! U� 
 F (�)� be
the natural projection, F (�)� being the weight space of F (�) of weight �. Given a singular
vector w 2M(�) we call �(w) the leading term of w.

Proposition 3.8. If w is a singular vector in M(�) then:

(i) �(w) 6= 0;
(ii) if two singular vectors in M(�) have the same leading term then they coincide.

Proof. If w is a weight vector homogeneous of degree d then we can write w =
P

i ui 
 vi for
some basis fuig of (U�)d consisting of weight vectors and vi 2 F (�)�i for some weight �i. Let
�i0 be maximal in the dominance order such that vi0 6= 0. Then vi0 is a highest weight vector
in F (�). Indeed, for r < s we have:

0 = xr@sw =
X
i

[xr@s; ui]
 vi +
X
i

ui 
 xr@s:vi:

By the maximality of �i0 it follows that xr@s:vi0 = 0. (ii) follows from (i). �
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4. Examples

In this section we give some examples of singular vectors and the corresponding morphisms
of Verma modules. These were described in [8]. We will need the following technical result.

Lemma 4.1. Let ’ : M(�) ! M(W ) be a morphism of Verma modules of degree one
associated to Φ =

P
i<j dij 
 �ij and let s be a highest weight vector in F (�). Let W̃ be

an L0-module containing W and let �̃ij 2 Hom(F (�); W̃ ) be such that the map (U�)�1 !
Hom(F (�); W̃ ) given by d�ij 7! �̃ij is well de�ned and L0-equivariant. Then �̃ij(s) = �ij(s)

implies �̃ij(v) = �ij(v) for all v 2 F (�).

Proof. It is enough to show that if �̃ij(v) = �ij(v) for some v 2 F (�) and all i 6= j, then

�ij(xh@k:v) = �̃ij(xh@k:v) for all i 6= j and h 6= k. We have:

�̃ij(xh@k:v) = xh@k(�̃ij(v))� (xh@k:�̃ij)(v) = xh@k(�̃ij(v)) + �hi�̃kj(v) + �hj �̃ik(v)

= xh@k(�ij(v)) + �hi�kj(v) + �hj�ik(v) = �ij(xh@k:v)

where we used Remark 3.6 in order to write the action of L0 on the �ij’s. Namely, we have:

xh@k:�ij = ��hi�kj � �hj�ik
where if r > s, �rs = ��sr. �

Example 4.2. Let us consider the Verma module M(m;n; 0; 0). We first observe that d12

xm1 x

n
12 is a singular vector in M(m;n; 0; 0). Indeed, for i = 1; : : : ; 4,

xi@i+1d12 
 xm1 xn12 = 0;

besides,
x5d45d12 
 xm1 xn12 = x5@3 
 xm1 xn12 = 0:

By Proposition 3.5 we can define a morphism of Verma modules rA : M(m;n + 1; 0; 0) !
M(m;n; 0; 0) by setting rA(1
s) = d12
xm1 xn12. By Lemma 4.1 used with W̃ = Symm(C5)

Symn(

V2C5) we have that rA is associated to:X
i<j

dij 

@

@xij
2 U� 
 Hom(F (m;n+ 1; 0; 0); F (m;n; 0; 0)):

Example 4.3. Let us consider the Verma module M(m; 0; 0; n + 1). One can check thatP5
j=2 d1j 
 xm1 x

�
j(x
�
5)n is a singular vector in M(m; 0; 0; n + 1), with leading term d15 


xm1 (x�5)n+1. By Remark 3.5 we can define a morphism of Verma modules rB : M(m +
1; 0; 0; n)!M(m; 0; 0; n+ 1) by setting rB(1
 s) =

P5
j=2 d1j 
 xm1 x�j(x�5)n. By Lemma 4.1,

we have that rB is associated to X
i<j

dij 
 (x�i@j � x�j@i):

Example 4.4. We shall now exhibit a singular vector in M(0; 0;m+ 1; n). To this aim it is
convenient to think of F (0; 0;m + 1; n) as the dual L0-module F (n;m + 1; 0; 0)�. We shall
later investigate the role of duality between Verma modules in Section 7, where we will show,
in particular, that the morphism we are going to construct can be seen in a certain sense as
the dual of the morphism rA defined in Example 4.2.
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Let us observe that the vector
P

i<j dij
x�ij(x�45)m(x�5)n is a singular vector in M(F (n;m+

1; 0; 0)�) (with leading term d45 
 (x�45)m+1(x�5)n). Indeed, one immediately checks that
xk@k+1(

P
i<j dij 
 x�ij(x�45)m(x�5)n) = 0 for every k = 1; : : : ; 4. Besides, we have:

x5d45(
X
i<j

dij 
 x�ij(x�45)m(x�5)n)

= x5@3x
�
12(x�45)m(x�5)n � x5@2x

�
13(x�45)m(x�5)n + x5@1x

�
23(x�45)m(x�5)n

= m(x�45)m�1(x�5)n(x�12x
�
34 + x�13x

�
42 + x�14x

�
23)� n(x�45)m(x�5)n�1(x�12x

�
3 + x�23x

�
1 + x�31x

�
2) = 0:

Notice that, in fact,
x�abx

�
cd + x�acx

�
db + x�adx

�
bc = 0

and
x�abx

�
c + x�bcx

�
a + x�cax

�
b = 0

in F (n;m+ 1; 0; 0)� for all a; b; c; d 2 [5], as one can check by applying these elements to the
highest weight vector xn1x

m+1
12 in F (n;m+ 1; 0; 0) and using the L0-action.

By Remark 3.5 we can thus define a morphism of Verma modules rC : M(0; 0;m; n) !
M(F (n;m+ 1; 0; 0)�) by setting rC(1
 s) =

P
i<j dij 
 x�ij(x�45)m(x�5)n. Once again, Lemma

4.1 implies that the morphism rC is associated toX
i<j

dij 
 x�ij:

Examples 4.2, 4.3 and 4.4 imply the following result.

Proposition 4.5. Let m;n � 0. Then M(m;n; 0; 0), M(m; 0; 0; n) and M(0; 0;m; n) are
degenerate Verma modules.

Kac and Rudakov proposed the following conjecture [6]:

Conjecture 4.6. Let a; b; c; d � 0 be such that M(a; b; c; d) is a degenerate Verma module.
Then a = b = 0 or b = c = 0 or c = d = 0.

By Proposition 3.5 a possible strategy to prove Conjecture 4.6 is to construct all possible
morphisms between minimal Verma modules. One of the main results of this paper is a
complete classification of such morphisms of degree at most 3.

Example 4.7. The following are nonzero morphisms of degree 2:

� rBrA : M(m; 1; 0; 0)!M(m� 1; 0; 0; 1);
� rCrB : M(1; 0; 0; n)!M(0; 0; 1; n+ 1);
� rCrA : M(0; 1; 0; 0)!M(0; 0; 1; 0);

Indeed,

rBrA(1
 xm1 x12) = rB(d12 
 xm1 ) = �m
X
j>1

d12d1j 
 xm�1
1 x�j 6= 0

rCrB(1
 x1(x�5)n) =
X
j>1

X
h<k

d1jdhk 
 x�hkx�j(x�5)n 6= 0

rCrA(1
 x12) =
X
i<j

d12dij 
 x�ij 6= 0:
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We observe that the leading terms of these singular vectors are d12d15 
 xm�1
1 x�5, d15d45 


x�45(x�5)n+1 and d12d45 
 x�45, respectively. (We also observe that the other compositions
rArB, rArC , rBrC are not defined). Moreover, one can also verify that r2

A = r2
B =

r2
C = 0 whenever they are defined: this will also be a consequence of the general treatment

of morphisms of degree 2 in Section 9.

Example 4.8.
rCrBrA : M(1; 1; 0; 0)!M(0; 0; 1; 1)

is a nonzero morphism of degree 3. We have thatrCrBrA(x1x12) =
P

j>1;k<l d12d1jdkl
x�jx�kl
is a singular vector in M(0; 0; 1; 1) with leading term d12d15d45 
 x�45x

�
5 .

We will prove that the morphisms described in this section are all possible morphisms
between minimal Verma modules of degree at most 3.

5. Structure of U�

In order to classify morphisms between generalized Verma modules of a given degree we
need to better understand the structure of U� as an L0-module. The main result of this
section is the construction of an explicit linear basis of U� which realizes its structure of
L0-module in a combinatorial way.

We recall that (U�)d denotes the homogeneous component of U� of degree d. We let

Id = fI = (I1; : : : ; Id) : Il = (il; jl) with 1 � il; jl � 5 for every l = 1; : : : ; dg:
If I = (I1; : : : ; Id) 2 Id we let dI = dI1 � � � dId 2 (U�)d, with dIl = diljl .

We set [5]k = f(t1; : : : ; tk) j ti 2 [5]g and for T = (t1; : : : ; tk) 2 [5]k we let @T = @t1 : : : @tk .
We have that (U�)d is spanned by all elements of the form dI as I varies in Id. One can

also consider the following filtration of subspaces of (U�)d: for all k � d=2 we let

(U�)d;k = Spanf@TdI : T 2 [5]k; I 2 Id�2kg:
We have the following chain of inclusions

(U�)d = (U�)d;0 � (U�)d;1 � (U�)d;2 � � � � :
We observe that for all k � d=2 the subspace (U�)d;k is also an L0-submodule of (U�)d and
so we have the following isomorphism of L0-modules

(U�)d �=
M
k�d=2

(U�)d;k=(U�)d;k+1;

where we let (U�)d;k = 0 if k > d=2. For example, we have

(U�)5
�=

(U�)5;0

(U�)5;1

� (U�)5;1

(U�)5;2

� (U�)5;2:

Moreover, one can check that there is an isomorphism of L0-modules  : (U�)d;k=(U�)d;k+1 !
Symk(C5�) 


Vd�2k
(
V2C5): this isomorphism is simply given by extending multiplicatively

the following formulas
 (@i) = x�i ;  (dij) = xij:

and so we have that
(U�)d �=

M
k<d=2

Symk(C5�)

^d�2k

(
^2C5)
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as L0-modules. The main goal of this section is to explicitly construct such isomorphism.
We need some further technical notation. If 1 � i; j � 5 we let (i; j) = (j; i). There is a

natural action of Bd, the Weyl group of type B and rank d, on Id that can be described in
the following way. If w = (�1�1; : : : ; �d�d) 2 Bd, where � = (�1; : : : ; �d) is a permutation of
[d] and �j = �1 for all j 2 [d], we let

w(I) = J

where

Jj =

(
I�j if �j = 1

I�j if �j = �1:

The fact that this is a Bd-action is an easy verification and is left to the reader.
We let Sd be the set of subsets of [d] of cardinality 2, so that jSdj =

�
d
2

�
.

Note that elements in Id are ordered tuples of ordered pairs, while elements in Sd are
unordered tuples of unordered pairs.

If fk; lg 2 Sd and I 2 Id we let tIk;Il = tik;jk;il;jl and "Ik;Il = "ik;jk;il;jl (see Section 2).
Note that the definitions of tIk;Il and "Ik;Il do not depend on the order of k and l but only

on the set fk; lg. We also let

Dfk;lg(I) =
1

2
(�1)l+k"Ik;Il@tIk;Il 2 (U�)2:

For example, if I = ((1; 2); (2; 3); (3; 5)) 2 I3 then Df1;3g(I) = 1
2
(�1)4"12354@4 = �1

2
@4.

De�nition 5.1. A subset S of Sd is self-intersection free if its elements are pairwise disjoint.

For example S = ff1; 3g; f2; 5g; f4; 7gg is self-intersection free while ff1; 3g; f2; 5g; f3; 7gg
is not. We denote by SIFd the set of self-intersection free subsets of Sd.

De�nition 5.2. Let fk; lg; fh;mg 2 Sd be disjoint. We say that fk; lg and fh;mg cross if
exactly one element in fk; lg is between h and m. If S 2 SIFd we let the crossing number
c(S) of S be the number of pairs of elements in S that cross.

For example, if S = ff1; 3g; f2; 5g; f4; 7gg then f1; 3g and f2; 5g cross, f1; 3g and f4; 7g do
not cross, and f2; 5g and f4; 7g cross, so the crossing number of S is c(S) = 2 (see Figure 1
for a graphical interpretation).

De�nition 5.3. Let S = fS1; : : : ; Srg 2 SIFd. We let

DS(I) =
rY
j=1

DSj(I) 2 (U�)2r

if r � 2 and D;(I) = 1 (note that the order of multiplication is irrelevant as the elements
DSj(I) commute among themselves).

De�nition 5.4. For I = (I1; : : : ; Id) 2 Id and S = fS1; : : : ; Srg 2 SIFd we let CS(I) 2 Id�2r

be obtained from I by removing all Ij such that j 2 Sk for some k 2 [r].

For example, if d = 7 and S = ff1; 4g; f2; 7gg then CS(I) = (I3; I5; I6). We are now ready
to give the main definition of this section.
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x x x x x x x
1 2 3 4 5 6 7

Figure 1. A graphical interpretation of the crossing number

De�nition 5.5. For all I 2 Id we let

!I =
X

S2SIFd

(�1)c(S)DS(I) dCS(I) 2 (U�)d:

For example, if I = (21; 13; 45; 25) 2 I4 we have

� D;(I) = 1;
� Df1;3g(I) = �1

2
@3;

� Df2;3g(I) = +1
2
@2;

� Df2;4g(I) = +1
2
@4;

� Df1;3g;f2;4g(I) = Df1;3g(I)Df2;4g(I) = �1
4
@3@4

and all other DS(I) vanish. We also have, c(ff1; 3g; f2; 4gg) = 1 so

!I = dI �
1

2
@3d13d25 +

1

2
@2d21d25 +

1

2
@4d21d45 +

1

4
@3@4:

Proposition 5.6. For all I 2 Id and all g 2 Bd we have

!g(I) = (�1)‘(g)!I ;

where ‘(g) is the length of g with respect to the Coxeter generators fs0; s1; s2; : : : ; sd�1g, with
s0 = (�1; 2; 3; : : : ; d) and s1; : : : ; sd�1 the usual simple transpositions.

Proof. It is enough to verify the statement for g 2 fs0; : : : ; sd�1g. If g = s0 we have, for all
k; l, 1 � k; l � d:

� "s0(I)k;s0(I)l = (�1)�12fk;lg"Ik;Il ;
� ts0(I)k;s0(I)l = tIk;Il ;
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hence DS(s0(I)) = (�1)�12SDS(I) while dCS(s0(I)) = (�1)�1=2SdCS(I), and therefore we have

!s0(I) =
X

S2SIFd

(�1)c(S)DS(s0(I))dCS(s0(I))

=
X

S2SIFd

(�1)c(S)(�1)�12SDS(I)(�1)�1=2SdCS(I)

= �!I :

Now let h 2 f1; : : : ; d� 1g and, for notational convenience, let � = sh. We have:

� "�(I)k;�(I)l = "I�(k);I�(l)
;

� t�(I)k;�(I)l = tI�(k);I�(l)
;

� (�1)k+l = (�1)�(k)+�(l)+�h2fk;lg+�h+12fk;lg

hence DS(�(I)) = (�1)�h2S+�h+12SD�(S)(I), where “h 2 S” means that h belongs to some
element of S. We also observe that

(�1)c(S) = (�1)c(�(S))(�1)�h2S; h+12S; fh;h+1g=2S

i.e. the parity of the crossing number of S is opposite to the parity of the crossing number of
�(S) precisely if h and h+ 1 belong to two distinct elements of S. Moreover we observe that
dCS(�(I)) = dC�(S)(I) if h or h+ 1 belong to S. If h; h+ 1 do not belong to S we have

dCS(�(I)) = �dC�(S)(I) � 2Dfh;h+1g(I)dC�( ~S)(I)

where S̃ is obtained from S by adding the pair fh; h + 1g. We are now ready to compute
!�(I). We have

!�(I) =
X

S2SIFd

(�1)c(S)DS(�(I))dCS(�(I))

=
X

S3h or S3h+1 but S 63fh;h+1g

(�1)c(S)DS(�(I))dCS(�(I))

+
X

S 63h;h+1

�
(�1)c(S)DS(�(I))dCS(s0(I)) + (�1)c(

~S)D ~S(�(I))dC ~S(�(I))

�
=

X
S3h or S3h+1 but S 63fh;h+1g

(�1)�h2S; h+12S(�1)c(�(S))(�1)�h2S+�h+12SD�(S)(I)dC�(S)(I)

+
X

S 63h;h+1

�
(�1)c(�(S))D�(S)(I)(�dC�(S)(I) � 2Dfh;h+1g(I)dC�( ~S)(I)) + (�1)c(�( ~S))D�( ~S)(I)dC�( ~S)(I)

�
= �

X
S3h or S3h+1 but S 63fh;h+1g

(�1)c(�(S))D�(S)(I)dC�(S)(I) �
X

S 63h;h+1

(�1)c(�(S))D�(S)(I)dC�(S)(I)

+
X

S 63h;h+1

�
(�2)(�1)c(�(S))D�(S)(I)Dfh;h+1g(I)dC�( ~S)(I)) + (�1)c(�( ~S))D�( ~S)(I)dC�( ~S)(I)

�
= �

X
S2SIFd

(�1)c(�(S))D�(S)(I) dC�(S)(I)

= �!I
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where we used that D�(S)(I)Dh;h+1(I) = D�( ~S)(I) and (�1)c(�(S)) = (�1)c(�( ~S)). �

Corollary 5.7. If I = (I1; : : : ; Id) is such that Ij = Ik for some j < k, then !I = 0; if Ij = Ik
for some j � k, then !I = 0.

Now we want to study the action of L0 on the elements !I . If I = (I1; : : : ; Id) and r appears
once in Ib for some b we let Ib;s;r be the sequence obtained from I by substituting the letter
r in Ib by s. We want to prove the following

Theorem 5.8. Let I 2 Id and r; s 2 [5], r 6= s. Assume that the letter r appears in I1; : : : ; Ic,
once in each pair, and does not appear in Ic+1; : : : ; Id. Then

xs@r:!I =
cX
b=1

!Ib;s;r :

Proof. For notational convenience, since r and s are fixed in this proof, we simply let Ib = Ib;s;r

for all 1 � b � c. We start by calculating the left-hand side. We have

xs@r:!I = xs@r:
X
S

(�1)c(S)DS(I)dCS(I):

Now we observe that xs@r:Dfk;lg(I) is non zero if and only if Ik and Il have the four indices
distinct from s, hence k and l cannot be both less than or equal to c or both strictly greater
than c. We then assume that k � c and l > c; in this case we have

xs@r:Dfk;lg(S) = xs@r:
�1

2
(�1)k+l"Ik;Il@tIk;Il

�
=

1

2
(�1)k+l+1"Ik;Il@r:

So we have

xs@r!I =
X

k�c<l; s=2Ik; s=2Il

1

2
(�1)k+l+1"Ik;Il@r

X
S 63k;l

(�1)c(S)DS(I)dCS[fk;lg(I)+

+
X
S

(�1)c(S)DS(I)
X

b�c; b=2S

dCS(Ib):

Now we compute the right-hand side:X
b�c

!Ib =
X
b�c

X
S

(�1)c(S)DS(Ib)dCS(Ib):

Now we observe that if b =2 S we have DS(Ib) = DS(I) and so we reduce to prove the following:X
k�c<l; s=2Ik; s=2Il

1

2
(�1)k+l+1"Ik;Il@r

X
S 63k;l

(�1)c(S)DS(I)dCS[fk;lg(I) =
X

S;b:b�c; b2S

(�1)c(S)DS(Ib)dCS(Ib)

We notice that if fb; b0g 2 S with both b; b0 � c then DS(Ib) = �DS(Ib
0
) hence we reduce to

prove thatX
k�c<l; s=2Ik; s=2Il

1

2
(�1)k+l+1"Ik;Il@r

X
S 63k;l

(�1)c(S)DS(I)dCS[fk;lg(I) =

=
X
b�c<l

X
S:S 63b;l

(�1)c(S)Dfb;lg(I
b)DS(Ib)dCS[fb;lg(Ib):
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Finally, in order to prove this last equation we observe that if b � c < l then Dfb;lg(I
b) is

nonzero only if s =2 Ib; Il, that in this case "(Ib)b;(Ib)l = �"Ib;Il , thatDfb;lg(I
b) = �1

2
(�1)b+l"Ib;Il@r

and that dCS[fb;lg(Ib) = dCS[fb;lg(I). The proof is complete. �

If I = (I1; : : : ; Id) with Ik = (ik; jk) we let

Ds!r(!I) = �r;i1!((s;j1);I2;:::;Id)+�r;j1!((i1;s);I2;:::;Id)+�r;i2!(I1;(s;j2);I3;:::;Id)+� � �+�r;jd!(I1;:::;Id�1;(id;s)):

Corollary 5.9. Let I = (I1; : : : ; Id) be arbitrary. Then

xs@r!I = Ds!r(!I):

Proof. If there exists k such that ik = jk then !I = 0 and clearly also Ds!r(!I) = 0 since
all summands in the definition above vanish except possibly two of them which cancel out.
If such k does not exist let w 2 Bd be such that J = w(I) satisfies the following property:
there exists 0 � c � d such that r appears in J1; : : : ; Jc and does not appear in Jc+1; : : : ; Jd.
By Theorem 5.8 we know that the result holds for J hence the result follows since Ds!r
commutes with the action of Bd (we leave this to the reader). �

Corollary 5.10. The map

’ :
M
k

Symk(C5�)

^d�2k

(
^2C5)! (U�)d

given by

’(x�t1 � � �x
�
tk

 xi1j1 ^ � � � ^ xid�2kjd�2k

) = @t1 � � � @tk!(i1;j1);:::;(id�2k;jd�2k)

for all k � d=2 and t1; : : : ; tk; i1; j1; : : : ; id�2k; jd�2k 2 [5] is an isomorphism of L0-modules,
hence the set [

k�d=2

f@T!I j T = (t1; : : : ; tk) 2 [5]k; t1 < � � � < tk; I 2 Id�2k=Bd�2kg

is a basis of (U�)d.

6. Properties of the dominance order

In this section we establish simple combinatorial criteria to determine whether the weights
of vectors in U� and (U�)� are comparable.

Remark 6.1. If ’ : M(V )!M(W ) is a linear map of degree d which satisfies condition (a)
of Proposition 3.4 let  : (U�)�d ! Hom(V;W ) be as in Remark 3.6. By Corollary 5.10 we can

identify (U�)�d with
L

k Symk(C5)

Vd�2k

(
V2

(C5)�) and we let for all T = (t1; : : : ; tk) 2 [5]k

and I = (I1; : : : ; Id�2k) 2 Id�2k with Ih = (ih; jh),

�TI =  (xt1 � � �xtk 
 x�i1j1 ^ � � � ^ x
�
id�2kjd�2k

):

We observe that �Tg(I) = (�1)‘(g)�TI for every g 2 Bd�2k hence @T!I 
 �TI is invariant with
respect to the action of Bd�2k on I. We can thus write

Φ =
X

T=(t1;:::;tk):
1�t1�����tk�5

X
I2Id�2k=Bd�2k

@T!I 
 �TI :
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Moreover, we have:

xs@r:�
T
I = xs@r:�

t1;:::;tk
I1;:::;Id�2k

=
kX

h=1

∆h
s!r�

T
I �

d�2kX
l=1

Dl
r!s�

T
I

where ∆h
s!r(�

T
I ) = �r;th�

t1;:::;th�1;s;th+1;:::;tk
I and

Dl
r!s(�

T
I ) = �il;s�

T
I1;:::;Il�1;(r;jl);Il+1;:::;Id�2k

+ �s;jl�
T
I1;:::;Il�1;(il;r);Il+1;:::;Id�2k

:

We now study the dominance order on the weights of the elements dI , !I and �TI . This will
turn out to play a fundamental role in the study of morphisms of Verma modules.

We observe that dkl is a weight vector for L0. Indeed we have:

[hij; dkl] = (�i;k + �i;l � �j;k � �j;l)dk;l
and so �ij(dkl) is the number of occurrences of i minus the number of occurrences of j in
fk; lg. If I = (i1; : : : ; id) is a sequence of integers and we let

mk(I) = jfs 2 [d] : is = kgj
be the multiplicity of k in I, we have

�ij(dkl) = mi(k; l)�mj(k; l):

More generally, if I = fi1; j1; : : : ; id; jdg and dI = di1j1 � � � didjd we have

�ij(dI) = mi(I)�mj(I):

In order to understand when the weights of dI and dK are comparable in the dominance
order, we first observe that the weight of dI does not depend on the order of its entries. If
I = (i1; : : : ; i2d) we let Io = (i01; : : : ; i

0
2d) be the non decreasing reordering of I. We write

I � K if i01 � k01; : : : ; i
0
2d � k02d and I < K if I � K and at least one of the previous

inequalities is strict (notice that this is different that requiring I 6= K).

Proposition 6.2. For all I;K 2 Id we have �(dI) � �(dK) if and only if I � K.

Proof. We can assume that I = (i1; : : : ; i2d) and K = (k1; : : : ; k2d) are such that I = Io
and K = Ko. We express the difference of the weights as a linear combination of roots. First
assume that all entries of I andK coincide except in position r and that ir = h and kr = h+ 1.
We have ml(I) = ml(K) for all l 6= h; h+1, mh(I) = mh(K)+1 and mh+1(I) = mh+1(K)�1.
Therefore �l;l+1(dI) = �l;l+1(dK) for all l 6= h � 1; h; h + 1, �h�1;h(dI) = �h�1;h(dK) + 1, (if
h 6= 1), �h;h+1(dI) = �h;h+1(dK)�2 and �h+1;h+2(dI) = �h+1;h+2(dK) + 1 (if h 6= 4). Therefore

�(dI)� �(dK) = �h;h+1:

From this we can deduce that

�(dI)� �(dK) = �i1;k1 + �i2;k2 + � � �+ �i2d;k2d
:

In particular, if i1 � k1; : : : ; i2d � k2d then �(dI) � �(dK). Now we assume that the inequali-
ties i1 � k1; : : : ; i2d � k2d are not all satisfied and we let r be minimum such that ir > kr. If
we express �(dI)��(dK) as a linear combination of the simple roots then �kr;kr+1 necessarily
appears with a negative coefficient and we are done. �

Corollary 6.3. For all I;K 2 Id and all T;R 2 [5]k we have:

(i) �(�TI ) � �(�TK) if and only if I � K;
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(ii) �(�TI ) � �(�RI ) if and only if T � R.

Proof. In order to prove (i) it is sufficient to notice that �(�TI ) = �(�(@T!I)) = ��(@T )��(dI)
and then use Proposition 6.2.

In order to prove (ii) it is convenient to introduce the following notation. For t 2 [5] we
let t(1) < t(2) < t(3) < t(4) such that ft; t(1); t(2); t(3); t(4)g = [5] and, for T = (t1; : : : ; tk) 2 [5]k,

T c = (t
(1)
1 t

(2)
1 ; t

(3)
1 t

(4)
1 ; : : : ; t

(1)
k t

(2)
k ; t

(3)
k t

(4)
k ) 2 I2k. Then it is enough to notice that �(@T ) =

�(dT c) and that T � R if and only if T c � Rc. Then one can use (i). �

7. Duality

Consider a morphism ’ : M(V ) ! M(W ) of generalized Verma modules of degree d
associated to an element Φ 2 (U�)d 
 Hom(V;W ). We ask the natural question: does it
exist a “related” morphism  : M(W �) ! M(V �) of the same degree d? The first natural
candidate to look at is the following: if Φ =

P
i ui 
 �i, where fui j i 2 Ig is any basis

of (U�)d and �i 2 Hom(V;W ) then we can consider the linear map  : M(W �) ! M(V �)
associated to Ψ =

P
i ui
 ��i , where, for all � 2 Hom(V;W ) we denote by �� 2 Hom(W �; V �)

the pull-back of � given by ��(f) = f � � for all f 2 W �. One can easily check that the map
 does not depend on the chosen basis fui j i 2 Ig of (U�)d. It turns out that for d = 1 the
map  is also a morphism of L-modules, but this is not the case in general if the degree d is
at least 2.

In this section we develop some tools which will allow us to construct a morphism of L-
modules  : M(W �) ! M(V �) starting from a morphism ’ : M(V ) ! M(W ) of degree at
most 3 and we conjecture that our construction provides such morphism in all degrees.

The main result that we will need is the following.

Proposition 7.1. Let �1; : : : ; �r; �1; : : : ; �s 2 Hom(V;W ) for some L0-modules V , W , and
let z1; : : : ; zt 2 L0. Let ai; bj;k 2 C be such that

X
i

ai�i(v) +
X
j;k

bj;k
�
zk:(�j(v)) + �j(zk:v)

�
= 0 2 W

for all v 2 V . Then

X
i

ai�
�
i (f) +

X
j;k

bj;k
�
zk:((���j )(f)) + (���j )(zk:f)

�
= 0 2 V �

for all f 2 W �.
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Proof. For all v 2 V we have�X
i

ai�
�
i (f) +

X
j;k

bj;k
�
zk:((���j )(f)) + (���j )(zk:f)

��
(v)

=
X
i

aif(�i(v)) +
X
j;k

bj;k
�
��j (f))(zk:v) + (zk:f)(��j(v))

�
=
X
i

aif(�i(v)) +
X
j;k

bj;k
�
f(�j(zk:v)) + f(zk:(�j(v))

�
= f

�X
i

ai�i(v) +
X
j;k

bj;k
�
�j(zk:v) + zk:(�j(v)

��
= 0:

�

Remark 7.2. We will use Proposition 7.1 also in the following equivalent formulation: let
�1; : : : ; �r, �1; : : : ; �s 2 Hom(V;W ) for some L0-modules V , W and z1; : : : ; zt 2 L0. Let
ai; bj;k 2 C be such thatX

i

ai�i(v) +
X
j;k

bj;k
�
2zk:(�j(v))� (zk:�j)(v)

�
= 0 2 W

for all v 2 V . ThenX
i

ai�
�
i (f) +

X
j;k

bj;k
�
2zk:((���j )(f))� (zk:(���j ))(f)

�
= 0 2 V �

for all f 2 W �.

Conjecture 7.3. Let ’ : M(V ) ! M(W ) be a morphism of degree d associated to Φ :=P
T;I @T!I 
 �TI for some �TI 2 Hom(V;W ). Then the linear map  : M(W �) ! M(V �)

associated to Ψ :=
P

T;I @T!I 
 (�1)‘(T )(�TI )� is also a morphism of Verma modules, where if

T 2 [5]k, we let ‘(T ) = k.

In the following sections we will verify Conjecture 7.3 for morphisms of degree at most 3
as a straightforward application of Proposition 7.1.

De�nition 7.4. Let ’ : M(�)!M(�) be a morphism of Verma modules. The weight ���
is called the leading weight of ’.

The reason of the terminology in the previous definition is motivated by the following
observation.

Remark 7.5. Let ’ : M(�)!M(�) be a morphism of Verma modules of leading weight �.
If ’ is associated to Φ =

P
i ui
 �i, where fui j i 2 Ig is a basis of (U�)d consisting of weight

vectors, let �i0 be of maximal weight such that �i0(s) 6= 0 for a highest weight vector s 2 F (�).
Then �i0(s) is a highest weight vector in F (�) and so the weight of �i0 is the leading weight
of ’. Therefore if ’ has leading weight � the leading term of the singular vector ’(1
 s) isX

i:�(�i)=�

ui 
 �i(s):
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We also say that � 2 Hom(V;W ) has the leading weight of ’ if �(s) 6= 0 and the weight of �
is �. A general strategy to study a morphism ’ : M(V )!M(W ) is to understand elements
� 2 Hom(V;W ) which have the leading weight of ’; in particular we will often show that
there is no such morphism by showing that there is no � 2 Hom(V;W ) that may possibly
have the leading weight of a morphism.

Whenever Conjecture 7.3 holds the next result allows us to simplify the classification of
morphisms.

Remark 7.6. Let ’ : M(V ) ! M(W ) and  : M(W �) ! M(V �) be morphisms of Verma
modules and let � = (a; b; c; d) be the leading weight of ’. Then the leading weight of  is
��� = �(d; c; b; a).

8. Morphisms of degree one

In this section we classify morphisms of degree one between generalized Verma modules,
slightly simplifying Rudakov’s argument [8].

We let C(a; b; c) be the set of cyclic permutations of a; b; c, i.e., C(a; b; c) = f(a; b; c); (b; c; a),
(c; a; b)g.

Theorem 8.1. Let ’ : M(V )!M(W ) be a linear map of degree one associated to

Φ =
X

I2I1=B1

!I 
 �I

such that L0:Φ = 0. Then ’ is a morphism of Verma modules if and only if for all distinct
a; b; c; p 2 [5] and for all v 2 V we have

(1)
X

(�;�;
)2C(a;b;c)

xp@
:(���(v)) = 0:

Proof. By Proposition 3.4 it is enough to check when xpdpqΦ(v) = 0 for all p; q 2 [5]. For
notational convenience we let Q = (p; q) and fa; b; c; p; qg = [5]. We have:

xpdQΦ(v) = xpdQ
X

I2I1=B1

!I 
 �I(v) = xpdQ
X

I2I1=B1

dI 
 �I(v)

=
X

I2I1=B1

"Q;Ixp@tQ;I :(�I(v)) = "pqabc
X

(�;�;
)2C(a;b;c)

xp@
:(���(v)):

�

Remark 8.2. We point out that Equation (1) satisfies the hypotheses of Proposition 7.1
since in this case

xp@
:(���(v)) = ���(xp@
:v)

hence we can write

xp@
:(���(v)) =
1

2

�
xp@
:(���(v)) + ���(xp@
:v)

�
:

Conjecture 7.3 then holds in degree one. This will be also confirmed by Theorem 8.4.
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Proposition 8.3. Let ’ : M(�) ! M(�) be a morphism of Verma modules of degree one
and let �hk have the leading weight of ’. Then if i < j are distinct from h; k we have

�ij = ��i<h<j � �i<k<j:

Proof. Consider Equation (1) with p = j, c = i, a = h, b = k and v = s a highest weight
vector in F (�):

xj@i:(�hk(s)) + xj@k:(�ih(s)) + xj@h:(�ki(s)) = 0:

Now we apply xi@j to this equation. We have

hij:(�hk(s))� �i<k<j�kh(s)� �i<h<j�kh(s) = 0

and the result follows. �

Theorem 8.4. Let ’ : M(�)!M(�) be a morphism of Verma modules of degree one. Then
one of the following occurs:

� � = (m;n+ 1; 0; 0), � = (m;n; 0; 0) for some m;n � 0 and, up to a scalar, ’ = rA.
� � = (m+1; 0; 0; n), � = (m; 0; 0; n+1) for some m;n � 0 and, up to a scalar, ’ = rB.
� � = (0; 0;m; n), � = (0; 0;m+ 1; n) for some m;n � 0 and, up to a scalar, ’ = rC.

Proof. Let �hk have the leading weight of ’. By Proposition 8.3 we have that if (h; k) 6=
(1; 2); (1; 5); (4; 5) we can find i; j such that �i;j < 0, a contradiction. Proposition 8.3 also
provides

� �3;5 = 0 if (h; k) = (1; 2);
� �2;4 = 0 if (h; k) = (1; 5);
� �1;3 = 0 if (h; k) = (4; 5),

and the rest follows using Lemma 4.1 and Proposition 3.8 recalling that �(�hk) = ��(dhk). �

9. Morphisms of degree 2

In this section we provide a complete classification of morphisms between Verma modules
of degree 2. We will make use of the following preliminary result which holds in a much wider
generality. Here and in what follows we denote by (p; q; a; b; c) any permutation of [5] and we
set Q = (p; q).

Lemma 9.1. Suppose that Φ =
P

T;I @T!I 
 �TI de�nes a morphism of Verma modules

’ : M(V )!M(W ). Then for all t1 : : : th 2 [5], I1; : : : ; Ik 2 I1 and v 2 V we haveX
I;J1;:::;Jr2I1

"Q;Ixp@tQ;IdJ1 � � � dJr 
 �
t1;:::;th
I1;:::;Ik;I;J1;:::;Jr

(v) = 2
X

(�;�;
)2C(a;b;c)
H1;:::;Hr2I1

"pqabcdH1 � � � dHr


�
�t1;:::;thI1;:::;Ik;��;H1;:::;Hr

(xp@
:v) +
hX
s=1

∆s
p!
�

t1;:::;th
I1;:::;Ik;��;H1;:::;Hr

(v)�
kX
s=1

Ds

!p�

t1;:::;th
I1;:::;Ik;��;H1;:::;Hr

(v)
�
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Proof. Using the definitions of Dh
a!b, of ∆h

a!b; of �t1;:::;thI1;:::;Ik
and of the action of L0 on the latter

elements, we haveX
I;J1;:::;Jr

"Q;Ixp@tQ;IdJ1 � � � dJr 
 �
t1;:::;th
I1;:::;Ik;I;J1;:::;Jr

(v) = �2
X

(�;�;
)2C(a;b;c)
H1;:::;Hr2I1

"pqabcdH1 � � � dHr


�
(xp@
:�

t1;:::;th
I1;:::;Ik;��;H1;:::;Hr

)(v)�
hX
s=1

∆s
p!
�

t1;:::;th
I1;:::;Ik;��;H1;:::;Hr

(v) +
kX
s=1

Ds

!p�

t1;:::;th
I1;:::;Ik;��;H1;:::;Hr

(v)

� xp@
(�t1;:::;thI1;:::;Ik;��;H1;:::;Hr
(v))

�

from which the thesis follows. �

We are now ready to state the following characterization result.

Theorem 9.2. Let ’ : M(V )!M(W ) be a linear map of degree 2 associated to

Φ =
X

(I;J)2I2=B2

!I;J 
 �I;J +
5X
t=1

@t 
 �t

such that x:Φ = 0 for all x 2 L0. Then ’ is a morphism of Verma modules if and only if for
all K 2 I1 and all v 2 V we have

��(K2B1Q)�
p(v) +

1

2
"pqabc

X
(��
)2C(a;b;c)

�
�
�
(xp@
):���;K

�
(v) + 2xp@
:(���;K(v))

�
= 0

Proof. By Proposition 3.4 we have that ’ is a morphism of Verma modules if and only if

xpdQ

� X
(I;J)2I2=B2

!I;J 
 �I;J(v) +
X
t

@t 
 �t(v)
�

= 0

for all v 2 V . It is convenient for us to consider the first sum running over all (I; J) 2 I2 and
so we have

xpdQ

�1

8

X
(I;J)2I2

!I;J 
 �I;J(v) +
X
t

@t 
 �t(v)
�

= xpdQ

�1

8

X
I;J

(dIdJ �
1

2
"I;J@tI;J )
 �I;J(v) +

X
t

@t 
 �t(v)
�
:(2)

We split Equation (2) into three parts:
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In the first part of Equation (2) we have, using Lemma 9.1,

xpdQ
X
I;J

dIdJ 
 �I;J(v) =
X
I;J

�
"Q;I(xp@tQ;I )dJ � "Q;JdI(xp@tQ;J )

�

 �I;J(v)

= 2
X
H

dH 
 "pqabc
X
��


���;H(xp@
:v)

� 2
X
I

dI 
 "pqabc
X
��


(�I;��(xp@
:v)�D1

!p�I;��(v))

= 4
X
H

dH 
 "pqabc
X
��


�
���;H(xp@
:v) +

1

2
(xp@
:���;H)(v)

�
= 4

X
H

dH 
 "pqabc
X
��


�
xp@
:(���;H(v))� 1

2
(xp@
:���;H)(v)

�
where the sums run over I; J;H 2 I1 and (�; �; 
) 2 C(a; b; c).

In the second part of Equation (2) we haveX
I;J

1

2
"I;J@tI;J 
 �I;J(v) = 0

since the term indexed by (I; J) cancels the term indexed by (J; I).
In the third part of Equation (2) we have:X

t

xpdQ@t 
 �t(v) = �dQ 
 �p(v):

Putting the three parts together Equation (2) becomes

xpdQ

�1

8

X
I;J2I1

!I;J 
 �I;J(v) +
X
t

@t 
 �t(v)
�

=
X

K2I1=B1

dK 

�
� �(K2B1Q)�

p(v) + "pqabc
X

(��
)2C(a;b;c)

�1

2

�
xp@
:���;K

�
(v) + xp@
:(���;K(v))

�
and the result follows. �

We deduce that Conjecture 7.3 holds for morphisms of degree 2 and in particular we have
the following duality result for degree 2 morphisms.

Corollary 9.3. Let ’ : M(V ) ! M(W ) be a morphism of Verma modules of degree 2
associated to

Φ =
X

(I;J)2I2=B2

!I;J 
 �I;J +
X
t

@t 
 �t:

Then the linear map  : M(W �)!M(V �) associated to

Ψ =
X

(I;J)2I2=B2

!I;J 
 ��I;J +
X
t

@t 
 (��t)�

is also a morphism of Verma modules.

Proof. This is an immediate consequence of Remark 7.2 and Theorem 9.2. �
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Corollary 9.4. Let ’ : M(�) ! M(�) be a morphism of Verma modules and s 2 F (�) a
highest weight vector. Then for all K 2 I1 we have

2�K2B1Q"pqabc�
p(s) +

X
(��
)2C(abc)

�
(�1)�p>
 (xp@
:���;K)(s) + 2�p>
xp@
:(���;K(s))

�
= 0

Proof. This result immediately follows from Theorem 9.2 by observing that if p < 
 then
xp@
:s = 0. �

In the following results we fix a morphism ’ : M(�)! M(�) of Verma modules of degree
2 associated to Φ =

P
!I;J 
 �I;J +

P
@t 
 �t and we exploit Corollary 9.4 to obtain some

constraints on the weights � and �. The next result is analogous to Proposition 8.3.

Proposition 9.5. Let h; k; l;m 2 [5] be such that �hk;lm has the leading weight of ’. Let
1 � i < j � 5 be such that j 6= h; k; l;m and i 6= h; k. Then

�ij = ��i<h<j � �i<k<j:

Proof. By Corollary 9.4 used with a = i, b = h, c = k, p = j and K = (l;m), observing that
xj@
:���;K = 0 for all (�; �; 
) 2 C(i; h; k), we obtain the following relation

xj@i:(�hk;lm(s)) + �h<jxj@h:(�ki;lm(s)) + �k<jxj@k:(�ih;kl(s)) = 0:

Applying xi@j to this equation we have

hij:(�hk;lm(s)) + �h<j
�
xi@h:(�ki;lm(s))� xj@h:(�kj;lm(s))

�
+ �k<j

�
xi@k:(�ih;lm(s))� xj@k:(�jh;lm(s))

�
= 0

Since �hk;lm has the leading weight of ’, if h < j we necessarily have �kj;lm(s) = 0, by Corollary
6.3. Similarly, if k < j, we have �jh;lm(s) = 0. Therefore the previous equation becomes

hij:(�hk;lm(s)) + �h<jxi@h:(�ki;lm(s)) + �k<jxi@k:(�ih;lm(s)) = 0

Again, if i > h, we have �ki;lm(s) = 0 and otherwise we have xi@h:(�ki;lm(s)) = ��kh;lm(s) and
similarly for the other term, and so we have

hij:(�hk;lm(s))� �h<j�i<h�kh;lm(s)� �k<j�i<k�kh;lm(s) = 0

i.e.,

hij:(�hk;lm(s)) = �(�i<h<j + �i<k<j)�hk;lm(s):

�

Proposition 9.6. Let i; h; k; l;m 2 [5], with i; h; k;m distinct and i < m, be such that �hk;lm
has the leading weight of ’. Then

him:(�hk;lm(s)) =�1

2
� �i<h<m � �i<k<m

�
�hk;lm(s)� "mlhki�i(s)�

1

2

�
(�1)�h<m�hl;km(s) + (�1)�k<m�hm;kl

�
:

Proof. We consider Corollary 9.4 with a = h, b = k, c = i, p = m and K = (l;m). We
observe that

"pqabc�K2B1Q = "mqhki�l=q = "mlhki
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and so we obtain

"mlhki�
m(s) +

1

2

�
(�1)�h<m�ki;hl(s) + (�1)�k<m�ih;kl(s)� �hk;il(s)

�
+ �h<mxm@h:(�ki;lm(s)) + �k<mxm@k:(�ih;lm(s)) + xm@i:(�hk;lm(s)) = 0

We apply xi@m to this equation and we obtain

"mlhki�
i(s)� 1

2

�
(�1)�h<m�km;hl(s) + (�1)�k<m�mh;kl(s) + �hk;ml(s)

�
� �i<h<m�kh;lm(s)� �i<k<m�kh;lm(s) + him:(�hk;lm(s)) = 0

and the result follows. �

Proposition 9.7. Let h; k;m; i 2 [5] be distinct, i < m, be such that �hk;hm has the leading
weight of ’ : M(�)!M(�). Then

�i;m = �k<m � �i<h<m � �i<k<m
and

�i;m = �k<m � �i<h<m � �i<k<m � 1:

Proof. We use Proposition 9.6 with l = h and deduce

him:(�hk;hm(s)) =
�1

2
� �i<h<m � �i<k<m

�
�hk;hm(s)� 1

2
(�1)�k<m�hm;kh

=
�1

2
� 1

2
(�1)�k<m � �i<h<m � �i<k<m

�
�hk;hm(s)

= (�k<m � �i<h<m � �i<k<m
�
�hk;hm(s):

and the first part of the statement follows. The second part is an easy consequence since

�i;m(�hk;hm) = 1:

�

Theorem 9.8. Let ’ : M(�)!M(�) be a morphism of degree 2. Then one of the following
occurs:

(1) � = (1; 0; 0; n), � = (0; 0; 1; n+ 1) for some n � 0 and, up to a scalar, ’ = rCrB;
(2) � = (n+ 1; 1; 0; 0), � = (n; 0; 0; 1) for some n � 0 and, up to a scalar, ’ = rBrA;
(3) � = (0; 1; 0; 0), � = (0; 0; 1; 0), and, up to a scalar, ’ = rCrA.

Proof. We first make the following observation that will allow us to simplify several arguments.
If � 2 Λ is any weight, by Corollary 9.3, if the statement holds for all morphisms of leading
weight � then it holds also for all morphisms of leading weight ���.

We let s be a highest weight vector of F (�) and we suppose that �hk;lm has the leading
weight of ’. Let us first assume jfh; k; l;mgj = 3 i.e., without loss of generality, h = l.

By Corollary 9.4 with K = (p; a) we have:

�((�1)�b<p + (�1)�c<p)�ab;ca(s)

+2�a<pxp@a:(�bc;pa(s)) + 2�b<pxp@b:(�ca;pa(s)) + 2�c<pxp@c:(�ab;pa(s)) = 0:(3)
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Using this equation with a = h, b = k, c = m, since �hk;hm has the leading weight of ’, we
immediately obtain

((�1)�k<p + (�1)�m<p)�hk;hm(s) = 0:

In particular, if we can choose p such that p > k;m or p < k;m we have �hk;hm(s) = 0, a
contradiction. So we reduce to study the following cases: (a) k = 1;m = 5; (b) k = 2;m =
5; h = 1; (c) k = 1;m = 4; h = 5:

(a) By duality, since �(�21;25) = �(�(�41;45))�, it is enough to consider only the cases
h = 2; 3; we have, by Proposition 9.5,

�14 = ��1<h<4 � �1<5<4 = �1;

a contradiction.
(b) In this case we have, by Proposition 9.5

�23 = ��2<1<3 � �2<5<3 = 0

and by Proposition 9.7 we have

�35 = �2<5 � �3<1<5 � �3<2<5 = 1:

Since the leading weight of ’ is �(�12;15) = (�1;�1; 0; 1) we conclude that � =
(n; 0; 0; 1) for some n � 0 and so � = (n+ 1; 1; 0; 0). The leading term of the singular
vector ’(1
s) is !12;15
�12;15(s) = d12d15
�12;15(s) hence, up to a scalar, ’ = rBrA

by Proposition 3.8.
(c) Since �(�51;54) = ��(�12;15)� this follows from case (b) and we obtain in this case the

morphism rCrB.

This concludes the study of all possible �hk;lm having the leading weight of ’ with h; k; l;m
not distinct.

In order to deal with the case where h; k; l;m are distinct we let p be different from h; k; l;m.
If p = 4; 5 we apply Proposition 9.5 with i = 1 and j = p and we get that �1p < 0 hence
�hk;lm does not have the leading weight of ’. By Corollary 9.4 we also have �p(s) = 0 and so
also �p can not have the leading weight of ’.

For p = 1 we have �(�1) = ��(�5)� and if p = 2 we have �(�2) = ��(�4)� and so these
cases follows from the previous discussion by Corollary 9.3.

For p = 3 Proposition 9.5 with i = 1, j = 3 shows that �14;25 and �15;24 cannot have the
leading weight of ’, i.e. �14;25(s) = �15;24(s) = 0, and that if �12;45 has leading weight then
�1;3 = 0. Besides, by Corollary 9.4, �12;45(s) = 2�3(s). By Proposition 9.6 we immediately
get

h35:(�12;45(s)) = �12;45(s)

and so �3;5 = 1. Since the leading weight is �(�12;45) = (0;�1; 1; 0) we conclude that � =
(0; 0; 1; 0) and so � = (0; 1; 0; 0). The leading term of ’(1
 s) is

!12;45 
 �12;45(s) + @3 
 �3(s) = d12d45 
 �3(s)

hence, up to a scalar, ’ = rCrA by Proposition 3.8.
�
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10. Morphisms of degree 3

This section is dedicated to the study of morphisms of Verma modules of degree three. We
consider a linear map ’ : M(�)!M(�) of degree three associated to

Φ =
X

I2I3=B3

!I 
 �I +
X

t2[5];I2I1=B1

@t!I 
 �tI :

As in the case of morphisms of degree one and two, our goal is to establish necessary and
sufficient conditions to ensure that ’ is a morphism of Verma modules.

Lemma 10.1. If x:Φ = 0 for every x 2 L0, then the following relation holds for every
v 2 F (�): X

I2I3

!I 
 �I(v) =
X
I2I3

dI 
 �I(v):

Proof. Indeed we haveX
I2I3

!I 
 �I(v) =
X
I2I3

dI 
 �I(v)

+
X
I1;I2;I3

(�1

2
"I1;I2@tI1;I2dI3 +

1

2
"I1;I3@tI1;I3dI2 �

1

2
"I2;I3@tI2;I3dI1)
 �I1;I2;I3(v)

and the last sum vanishes since the coefficients of �I1;I2;I3(v) and �I3;I2;I1(v) coincide. �

Theorem 10.2. Let us assume that x:Φ = 0 for every x 2 L0. Then ’ is a morphism of
Verma modules if and only if for every H;L 2 I1, every permutation (p; q; a; b; c) of [5] and
every v 2 F (�), the following equations hold:

�L2B1Q�
p
H(v) +

1

2
"pqabc

X
(�;�;
)2C(a;b;c)

�
� (xp@
:���;H;L)(v) + 2xp@
:(���;H;L(v))

�
= 0

(4)

1

4
�ab;bc;cq(v) +

1

4
�ac;cb;bq(v) +

1

2
"pqabc

X
(�;�;
)2C(a;b;c)

�
� (xp@
:�

a
��)(v) + 2xp@
:(�

a
��(v))

�
= 0

(5)

X
(�;�;
)2C(a;b;c)

xp@
:(�
p
��(v)) = 0

(6)

"pqabc
X

(�;�;
)2C(a;b;c)

xp@
:(�
q
��(v))� 1

2
�ab;bc;ca(v) = 0:

(7)
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Proof. By Proposition 3.4 we need to compute xpdQΦ(v) for v 2 F (�). We compute the
different summands separately. Using Lemma 10.1 and Lemma 9.1 we have

xpdQ
X

(I;J;K)2I3=B3

!I;J;K 
 �I;J;K(v) =
1

48

X
I;J;K2I3

!I;J;K 
 �I;J;K(v)

=
1

48
xpdQ

X
I;J;K

dIdJdK 
 �I;J;K(v)

=
1

48

X
I;J;K

("Q;Ixp@tQ;IdJdK � dI"Q;J xp@tQ;JdK + dIdJ"Q;Kxp@tQ;K )
 �I;J;K(v)

=
1

48

X
H;L

dHdL 
 2"pqabc
X
��


�
D2

!p���;H;L(v) + 2D3


!p���;H;L(v) + 3xp@
:(���;H;L(v))
�
;

where the sums run over I; J;K 2 I1 and (�; �; 
) 2 C(a; b; c).
Recalling that dHdL = !H;L + 1

2
"H;L@tH;L we have:

xpdQ
X

(I;J;K)2I3=B3

!I;J;K 
 �I;J;K(v)

=
1

48

X
H;L

!H;L 
 2"pqabc
X
��


�
D2

!p���;H;L(v) + 2D3


!p���;H;L(v) + 3xp@
:(���;H;L(v))
�

+
1

48

X
H;L

@tH;L 
 "H;L"pqabc
X
��


�
D2

!p���;H;L(v) + 2D3


!p���;H;L(v) + 3xp@
:(���;H;L(v))
�

=
1

48

X
(H;L)2I2=B2

!H;L 
 2"pqabc
X
��


�
12D2


!p���;H;L(v) + 12D3

!p���;H;L(v) + 24xp@
:(���;H;L(v))

�
+

1

48

X
(H;L)2I2=B2

@tH;L 
 "H;L"pqabc
X
��


�
� 4D2


!p���;H;L(v) + 4D3

!p���;H;L(v)

�
=

X
(H;L)2I2=B2

!H;L 

1

2
"pqabc

X
��


�
� (xp@
:���;H;L)(v) + 2xp@
:(���;H;L(v))

�
+ @q 
�

1

2
�ab;bc;ca(v) +

X
��


@� 

1

4
(���;�
;
q(v) + ��
;
�;�q(v)):
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We also need the following computation

xpdQ
X
t2[5]

X
I2I1=B1

@t!I 
 �tI(v) = �1

2

X
I2I1

dQdI 
 �pI (v) +
1

2

X
t

@txpdQ
X
I

dI 
 �tI(v)

= �1

2

X
I

dQdI 
 �pI (v) +
X
t

@t 
 "pqabc
X
��


xp@
:(�
t
��(v))

=
1

2

X
I

(!I;Q �
1

2
"Q;I@tQ;I )
 �

p
I (v) +

X
t

@t 
 "pqabc
X
��


xp@
:(�
t
��(v))

=
X

I2I1=B1

(!I;Q 
 �pI (v)� @tQ;I 

1

2
"Q;I�

p
I (v)) +

X
t

@t 
 "pqabc
X
��


xp@
:(�
t
��(v)):

Now we can use these two relations and compute

xpdQΦ(v) = xpdQ

� X
(I;J;K)2I3=B3

!I;J;K 
 �I;J;K(v) +
X
t2[5]

X
I2I1=B1

@t!I 
 �tI(v)
�

=
X

(H;L)2I2=B2

!H;L 

1

2
"pqabc

X
��


�
� (xp@
:���;H;L)(v) + 2xp@
:(���;H;L(v))

�
+ @q 
�

1

2
�ab;bc;ca(v) +

X
��


@� 

1

4
(���;�
;
q(v) + ��
;
�;�q(v))

+
X

I2I1=B1

(!I;Q 
 �pI (v)� @tQ;I 

1

2
"Q;I�

p
I (v)) +

X
t

@t 
 "pqabc
X
��


xp@
:(�
t
��(v))

=
X

(H;L)2I2=B2

!H;L 

�
�L2B1Q�

p
H(v) + "pqabc

X
��


�
� 1

2
(xp@
:���;H;L)(v) + xp@
:(���;H;L(v))

�
+ @p 
 "pqabc

X
��


xp@
:(�
p
��(v)) + @q 


�
"pqabc

X
��


xp@
:(�
q
��(v))� 1

2
�ab;bc;ca(v)

�
+
X
��


@� 

�1

4
���;�
;
q(v) +

1

4
��
;
�;�q(v) + "pqabc

�
� 1

2
�p�
(v) + xp@c:(�

�
ab(v))

+ xp@b:(�
�
ca(v)) + xp@a:(�

�
bc(v))

��
:

This completes the proof of Equations (4), (6) and (7). In order to deduce Equation (5) we
consider the coefficient of @a in the previous equation (the coefficients of @b and @c provide
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equivalent conditions) and we have

1

4
�ab;bc;cq(v) +

1

4
�ac;cb;bq(v) + "pqabc

�
� 1

2
�pbc(v) + xp@c:(�

a
ab(v)) + xp@b:(�

a
ca(v)) + xp@a:(�

a
bc(v))

�
=

1

4
�ab;bc;cq(v) +

1

4
�ac;cb;bq(v) + "pqabc

�
� 1

2

�
(xp@a:�

a
bc)(v) + (xp@b:�

a
ca)(v) + (xp@c:�

a
ab)(v)

�
+ xp@c:(�

a
ab(v)) + xp@b:(�

a
ca(v)) + xp@a:(�

a
bc(v))

�
=

1

4
�ab;bc;cq(v) +

1

4
�ac;cb;bq(v) +

1

2
"pqabc

X
��


�
� (xp@
:�

a
��)(v) + 2xp@
:(�

a
��(v))

�
:

�

Corollary 10.3. Let ’ : M(�) ! M(�) be a morphism of Verma modules of degree 3
associated to

Φ =
X

I2I3=B3

!I 
 �I +
X
t2[5]

X
I2I1=B1

@t!I 
 �tI :

Then the linear map  : M(��)!M(��) associated to

Ψ =
X

I2I3=B3

!I 
 ��I +
X
t2[5]

X
I2I1=B1

@t!I 
 (��tI)�

is also a morphism of Verma modules.

Proof. This is an immediate consequence of Remark 7.2 and Theorem 10.2. �

If we consider Equation (4) on a highest weight vector s 2 F (�) (and we multiply it by
2"pqabc) we obtain the following equation:

(8) 2"pqabc�L2B1Q�
p
H(s) +

X
��


�
(�1)�p>
 (xp@
:���;H;L)(s) + 2�p>
xp@
:(���;H;L(s))

�
= 0:

Remark 10.4. If xp@c:�ab;H;L has the leading weight of ’ then �p>
xp@
:(���;H;L(s)) = 0 for
all (�; �; 
) 2 C(a; b; c) and so we obtain the following

(9) 2"pqabc�L2B1Q�
p
H(s) +

X
��


(�1)�p>
 (xp@
:���;H;L)(s) = 0:

This equation has several immediate consequences.

Lemma 10.5. If a; b; c; d 2 [5] are distinct then �ab;ac;ad does not have the leading weight of
’.

Proof. Without loss of generality we can assume that the fifth element p is either bigger than
both b and c or smaller than both b and c. Otherwise we can rename b; c; d accordingly.
Remark 10.4 applies with H = (a; p), q = d and L = (a; d) so we have

(�1)�p>c�ab;ac;ad(s) + (�1)�p>b�ab;ac;ad(s) = 0:

�

Lemma 10.6. If a; b; c 2 [5] are distinct then �ab;bc;ca does not have the leading weight of ’.
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Proof. Without loss of generality we can choose p such that p is either bigger than both a
and c or smaller than both a and c. Remark 10.4 applies with H = (b; p) and L = (c; a) so
we have

(�1)�p>c�ab;bc;ca(s) + (�1)�p>a�ab;bc;ca(s) = 0:

�

Lemma 10.7. If x; y; z; w 2 [5] are distinct and �xy;zw;xw has the leading weight of ’, then
�xy;zw;xw = �12;45;kl for some k; l 2 f1; 2; 4; 5g.

Proof. Let us first assume that fx; y; z; wg 6= f1; 2; 4; 5g. This assumption ensures that we
can assume that the fifth element p is either bigger or smaller than both y and w (otherwise
exchange the roles of x; z and y; w). Use Remark 10.4 with a = x, b = y, c = w, q = z,
H = (x; p), L = (z; w). Then we have:

(�1)�p>y�xy;xw;zw(s) + (�1)�p>w�xy;xw;zw(s) = 0:

Now let fx; y; z; wg = f1; 2; 4; 5g. If either fy; wg = f1; 2g or fy; wg = f4; 5g then we can use
the same argument as above.

Now let fy; zg = f4; 5g so that �1y;2z;12 has the leading weight of ’. Equation (8) with
a = 1, b = 2, q = 3, c = y p = z, H = (2; p) and L = (1; 2) gives

xz@2:(�1y;2z;12(s)) = 0

hence if we apply x2@z we get h2z:(�1y;2z;12(s)) = 0 which implies in particular that �34 = 0.
Since �34(�1y;2z;12) = 1 this contradicts the dominance of �. The thesis follows. �

Lemma 10.8. The elements �12;45;14, �12;45;25 and �12;45;24 do not have the leading weight of
’.

Proof. Use Equation (8) with a = 1 b = 2 c = 4, q = 3 and p = 5, H = (4; 5) and L = (1; 2).
We obtain

(10) �24;41;12(s) + �41;42;12(s) + 2x5@1:(�24;45;12(s)) + 2x5@2:(�41;45;12(s)) = 0:

Assume �12;45;14 has the leading weight of ’. Then �24;45;12(s) = 0 and we apply x2@5 to
Equation (10) to obtain

��54;41;12(s)� �24;41;15(s)� �41;45;12(s)� �41;42;15(s) + 2h25:(�41;45;12(s)) = 0:

But by Lemma 10.7 we have �24;41;15(s) = 0 and so we have

�2�41;45;12(s) + 2h25:(�41;45;12(s)) = 0:

It follows that �25(�41;45;12(s)) = 1 and so �34(�41;45;12(s)) � 1 and, since �34(�41;45;12) = 2 this
would imply �34(s) � �1, a contradiction.

By Corollary 10.3 the element �12;45;25 does not have the leading weight of ’ since �(�12;45;25) =
��(�12;45;14)�.

Now we assume that �12;45;24 has the leading weight of ’. We apply x1@5 to Equation (10)
to obtain

��24;45;12(s)� �24;41;52(s)� �45;42;12 � �41;42;52 + 2h15:(�24;45;12(s)) + 2x1@2:(�41;45;12(s)) = 0:

Lemma 10.7 ensures �24;41;52(s) = 0 and so we obtain

�2�24;45;12(s) + 2h15:(�24;45;12(s)� 2�42;45;12(s) = 0
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and we conclude

h15:(�24;45;12(s)) = 0:

We obtain a contradiction with the same argument used in the other case.
�

Lemma 10.9. Assume that �12;15;45 has the leading weight of ’. Then � = (1; 1; 0; 0), � =
(0; 0; 1; 1) and ’ = rCrBrA (up to a scalar).

Proof. Use Equation (8) with a = 1, b = 2, c = 4, q = 3, p = 5, H = (1; 5) and L = (4; 5).
We obtain

�12;14;45(s) + �24;15;41(s) + �41;12;45(s) + �41;15;42(s) + 2x5@4:(�12;15;45(s)) = 0

since �24;14;45(s) = �41;15;45(s) = 0. Applying x4@5 we get

��12;15;45(s)� �25;15;41(s)� �51;12;45(s)� �41;15;52(s) + 2h45:(�12;15;45(s)) = 0:

By Lemma 10.7 we have �25;15;41(s) = 0 and so we obtain

�2�12;15;45(s) + 2h45:(�12;15;45(s)) = 0

and so

�45(�12;15;45(s)) = 1:

Now we consider Equation (8) with a = 1, b = 3, c = 5, q = 2, p = 4, H = (1; 2) and
L = (4; 5). We obtain

�35;12;15(s) + �51;12;35(s) + 2x4@3:(�51;12;45(s)) = 0:

Applying x3@4 to this equation we have

��45;12;15(s)� �51;12;45(s) + 2h34:(�51;12;45(s)) = 0

and from this we get �34(�12;15;45(s)) = 1.
Finally, we use again Equation (8) with a = 1, b = 4, c = 5, q = 2, p = 3, H = (1; 2),

L = (1; 5) which gives 2x3@1:(�45;12;15(s)) = 0, hence

�13(�12;15;45(s)) = 0

proving that � = (0; 0; 1; 1). It follows that � = (1; 1; 0; 0) since �(�12;15;45) = (�1;�1; 1; 1).
By Remark 10.4 we have �2�3

15(s)� �12;15;45(s) = 0 hence the leading term of the singular
vector ’(1 
 s) is !12;15;45 
 �12;15;45(s) + @3d15 
 �3

15(s) = d12d15d45 
 �12;15;45(s). It follows
that ’ = rCrBrA due to Proposition 3.8. �

In the next result, for notational convenience, for all a; b 2 [5] we let (�1)a<b = (�1)�a<b .

Proposition 10.10. Let fx; y; z; w; tg = [5] and let s be a highest weight vector in F (�).
Assume that �xy;xz;wt has the leading weight of ’. Then the following equations hold:

�2"xyzwt�
y
xy(s) + (�1)y<t�xz;xt;yw(s) + (�1)y<t�xz;xy;tw(s) + (�1)y<z�xz;xt;yw(s)(11)

+ (�1)y<z�xy;xt;zw(s) + (�1)y<x�xy;xw;zt(s) = 0

2"xyzwt�
y
xy(s) + (�1)y<t�xw;xt;yz(s) + (�1)y<t�xw;xy;tz(s) + (�1)y<w�xw;xt;yz(s)(12)

+ (�1)y<w�xy;xt;wz(s) + (�1)y<x�xy;xz;wt(s) = 0
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�2"xyzwt�
y
xy(s) + (�1)y<z�xw;xz;yt(s) + (�1)y<z�xw;xy;zt(s) + (�1)y<w�xw;xz;yt(s)(13)

+ (�1)y<w�xy;xz;wt(s) + (�1)y<x�xy;xt;wz(s) = 0

2"xyzwt�
z
xz(s) + (�1)z<t�xy;xt;zw(s) + (�1)z<t�xy;xz;tw(s) + (�1)z<y�xy;xt;zw(s)(14)

+ (�1)z<y�xz;xt;yw(s) + (�1)z<x�xz;xw;yt(s) = 0

�2"xyzwt�
z
xz(s) + (�1)z<t�xw;xt;zy(s) + (�1)z<t�xw;xz;ty(s) + (�1)z<w�xw;xt;zy(s)(15)

+ (�1)z<w�xz;xt;wy(s) + (�1)z<x�xz;xy;wt(s) = 0

2"xyzwt�
z
xz(s) + (�1)z<y�xw;xy;zt(s) + (�1)z<y�xw;xz;yt(s) + (�1)z<w�xw;xy;zt(s)(16)

+ (�1)z<w�xz;xy;wt(s) + (�1)z<x�xz;xt;wy(s) = 0

2"xyzwt�
t
xt(s) + (�1)t<y�xz;xy;tw(s) + (�1)t<y�xz;xt;yw(s) + (�1)t<z�xz;xy;tw(s)(17)

+ (�1)t<z�xt;xy;zw(s) + (�1)t<x�xt;xw;zy(s) = 0

�2"xyzwt�
t
xt(s) + (�1)t<w�xz;xw;ty(s) + (�1)t<w�xz;xt;wy(s) + (�1)t<z�xz;xw;ty(s)(18)

+ (�1)t<z�xt;xw;zy(s) + (�1)t<x�xt;xy;zw(s) = 0

2"xyzwt�
t
xt(s) + (�1)t<w�xy;xw;tz(s) + (�1)t<w�xy;xt;wz(s) + (�1)t<y�xy;xw;tz(s)(19)

+ (�1)t<y�xt;xw;yz(s) + (�1)t<x�xt;xz;yw(s) = 0

�2"xyzwt�
w
xw(s) + (�1)w<t�xy;xt;wz(s) + (�1)w<t�xy;xw;tz(s) + (�1)w<y�xy;xt;wz(s)(20)

+ (�1)w<y�xw;xt;yz(s) + (�1)w<x�xw;xz;yt(s) = 0

2"xyzwt�
w
xw(s) + (�1)w<t�xz;xt;wy(s) + (�1)w<t�xz;xw;ty(s) + (�1)w<z�xz;xt;wy(s)(21)

+ (�1)w<z�xw;xt;zy(s) + (�1)w<x�xw;xy;zt(s) = 0

�2"xyzwt�
w
xw(s) + (�1)w<y�xz;xy;wt(s) + (�1)w<y�xz;xw;yt(s) + (�1)w<z�xz;xy;wt(s)(22)

+ (�1)w<z�xw;xy;zt(s) + (�1)w<x�xw;xt;zy(s) = 0

Proof. We use Remark 10.4 twelve times with L = Q = (p; q) any ordered pair in fy; z; w; tg
and H = (x; p) to obtain the stated equations. More precisely we get Equation (11) with
p = y, q = w; Equation (12) with p = y, q = z; Equation (13) with p = y, q = t; Equation
(14) with p = z, q = w; Equation (15) with p = z, q = y; Equation (16) with p = z, q = t;
Equation (17) with p = t, q = w; Equation (18) with p = t, q = y; Equation (19) with p = t,
q = z; Equation (20) with p = w, q = z; Equation (21) with p = w, q = y; Equation (22)
with p = w, q = t. �

Proposition 10.10 provides 12 linear equations in the ten unknown �xy;xz;wt(s) = fwt,
�xy;xw;zt(s) = fzt, �xy;xt;zw(s) = fzw, �xz;xw;yt(s) = fyt, �xz;xt;yw(s) = fyw, �xw;xt;yz(s) = fyz,
"xyzwt�

y
xy(s) = by, "xyzwt�

z
xz(s) = bz, "xyzwt�

w
xw(s) = bw, "xyzwt�

t
xt(s) = bt. We are now inter-

ested in the study of the weights �i;j(�xy;xz;wt(s)).
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Proposition 10.11. Let fp; q; a; b; cg = [5] with c < p, let s be a highest weight vector in
F (�), H;L 2 I1 and assume that �ab;H;L has the leading weight of ’. Then we have

2hcp:(�ab;H;L(s)) =

� 2"pqabc�L2B1Q(xc@p:�
p
H)(s) + (xc@p:(xp@c�ab;H;L))(s) + (�1)�p<b(xc@p:(xp@b:�ca;H;L))(s)

+ (�1)�p<a(xc@p:(xp@a:�bc;H;L))(s)� 2�c<b<p(xc@b:�ca;H;L)(s)� 2�c<a<p(xc@a:�bc;H;L)(s)

Proof. Equation (8) is equivalent to the following

2"pqabc�L2B1Q�
p
H(s)� (xp@c:�ab;H;L)(s) + (�1)�p>b(xp@b:�ca;H;L)(s) + (�1)�p>a(xp@a:�bc;H;L)(s)

+ 2xp@c:(�ab;H;L(s)) + 2�p>bxp@b:(�ca;H;L(s)) + 2�p>axp@a:(�bc;H;L(s)) = 0:

We apply xc@p to this equation and we obtain

2"pqabc�L2B1Qxc@p:(�
p
H(s))� (xc@p:(xp@c:�ab;H;L))(s) + (�1)�p>b(xc@p:(xp@b:�ca;H;L))(s)

+ (�1)�p>a(xc@p:(xp@a:�bc;H;L))(s) + 2hcp:(�ab;H;L(s)) + 2�c<b<p(xc@b:�ca;H;L)(s)

+ 2�c<a<p(xc@a:�bc;H;L)(s) = 0:

The result follows. �

Corollary 10.12. Let fx; y; z; w; tg = [5] and assume that �xy;xz;wt has the leading weight of
’. Then we have
if z < w,

2hzw:fwt = 2(bw � bz) + fzt + fwt + (�1)�w<x(fyw + fyz)� 2�z<x<wfwt;(23)

if y < z,

2hyz:fwt = 2(by � bz) + (�1)�t<z(�fzw � fyw) + (�1)�w<z(fzt + fyt)(24)

� 2�y<t<z(fwt + fyw)� 2�y<w<z(fwt � fyt)
if w < t,

2hwt:fwt = (�1)�y<t(fyw + fyt) + (�1)�x<t(fyt + fyw)(25)

� 2�w<y<t(fwt � fyt)� 2�w<x<t(fwt � fyw):

if w < z,

2hwz:fwt = fwt + fzt + (�1)�z<y(fwt + fzt) + 2�w<y<z(�fwt + fyt) + 2�w<x<z(�fwt + fyw)
(26)

if x < y,

2hxy:fwt = ((�1)�y<t + (�1)�y<w)(�fyw + fyt + fyz)(27)

� 2�x<t<y(fwt + fyt � fzt)� 2�x<w<y(fwt + fyw � fyz)

Proof. The statement follows from Proposition 10.11 with the following choices:

(1) a = x b = y, c = z, p = w, q = t, H = (x; z), L = (w; t).
(2) c = y, p = z, a = w, b = t, q = x, H = (x; y), L = (z; x).
(3) c = w, p = t, a = x, b = y, q = z, H = (x; z), L = (w; t).
(4) c = w, p = z, a = x, b = y, q = t, H = (x; z), L = (w; t).
(5) c = x, p = y, a = w b = t, q = z, H = (x; y), L = (x; z).

�
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Proposition 10.13. Let s be a highest weight vector in F (�). For c < p we have

4hcp:(�
a
ab(s)) = (�4�c<b<p � 4�c<a<p)�

a
ab(s) + (2� 4�c<a)�

c
bc(s) + (�2 + 4�p<a)�

p
bp(s)

+ "pqabc
�
�ab;bp;cq(s) + �ab;bc;pq(s) + �ap;cb;bq(s) + �ac;pb;bq(s)

�
Proof. We start from Equation (5):
(28)
�ab;bc;cq(s)+�ac;cb;bq(s)+"pqabc

�
�2�pbc(s)+4xp@c:(�

a
ab(s))+4xp@b:(�

a
ca(s))+4xp@a:(�

a
bc(s))

�
= 0:

We want to apply xc@p to this equation and so we do the following two preliminary calcula-
tions:

xc@p:(xp@b:(�
a
ca(s))) = �c<bxc@p:(xp@b:(�

a
ca(s)))

= �c<bxc@b:(�
a
ca(s)) + �c<bxp@b:(xc@p:(�

a
ca(s)))

= ��c<b�aba(s)� �c<bxp@b:(�apa(s))
= �c<b�

a
ab(s) + �c<b�p<b�

a
ba(s)

= �c<b(1� �p<b)�aab(s)
= �c<b<p�

a
ab(s)

xc@p:(xp@a:(�
a
bc(s))) = �c<axc@p:(xp@a:(�

a
bc(s)))

= �c<axc@a:(�
a
bc(s)) + �c<axp@a:(xc@p:(�

a
bc(s)))

= �c<a(�
c
bc(s)� �aba(s))� �c<axp@a:(�abp(s))

= �c<a�
c
bc(s) + �c<a�

a
ab(s)� �c<a�p<a(�

p
bp(s)� �

a
ba(s))

= �c<a�
c
bc(s)� �p<a�

p
bp(s) + �c<a<p�

a
ab(s)

Therefore, if we apply xc@p to Equation (28), using the previous computations, we obtain

��ab;bp;cq(s)� �ab;bc;pq(s)� �ap;cb;bq(s)� �ac;pb;bq(s) + "pqabc
�
� 2�cbc(s) + 2�pbp(s)

+ 4hcp:(�
a
ab(s)) + 4�c<b<p�

a
ab(s) + 4�c<a�

c
bc(s)� 4�p<a�

p
bp(s) + 4�c<a<p�

a
ab(s)

�
= 0

hence we get the statement. �

Proposition 10.14. Let fh; k; l;m; ng = [5]. Then �hk;hl;mn and �khk do not have the leading
weight of ’.

Proof. We first assume h = 1 and we let x = 1, y = 2, z = 3, w = 4, t = 5. We use
notation introduced after the proof of Proposition 10.10 and we observe that, up to a sign,
�1k;1l;mn(s) 2 ff23; f24; f25; f34; f35; f45g and �k1k(s) 2 fb2; b3; b4; b5g. We solve the linear system
provided by Proposition 10.10 and we have:

� f35 = �f45 = �f34

� f24 = �f25 = �f23

� 2b2 = �3f34 + 2f23

� 2b3 = 2b5 = 2b4 = �f34.
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We use Proposition 10.13 with a = 4, b = 1, c = 2, p = 3, q = 5 and we obtain

h23:b4 =
1

2
b2 �

1

2
b3 +

1

4
(f25 + f35 + f34 + f24)

=
1

4
(�3f34 + 2f23) +

1

4
f34 +

1

4
(f23 � f34 + f34 � f23)

= �1

2
f34 +

1

2
f23

therefore
h23:f34 = f34 � f23:

Now we use Equation (24):

2h23:f45 = 2(b2 � b3)� f34 � f24 + (f35 + f25)

i.e.
2h23:f34 = �3f34 + 2f23 + f34 � f34 + f23 � f34 + f23 = �4f34 + 4f23

or
h23:f34 = �2f34 + 2f23:

Comparing this with the previous equation we obtain f34 = f23.
Now we use Equation (27):

2h12:f45 = 2f24 � 2f25 � 2f23

i.e.
2h12:f34 = �2f23 � 2f23 � 2f23 = �6f34

This implies that f34 = f23 = 0. It follows that �1k;1l;mn(s) = 0 and �k1k(s) = 0.

Now let h = 2 and x = 2, y = 1, z = 3, w = 4, t = 5. Similarly as above we have, up to a
sign, �2k;2l;mn(s) 2 ff13; f14; f15; f34; f35; f45g and �k2k(s) 2 fb1; b3; b4; b5g. We solve the linear
system provided by Proposition 10.10 and we have:

� f35 = �f45 = �f34

� f14 = �f15 = �f13

� 2b1 = �f34 + 2f13

� 2b3 = 2b4 = 2b5 = �f34

We use Proposition 10.13 with a = 4, b = 2, c = 1, p = 5, q = 3 and we obtain:

h15:b4 =
1

2
f34 +

1

2
f13

i.e.,
h15:f34 = �f34 � f13

Now we use Equations (23), (24), (25) and we obtain:

h15:f34 = 2f13 � f34

It follows that:
2f13 � f34 = �f34 � f13

i.e., f13 = 0, hence h15:f34 = �f34 which implies f34 = 0. It follows that �2k;2l;mn(s) = 0 and
�k2k = 0.
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Now let h = 3 and x = 3, y = 1, z = 2, w = 4, t = 5. Similarly as above we have, up to a
sign, �3k;3l;mn(s) 2 ff12; f14; f15; f24; f25; f45g and �k3k(s) 2 fb1; b2; b4; b5g. We solve the linear
system provided by Proposition 10.10 and we have:

� f15 = f24 = �f25 = �f14

� f45 = �2b4 = �2b5 = �2f14 � f12

� 2b1 = 2b2 = f12

We use Proposition 10.13 with a = 2, b = 3, c = 1, p = 5, q = 4 and we obtain:

�h15(b2) =
1

2
f12 �

1

2
f14

i.e.,
h15(f12) = f14 � f12

Now we use Equations (23), (24), (25) and we obtain:

h15(f45) = 3f14 + f12:

It follows that:

h15:f14 = �1

2
h15:(f45 + f12) = �2f14

hence f14 = 0 and h15:f12 = �f12 from which it follows that f12 = 0. We conclude that
�3k;3l;mn(s) = 0 and �k3k(s) = 0.

If h = 4; 5 the result follows from Corollary 10.3. �

Now we can summarize the classification of morphisms of degree 3 in the next result.

Theorem 10.15. Let ’ : M(�) ! M(�) be a morphism of degree 3. Then � = (1; 1; 0; 0),
� = (0; 0; 1; 1) and up to a scalar ’ = rCrBrC.

Proof. This follows from Lemmas 10.5, 10.6, 10.7, 10.8, 10.9 and Proposition 10.14. �

References

[1] S.-J. Cheng, V. G. Kac A new N = 6 superconformal algebra, Comm. Math. Phys. 186 (1997), 219{231.
[2] P. Grozman, D. Leites, I. Shchepochkina, Invariant di�erential operators on supermanifolds and

The Standard Model, In: M. Olshanetsky, A. Vainstein (eds.) Multiple facets of quantization and super-
symmetry. Michael Marinov Memorial Volume, World Sci. Publishing, River Edge, NJ (2002) 508|555;

[3] V. G. Kac Classi�cation of in�nite-dimensional simple linearly compact Lie superalgebras, Adv. Math.
139 (1998), 1{55.

[4] V. G. Kac, A. Rudakov Representations of the exceptional Lie superalgebra E(3, 6). I. Degeneracy
condition, Transformation Groups 7 (2002), 67{86.

[5] V. G. Kac, A. Rudakov Representations of the exceptional Lie superalgebra E(3, 6). II. Four series of
degenerate modules, Comm. Math. Phys. 222 (2001), 611{661.

[6] V. G. Kac, A. Rudakov Complexes of modules over the exceptional Lie superalgebras E(3, 8) and
E(5, 10), Int. Math. Res. Not. 19 (2002), 1007{1025.

[7] V. G. Kac, A. Rudakov Representations of the exceptional Lie superalgebra E(3, 6). III. Classi�cation
of singular vectors, J. Algebra Appl. 4 (2005), 15{57.

[8] A. Rudakov Morphisms of Verma modules over exceptional Lie superalgebra E(5, 10), arXiv 1003.1369v1
(2010), 1{12.

[9] I. Shchepochkina New exceptional simple Lie superalgebras, C. R. Acad. Bulgare Sci. 36 (1983), no. 3,
313|314.

[10] I. Shchepochkina The �ve exceptional simple Lie superalgebras of vector �elds, Funktsional Anal. i
Prilozhen 33 (1999), 3, 59{72, 96; transl. in Funct. Anal. Appl. 33 (1999), 3, 208-{219 (2000).



35

[11] I. Shchepochkina The �ve exceptional simple Lie superalgebras of vector �elds and their fourteen
regradings, Represent. Theory 3 (1999), 373-{415.

Fabrizio Caselli and Nicoletta Cantarini, Dipartimento di matematica, Universit�a di Bologna,
Piazza di Porta San Donato 5, 40126 Bologna, Italy

Email address: fabrizio.caselli@unibo.it

Email address: nicoletta.cantarini@unibo.it


