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Abstract: Silicon Photomultipliers with cell-pitch ranging from 12 µm to 20 µmwere tested against
neutron irradiation at moderate fluences to study their performance for calorimetric applications.
The photosensors were developed by FBK employing the RGB-HD technology. We performed
irradiation tests up to 2 × 1011 n/cm2 (1 MeV eq.) at the INFN-LNL Irradiation Test facility.
The SiPMs were characterized on-site (dark current and photoelectron response) during and after
irradiations at different fluences. The irradiated SiPMs were installed in the ENUBET compact
calorimetric modules and characterized with muons and electrons at the CERN East Area facility.
The tests demonstrate that both the electromagnetic response and the sensitivity to minimum
ionizing particles are retained after irradiation. Gain compensation can be achieved increasing the
bias voltage well within the operation range of the SiPMs. The sensitivity to single photoelectrons
is lost at ∼ 1010 n/cm2 due to the increase of the dark current.

Keywords: Calorimeters, Photon detectors for UV, visible and IR photons (solid-state), Neutrino
detectors, Radiation damage to detector materials (solid state)
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1 Introduction

The possibility to use compact Silicon Photomultipliers (SiPMs) embedded in the bulk of par-
ticle detectors is extremely appealing. Direct coupling with scintillator or wavelength shifter
(WLS) fibers [1, 2] remove the inefficiencies and dead areas introduced by the light extraction
toward conventional photomultipliers (PMTs). Modern SiPMs are replacing PMTs in a vast num-
ber of applications but the operation of these devices in radiation harsh environments remains a
challenge [3–7]. Accelerator neutrino physics applications as developed by the ENUBET Collab-
oration [8] are in between low-dose environments where damage due to non-ionizing particles is
small (< 108 n/cm2) [9] and high radiation environment as in the forward region of high-luminosity
colliders (> 1013 n/cm2) [10]. In ENUBET, compact calorimeters are employed to monitor lepton
production in the decay tunnel of neutrino beams at single particle level and to provide a 1%
measurement of the neutrino flux at source. The monitored neutrino beams [11] are narrow band
beams where particles in the tunnel are recorded only at large angles to identify the decay product
of kaons. As a consequence, particle rates and doses are mostly due to hadron interactions.

The integrated fluences to achieve a 1% measurement of the νe and νµ cross sections depend
on the position of the calorimeter with respect to the axis of the secondary beam (mostly pions
and kaons) at the entrance of the decay tunnel. Both ionizing radiation doses and non-ionizing
radiation fluencies are depicted in Fig. 1 as a function of the distance between the beam axis and the
calorimeter. For ENUBET (1 m distance) the non-ionizing fluence integrated during the lifetime of
the experiment and scaled to 1 MeV equivalent neutrons is 1.8 × 1011 n/cm2. The ionizing dose is
0.06 kGy.

The ENUBET calorimeter is an assembly of Ultra Compact Modules (UCM - Fig. 2). The
basic module is an iron-plastic scintillator device whose light is collected by WLS fibers running
perpendicularly to the absorber and converter plates (“shashlik” calorimeter [12, 13]). In a UCM,
every single fiber segment is directly connected to a SiPM [14]. The array of SiPMs reading theUCM
is hosted on a PCB (Printed Circuit Board) holder that integrates both the passive components and
the signal routing toward the front-end electronics. The calorimeters are assembled grouping arrays
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Figure 1: Ionizing doses (in kGy) and non-ionizing fluences (black dashed line: n/cm2; black
continuous line: 1 MeV-equivalent n/cm2) as a function of the distance between the axis of the
ENUBET decay tunnel and the inner radius of the calorimeter.

of UCMs, whose size and thickness (in radiation lengths, X0) are optimized for the identification
of positrons from K+ → e+π0νe. In ENUBET, the use of compact calorimetric modules is a very
effective solution but results into exposing the SiPMs to fast neutrons produced by hadronic showers.
The SiPM technology of choice for ENUBET is RGB-HD: the red-green-blue (sensitivity) - high
density technology [15] developed by FBK for small (< 25 µm) pixel sensors with a sensitive area of
the same size of the ENUBET wavelength shifter fibers (1 mm2). This setup has been successfully
tested with non-irradiated SiPMs and is described in [16]. In 2017, the RGB-HD sensors were
exposed to fast neutrons at the Irradiation Test facility of INFN-LNL (Sec. 2). In Sec. 3 we describe
the analysis of the dark current and noise waveform recorded after irradiation at different fluences.
The SiPMs were irradiated in the same PCB boards used for the UCM and were tested at CERN
to establish the response to minimum ionizing particles (mips) and electrons. The testbeams were
performed at the CERN East Area facility (T9 beamline) and are summarized in Sec. 4.

2 Irradiation tests at LNL

The INFN-LNL (Laboratori Nazionali di Legnaro) provides a general purpose irradiation facility
based on the CN van der Graaf accelerator [17]. The van der Graaf has a maximum voltage of
7 MV and can accelerate protons and other light nuclei up to 5 µA currents. The tests were
performed with a beam of protons impinging on a thick Beryllium target. Neutrons are produced
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Figure 2: Picture of an ENUBET UCM employed for cosmic ray tests: the PCB hosting the SiPMs
is not mounted and the plastic mask holding the fibers is visible in the back of the detector. The
PCB (see Fig. 5 below) is then mounted on the mask to couple the fibers to the photonsensors.

by Be(p,xn) reactions, namely 9Be(p,n)9B, 9Be(p,np) 2α, 9Be(p,np)8Be and 9Be(p,nα)5Li. The
irradiated sample is located inside an experimental area with an external shield of concrete and an
inner shell of water as neutron moderator (see Fig. 3).

A detailed assessment of neutron yields for this beamline has been performed in [18]. The
neutron flux in the forward direction is peaked at about 0.5 and 2.7 MeV for 5 MeV protons
impinging on the target. Fig. 4 shows the neutron yield per unit current (neutrons/MeV/µC/sr) at
different angles (from θ = 0◦ up to θ = 120◦). The expected fluxes on the irradiated samples were
evaluated from [18] and from the real-time monitoring of the proton current to the target performed
with a current integrator. Other effects not included in [18] (neutron backscattering in the shielding
toward the sample) were estimated using FLUKA 2011 [19, 20] and give a negligible contribution
to the integrated fluence on the sample.

Figure 3: (left) Top view of the irradiation test area at INFN-LNL: the sample holder (on the right)
is located in front of the beam-pipe that hosts the Be target. (right) Experimental area and the setup
to record the dark current and the waveform of the SiPMs between two irradiation sessions.
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Figure 4: Neutron yield as a function of energy (MeV) at different neutron emission angles (in
degrees). Data from [18].

We irradiated three PCB boards used for the ENUBET UCMs. Each board hosts 9 SiPMs and
integrates both the passive components and the signal routing toward the front-end electronics. The
boards host 20, 15 and 12 µm cell-pitch SiPMs, respectively. The SiPMs belonging to the same
UCM are connected in parallel and read out without amplification through a 470 pF decoupling
capacitor. The PCB is equipped with a MCX connector to read the sum of the current of the SiPMs
and a miniature push-pull coaxial connector (LEMO-00) for the bias. In addition, we assembled
a test PCB with a single 1 mm2, 12 µm pitch SiPM. Between two irradiation sessions, the signal
of the test PCB was connected to an Advansid trans-impedance amplifier (ASD-EP-EB-N [21])
and the noise waveforms were recorded by a Rohde & Schwarz RTO 1024 oscilloscope to evaluate
the single photoelectron sensitivity. The current as a function of the overvoltage was measured as
voltage drop through a 10 kΩ resistor recorded by a Keithley 2700 multimeter and read out by a
PC through a Keithley 7702 channel multiplexer. The current of the SiPMs below the breakdown
voltage was O(10−9A) for each SiPM and it was measured with a Keithley 485 Picoammeter.
The temperature of the sample during irradiation was measured with LM35 temperature sensors
recorded by an Arduino One microcontroller board.
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Figure 5: One of the irradiated PCB with the SiPMs and the bias connector already installed.

3 Characterization of the irradiated SiPMs

The three PCBs hosting 9 SiPMs and the single-SiPM PCB were irradiated from a minimum dose
of 1.8 × 108 n/cm2 up to 1.7 × 1011 n/cm2. During irradiation the SiPMs were not biased and
after each irradiation run, several current scans as a function of voltage (I-V curve) were recorded.
During the irradiation tests we employed two temperature probes with a precision of 0.5◦C. The
first one (“room temperature probe”) was used to monitor room temperature (25 ◦C during all the
irradiation period), and the second one (“sample probe”) was in thermal contact with the irradiated
sample. During irradiation, the SiPMs were not biased and only the temperature of the sample was
recorded. The maximum increase of temperature during each irradiation run was +10 ◦C and the
sample reached room temperature after 15-30 minutes. The measurements reported below have
been recorded when the sample probe reached the value of the room-temperature probe.

Fig. 6 shows the I-V curves for the single-SiPM PCB (1 mm2 area, 12 µm cell-pitch). The
curves were recorded with the sample at room temperature and, in the longest run (from 8.7 × 1010

to 1.7 × 1011 n/cm2), thermal equilibrium was reached 30 minutes after the stop of the proton
beam. The corresponding curves normalized to a single SiPM for the 20 µm cell-pitch PCB are
shown in Fig. 7. The normalization is performed dividing the value of the current from the PCB
by the number of SiPMs hosted in the board (i.e. 9). The current of all the 20 µm pitch SiPMs was
measured with a pico-ammeter before irradiation and is ∼ 0.5 nA at 27 V. The I-V curve of the 12
µm cell-pitch PCB hosting 9 SiPMs is consistent with the corresponding single-SiPM PCB, i.e. the
current is 9× higher. All the RGB-HD SiPMs show minor changes in the breakdown voltage. For
the 12 µm cell-pitch SiPM the breakdown voltage measured at the maximum of I−1dI/dV is 28.2 V
for no irradiation and 28.0 V after an exposure of 1.7 × 1011 n/cm2. As expected, the dark current
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after breakdown increases by more than two orders of magnitude at a fluence of ∼ 1011 n/cm2.
Fig. 8 shows the dark current normalized to 1 SiPM versus fluence at 33 V (+4.8 V overvoltage).

Figure 6: I-V curve of the single-SiPM PCB.

Figure 7: I-V curve of the 20 µm cell-pitch SiPMs. The value shown in the plot is normalized to
one SiPM, i.e. the current from the PCB is divided by the number of SiPMs hosted in the board (9
SiPMs per board).

After each irradiation run, the signal terminals of the 12 µm cell-pitch photosensor in the
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Figure 8: Dark current of the 12 µm cell-pitch SiPMs (current of a 9 SiPM PCB divided by 9)
as a function of the neutron fluence. The bias of the SiPMs is 33 V, corresponding to +4.8 V
overvoltage.

single-UCM PCB were connected to the OUT2 of the ASD-EP-EB-N amplifier (transimpedance
gain: 2500 for a 50 Ω load resistence) and the amplified waveform was recorded by the Rohde &
Schwarz oscilloscope. The signal per photoelectron (p.e.) was estimated operating the oscilloscope
in self-triggeringmode and setting the threshold below the single photoelectron peak. Thewaveform
was sampled for 100 ns at 10 GS/s, i.e. we recorded 1000 samples every 100 ps for each triggered
event. The distribution of the signal peak is shown in Fig. 9 at 3 × 109 (left) and 1.2 × 1010 (right)
n/cm2. The three fitted peaks correspond to 1, 2 and 3 p.e. The sensitivity to single photoelectron
is lost at fluences larger than 3 × 109 n/cm2.

After irradiation the samples were stored at 25±1 ◦C for about three months before installing
the boards on the UCM at CERN. In this period, we expect the current to further decrease due to
room temperature self-annealing [22] and to reach a plateau with a time constant of about 10 days.
We have not studied the behaviour of the dark current versus time during the storage period and,
hence, we do not report results on long-term self-anneling for the HD-RGB. Before installation (see
Sec. 4), however, we recorded the I-V curves and observed a current reduction comparable to what
reported in [22].

4 Tests on the T9 beamline

The irradiated PCBs were tested on the T9 beamline [23] of the CERN East Area facility in October
2017 together with other ENUBET prototypes. Figure 10 shows a schematics of the instrumentation
in the beam area. The particle beam is composed of electrons, muons and pions and the momentum
can be selected between 1 and 5 GeV, thus covering the whole range of interest for ENUBET. A
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(a) (b)

Figure 9: Signal peak distribution at (a) 3× 109 and (b) 1.2× 1010 n/cm2 for the single-SiPM PCB
(12 µm cell-pitch, 1 mm2 SiPM).

pair of threshold Cherenkov counters filled with CO2 were used to separate electrons from heavier
particles. The acquisition was triggered by a 10×10 cm2 plastic scintillator located downstream the
Cherenkov detectors. We used a pair of silicon strip detectors with a spatial resolution of ∼30 µm
to track charged particles down to the UCM. Two pads of plastic scintillator (“muon catcher”)
interleaved by a 20 cm thick iron shield were positioned after the prototypes to identify muons or
non-interacting pions. The prototypes under test were positioned inside a light-tight metallic box
andmounted on amovable platform in front of the two silicon strip detectors. During the testbeam at
CERN, the temperature was monitored by probes placed inside the box containing the calorimeter.
In order to stabilize the temperature, we equipped the box with a water-cooled chiller controlled by
the probe in termal contact with the UCM. The average temperature during the measurement was
26◦C and the maximum variation was ±1◦C.

Figure 10: Schematics of the experimental setup at CERN (T9 beamline at the East Area)

Most of the tests were performed using the 15 µm cell-pitch PCB irradiated up to 1.2 ×
1011 n/cm2. The same UCMs were equipped with a non-irradiated PCB identical to the irradiated
one. The SiPMs of the two PCBs belong to the same production batch and differences in the
breakdown voltage are less than 0.1 V. The PCBs were tested with two ENUBET UCMs:

• Prototype 16B This is the first UCM prototype of ENUBET (Fig. 2) and its design was
employed for the calorimeter studied in [16]. The UCM was assembled using five 3×3 cm2

iron slabs with 1.5 cm thickness interleaved by five scintillator tiles (0.5 cm thickness).
The slabs were drilled with a CNC machine: the distance between holes was 1 cm and

– 8 –



the diameter of the holes was 1.2±0.2 mm. After drilling, the slabs were zinc-plated to
prevent oxidation. The 0.5 thick 3×3 cm2 scintillator tiles were machined and polished from
EJ-200 [24] plastic scintillator sheets and we inserted Tyvek foils between the scintillator
and absorber tiles to increase the light collection efficiency. For 16B, we employed 1 mm
diameter Kuraray Y11 fibers with an emission peak at 476 nm [25]. Laboratory tests on 16B
show that a mip crossing the whole 16B UCM releases about 50 photoelectrons. The number
of photoelectrons includes the efficiency of light production, light trasport to the photosensor
and the photon detection efficiency (PDE) of the SiPM.

• prototype 17UA was built from injection molded scintillator tiles produced by Uniplast
(Russia) [26] for ENUBET. In this prototype each tile is made by 3 extruded scintillator slabs
(3×3 cm2, 4.5 mm thickness) for a total thickness of 1.35 cm. The scintillator is polystyrene-
based with 1.5% paraterphenyl (PTP) and 0.01% POPOP. The surface of each tile was etched
with a chemical agent to form a 30-100 µm layer that acts as a diffusive reflector in order to
increase the light collection. The grooves in the mould form the holes for the 1-mm diameter
WLS fibers. The UCMwas assembled from five 1.5 cm iron slabs interleaved by five 1.35 cm
scintillator tiles. As for 16B, we employed Kuraray Y11 fibers since the light emission
spectrum of the Uniplast scintillator is similar to EJ-200 and Y-11 are properly matched to
both of them. Laboratory tests on 17UA performed in the same conditions as for 16A show
that a mip crossing the whole 17UA UCM releases ∼85 photoelectrons.

These prototypes were tested using both a 9-SiPM board that was not irradiated at INFN-LNL and
an irradiated board. The boards were equipped with 15 µm cell-pitch SiPMs. The irradiated board
hosts a SiPM located in the top-right corner that was damaged before the irradiation and that was
disconnected during the measurements. This board hence reads 8 active SiPMs.

Electrons were selected requiring a signal in both Cherenkov counters. Mip-like particles
(muons or non-interacting pions) correspond to events with no signal in the Cherenkov counters
and signal in the muon catcher. The silicon strip detectors are employed to select particles entering
the front face of the UCM in a 2 × 2 cm2 fiducial area and crossing the whole UCM. Fig. 11
shows the signal response of 16B for mips (green line) and electrons (red line). The left (right)
plot corresponds to the UCM with the non-irradiated (irradiated) SiPMs. The black line show all
signals triggered during the run and it is dominated by dark counts. The loss of p.e. due to the
missing SiPM was computed using a GEANT4 [27–29] optical simulation of the ENUBET UCMs.
The average p.e. loss due to the missing SiPM for the particles selected in the fiducial area amounts
to 10.6 ± 0.1% (i.e. ∼ 1/9). A single UCM has a radiation length of 4.3 X0 and covers 0.9 Moliere
radii for particles entering at the center of the front face. In the 1-3 GeV energy range, the first
UCM hit by the electrons is also the UCM with the maximum energy deposit although electrons
are only partially contained in the UCM and the width of the electron peak is dominated by energy
leakage. The signal of the first UCM for mip and electrons (see Fig. 11 and 12) thus provides the
detector response in the whole dynamic range of interest for ENUBET.

The results of Fig. 11 demonstrate that a UCM collecting 50 photoelectrons per mip is not
able to separate a mip from the noise peak up to the maximum fluence expected in ENUBET
(2 × 1011 n/cm2) due to the increase of the dark counts, even if the electron peak remains well
separated from noise. Preserving the sensitivity tomips for the entire duration of the run is important
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Figure 11: Signal in 16B of electrons (red) and mips (green) measured with the not-irradiated (left)
and irradiated (right) PCB. The black line corresponds to all triggers and is dominated by dark
noise (see text). The red lines show the Gaussian fit of the signal peak for electrons and mip-like
particles. The SiPM overvoltage is +8.8 V and the beam momentum is 1 GeV.

in ENUBET for calibration purposes. The mip signal is employed to monitor changes of the UCM
response over the run - complementing the LED monitoring system, - so that signal equalization
over time can be achieved increasing the overvoltage to compensate for amplitude losses. In 16B,
the number of photoelectrons per mip was limited to the poor fiber-to-SiPM coupling, i.e. the
mechanical tolerances in the plastic mask that holds the fibers and couples them to the PCB. Since
the fiber diameter has the same size of thewidth of the SiPM (1mm), the photon collection efficiency
is affected by misalignments between the photosensors and fibers.

The 17UA prototype employs the same SiPM-to-fiber coupling scheme as 16B but has a larger
scintillator thickness and the mip peak is separated from the dark noise peak even after irradiation.
This is demonstrated in Fig. 12 for 1 GeV particles selected as in 16B. The ratio between the mip
peak after and before irradiation is shown in Fig. 13 (top plot) and is corrected for the missing SiPM
in the irradiated board. The bottom plot shows the corresponding ratio for electrons at different
energies. The overall gain reduction is independent of the particle type, energy and overvoltage
within 5%. The electron and mip peak mean value ratio is constant after irradiation and the
integrated neutron fluence does not affect the dynamic range of the photosensors. Hence, for the
SiPMs employed in this test (pixel size: 15 µm, fill factor: 62%, pixel density: 4444 pixels/mm2)
saturation effects of the signal due to the reduction of the number of working pixels after irradiation
are not visible at O(1011n/cm2). These effects may become important at fluences of relevance for
collider experiments where the choice of the pixel size (smaller pixels to achieve the largest number
of cells per unit area) is a critical parameter [3].

Irradiation effects contribute to signal losses through a reduction of the gain×PDE and of the
transparency of the epoxy employed for the encapsulation of the SiPM. In this experimental setup,
however, non-irradiation effects due to board-to-board variations in the SiPM-to-fiber coupling are
sizable (20%) and originate from the fact that the width of the photosensor (1 mm) is the same as the
diameter of the WLS fiber. As a consequence, the coupling is sensitive to mechanical displacement
of the photosensors [16]. In fact, the signal loss of Fig. 13 represents a conservative estimate of
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the change of response during the ENUBET data taking. A signal reduction down to 50% can be
recovered by increasing the bias voltage to +5 V, well within the operation range of the SiPM.

Figure 12: Electron (red) and mip (green) signal in 17UA with irradiated SiPM. The black line
corresponds to all triggers and is dominated by dark noise (see text). The SiPM overvoltage is
+8.8 V and the beam momentum is 1 GeV.

5 Conclusions

RGB-HD SiPMs produced by FBK and employed for calorimetric applications at moderate neutron
fluences were irradiated at LNL up to 1011 n/cm2 (1 MeV eq). The dark current increases by two
order ofmagnitudewhen the neutron fluence goes from 109 to 1011 n/cm2. The single photoelectron
sensitivity is lost at a fluence above 3 × 109 n/cm2. Still, the photosensors can be safely operated
in calorimetric mode. An irradiated board of nine 1 mm2 SiPMs with 15 µm pixel size retains
sensitivity to the mip if the number of photoelectrons per mip is & 50. At the maximum fluence
(1.2×1011n/cm2, 1 MeV eq.), the relative response of the UCM to electrons and mips is compatible
with the response before irradiation.
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