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Can the “Maximum Power Principle” Be Applied to
Pulsed Dielectric Barrier Discharge?

Danil Dobrynin, Dmitri Vainchtein, Matteo Gherardi, Vittorio Colombo, and Alexander Fridman

Abstract— In this paper, we report a qualitative model of oper-
ation and energy release in pulsed dielectric barrier discharges
(DBDs). We demonstrate that pulsed DBDs operate according
to the “maximum power principle” and explain the relevant
physical processes. Compared to experimental data, the proposed
model allows an accurate estimation of the discharge pulse energy
as a function of dielectric properties, electrode size, and pulse
parameters (shape and voltage amplitude).

Index Terms— Dielectric barrier discharge, energy analysis,
nanosecond-pulsed plasma.

I. INTRODUCTION

PRINCIPLES of the maximum (or minimum) power
have been used for a theoretical description of major

low-temperature plasma discharges, including arc discharges,
glow discharges, as well as gliding arcs and gliding bar-
rier discharges [1]–[5]. Although these principles can be
viewed in the framework of the so-called “fourth princi-
ple of energetics in open-system thermodynamics” [6]–[9],
in plasma, they were explained based on the underlying
physical laws [10]–[12]. In this paper, we describe power
release in microsecond- and nanosecond-pulsed dielectric bar-
rier discharges (DBDs). We demonstrate that pulsed DBDs
operate according to the “maximum power principle” and
explain the relevant underlying physical processes.

DBD in various configurations and gases have been
extensively studied [13]–[18] since its introduction by
Siemens [19]. Equivalent electrical circuits and electrical mod-
els of DBDs have been developed [20]–[25] in relation to
their applications in ozone generation (see [13]–[15], [26]).
Typically, power measurements and calculations are based
on measurements of a time-integrated current (charge or
Q–V characteristics [27]–[30]), allowing to obtain the integral
power characterization of the discharge [13], [23], [31], [32].
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However, the application of this method is significantly lim-
ited for short-pulsed discharges, compared to longer pulses
or continuous wave DBDs (see [23], [32]). This is pri-
marily due to the importance of the development stages
of pulsed DBDs, especially due to the differences in
physics of these discharges on short-time scales for var-
ious gases, electrode configurations, and other operating
conditions [28]–[30], [33]–[41]. In this paper, we propose a
simplified model of a microsecond/nanosecond-pulsed DBD
based on a simple equivalent circuit and show that such a sim-
plified approach adequately follows the obtained experimental
data.

II. EVOLUTION OF DBD PLASMA: CONCEPT OF

ELECTRODE GLOW—“PANCAKE”

The development of a flat DBD can be described as a
three-stage process [see Fig. 1].

1) During the first few hundreds of picoseconds, the dis-
charge starts with the development of avalanches travel-
ing from the negative (in this case—grounded) electrode
toward the high-voltage positive electrode (anode) cov-
ered with a dielectric.

2) As the avalanches reach the anode, electron concentra-
tion and local electric field are sufficient for the initiation
of streamers. At this point, at about 1 ns, the presence
of a dielectric surface facilitates the development of
a surface discharge (surface-directed streamers), which
shows up in experiments as a bright glow area near
the positive dielectric-covered electrode. This electrode
glow—“pancake”—appears prior to the main volumetric
discharge due to effects of the surface. The appearance
of the electrode glow (“pancake”) and the propagation
of a surface wave along the anode were reported in
our previous publication (see a photograph in [42]).
It should be mentioned that the physics of the anode
surface wave is similar to that of the surface discharge
induced due to charge accumulation on the dielectric
after cathode-directed streamers reach the instantaneous
dielectric-covered cathode (see [43]).
In the equivalent-circuit language, the “pancake” can be
described as an additional capacitor, which accumulates
a portion of full discharge energy.

3) At the third stage, the main volumetric discharge
starts to develop with the evolution of traditional
cathode-directed streamers. This stage corresponds to
the most energetic phase of the DBD.



Fig. 1. Three stages of DBD development. Left: avalanches propagate from cathode (bottom) to anode (top). Center: the “pancake” appears near anode.
Right: streamers develop and start propagating toward cathode.

Fig. 2. Equivalent electric circuit during the main phase of discharge.
Cd corresponds to a dielectric, Ca corresponds to an air gap, and R is a
time-varying resistance of plasma in the gap.)

In the following section, we estimate the energy release in
the “pancake” and compare it with the total energy release in
the system during the discharge.

III. ENERGY RELEASE DURING THE

VOLUMETRIC DISCHARGE

We start with estimating the energy released in a full DBD
discharge. For that purpose, we consider a simplified equiv-
alent electrical circuit shown in Fig. 2. Here, the dielectric
is represented by a capacitor with the capacity Cd , and the
air (plasma) gap is represented by a parallel capacitor (capacity
Ca). When the plasma appears in the air gap, its resistance
becomes finite, and we denote it by R.

In the first approximation, we can assume that the capaci-
tances Ca and Cd are constant. Characteristic ratio Ca/Cd ∼
1/ε, where ε ≈ 4 is the conductance of a dielectric. On the
other hand, the resistance R changes depending on the tem-
perature in the plasma gap, which, in turn, depends on the
current.

An equivalent circuit shown in Fig. 2 corresponds to the
system of equations, which is a combination of Ohm’s law
and the conservation of charge

V (t) = qd/Cd + qa/Ca

qa/Ca = JR R (1)
dqd

dt
= dqa

dt
+ JR

where JR is the current through plasma, and qa and qd are
the charges on the two capacitors.

For a generic profile of an impulse V (t), (1) is a system
of time-dependent ODEs. System (1) can be readily solved

for a sinusoidal profile of the voltage V (t) = V0 exp(−iωt).
Here, 1/ω is a characteristic voltage rise time. In this case,
the impedance of the air gap (parallel Ca and R) is

RZ
a =

[
R

1 + (CaωR)2

]
+

[
CaωR2

1 + (CaωR)2

]
i.

The full impedance is

RZ
tot =

[
R

1 + (CaωR)2

]
+

[
1

Cdω
+ CaωR2

1 + (CaωR)2

]
i.

Thus, for the voltage on the gap, we obtain∣∣RZ
tot

∣∣∣∣RZ
a

∣∣ Va = V0.

For the square of the ratio of the impedances, we have∣∣RZ
tot

∣∣2

∣∣RZ
a

∣∣2 =
([

1

CdωR
+ CaωR

1 + (CaωR)2

]2

+
[

1

1 + (CaωR)2

]2
)

[1 + (CaωR)2]. (2)

Opening the parenthesis and simplifying, we arrive at∣∣RZ
tot

∣∣2

∣∣RZ
a

∣∣2 = 1

CdωR
+

(
1 + Ca

Cd

)2

. (3)

The evolution of the system is guided by the time dependence
of the effective resistance of plasma, R(t). As R(t) cannot
be measured directly, it is reasonable to replace it as an
independent variable as the power released at the gap

P = 1

2
Va(t)

2/R(t). (4)

This generic equation might be corrected in special cases,
for example, when discharges develop in the mode with
runaway electrons that carry away some of the energy from the
gap, [44], [45]. We now introduce nondimensional variables

β = V 2
a

V 2
0

, p = 2P

CaωV 2
0

, k = Ca

Cd
= const. (5)

Expressing R = R(p, β) and substituting

CaωR = β/p; CdωR = β/pk

into (2), we obtain

k2 p2 + β2(1 + k)2 − β = 0. (6)

Characteristic plots of (6) for three typical values of the
parameter k are shown in Fig. 3. In the following section,
we investigate the main aspects of these plots.



Fig. 3. Normalized voltage, Va/V0, on the gap as a function of the
normalized power released on the gap, p = 2P/(CaωV 2

0 ), for k = 1/3
(left curve), 1/4 (middle curve), and 1/6 (right curve).

IV. DBD PLASMA DEVELOPMENT—“MAXIMUM

POWER PRINCIPLE”

The discharge process starts at point (A) in Fig. 3, as at the
beginning, plasma is cold, and thus, R → ∞ and p = 0. The
evolution of the system can be viewed as a transition from
(A) to (B), where the power p reaches the maximum. The
curve continues toward to origin [point (C)], where R = 0
(essentially a short circuit).

The points on the curve from (A) to (B) to (C) are
parameterized by decreasing value of R(t). As the discharge
starts developing, plasma heats up, and R(t) drops. As a
result, P increases, and Va correspondingly drops. All along
the curve, the plasma is in the nonthermal regime, and thus,
the conductivity is defined by the ionization level, I . The
higher the value of I is, the smaller is R. The value of I
changes due to the power P released in plasma: the larger is P ,
the larger is I and, correspondingly, if P drops, so does I .

There is a major difference between the top and bottom
branches. On the top branch, a small drop in R; in other
words, a shift to the right along the curve causes P to increase.
An increase in P causes I to increase, which, in turn, decreases
R further. Thus, we have a self-sustained motion along the top
branch. The situation is reversed on the lower branch. Now,
a small drop in R shifts the system to the left along the curve,
causing P to decrease. The decrease in P causes I to decrease,
which increase R back. Thus, the system cannot propagate
along the lower branch. The system comes to point (B) and
is stuck there until streamers essentially bring the plasma
resistance to zero, upon which the systems jump straight to
the origin. In other words, while the system can occupy the
points on the top branch (and indeed passes through all of
them), the bottom branch is unphysical.

The time evolution of the voltage V and the power P
along the top branch occurs with a varying rate. While in
the beginning both variables change with somewhat of a fast
rate, the rate of change of P vanishes at point (B)

at (B),
d P

dV
= d P

dt
= 0. (7)

Therefore, in terms of the power release, the system spends
most of the time there, just like a pendulum spends most of

the time near the turning points. The function p = p(β) has
a maximum at

β = 1

2(k + 1)2 , p = 1

2k(k + 1)
.

The original dimensional quantities at point (B) are

V 2
a

V 2
0

= 1

2(k + 1)2 , P = CdωV 2
0

4(k + 1)
. (8)

The resistance R(t) is

RB = V 2
a /2P = (k + 1)/Cdω. (9)

At that moment, the resistance R effectively matches the
impedance of the dielectric capacitor (when the value of k
is small).

We can make the following conclusions so far.

1) The system evolution is governed by the decrease in
the plasma resistance until it reaches approximately the
impedance of the dielectric barrier, at which state the
discharge power reaches the maximum and the evolution
drastically slows down.

2) The maximum power release of the discharge is propor-
tional to the capacitance of the dielectric and the square
of the applied voltage and only weakly depends on the
properties of the air gap.

V. PULSED ENERGY AND THE AVERAGE POWER AS A

FUNCTION OF DIELECTRIC PARAMETERS

To compute the total energy release prior to the full dis-
charge, the power P must be integrated over the time τ , which
is the duration of the build-up. However, as we discussed
above, the change in power P slows down near the point (B).
Thus, we can assume that the system spends almost all the time
there. The total energy released in a pulse can be estimated as

Et ∼ Cd V 2
0

4(k + 1)
(ωτ). (10)

Recall that, in a typical discharge, ω is defined by the time of
the growth of the voltage, while τ is the total duration of the
impulse. Therefore, over a long time, the average power can
be expressed as

Pav = Et f ∼ Cd V 2
0

4(k + 1)
(ωτ) f (11)

where f is a pulse frequency.
Thus, analyzing (11), we can make the following major

conclusions.

1) The system spends most of the time in the state with
the maximum power; thus, the average power of the
discharge is essentially equal to the maximum power.

2) The maximum power release of the discharge is propor-
tional to the square of the applied voltage.

3) The energy release in the pulse, as well as the average
power, mostly depends on the properties of the dielec-
tric. Increase in the area or in the dielectric permittivity
of dielectric, or decrease in its width, results in larger
average power.



Fig. 4. Equivalent electric circuit during the build-up phase.

4) The total energy is larger for steeper growing volt-
age profiles. In this perspective, with other parameters
fixed, nanosecond pulses release more power than the
microsecond pulses.

VI. ENERGY STORED IN THE NEAR-ELECTRODE GLOW

We now turn to the build-up of the charge during the initial
stage of charging of the capacitors. On the first stage, there
is no current, R → ∞, and the effective contour is shown
in Fig. 4.

Substituting R → ∞ into (1), we obtain

Vd + Va = V0, VdCd = VaCa . (12)

The energy contained by the plasma capacitor is thus

Ea = 1

2

Ca V 2
0

(1 + k)2 . (13)

Note that, unlike the total energy release [see (10)], the energy
contained in the plasma capacitor prior to the discharge is
independent of ω and τ . Comparing (13) with (10), we get

Ea

Et
∼ 2Ca

Cd(1 + k)(ωτ)
. (14)

It is the energy Ea that we can observe in the form of a
“pancake.”

Based on (13), at this point, we can make the following
conclusion.

For a given power generator, the ratio of the energy release
in the “pancake” and the energy release in a pulse is defined
by the ratio of the capacitances of the air (plasma) gap and
the dielectric.

VII. EXPERIMENTAL VALIDATION

A general schematic of the experimental setup is shown
in Fig. 5. We used the FID Tech Company power supply
that generates pulses with the amplitude up to 15.5 kV, 10-
ns duration, and 1-ns rise time. The pulse was delivered to
electrodes by a 100-ft-long RG393/U high-voltage cable. For
the power measurement, a current shunt was mounted on the
ground shielding of the high-voltage cable [10]. The pulse
voltage waveform and the instantaneous energy are shown
in Fig. 6.

We used a copper cylinder (2.4 cm in diameter) covered
with a 1-mm-thick quartz as DBD electrodes. The ground
electrode was either plane metal or liquid holder containing
either distilled water or 40% ethanol–water mixture.

Fig. 5. Experimental setup.

Fig. 6. Nanosecond pulse and discharge energy (applied voltage 15.5 kV).

Fig. 7. Discharge energy as a function of voltage for different dielectric bar-
riers. Symbols are the experimental data, and lines are theoretical model (10).

Experimental results of DBD pulse energy measurements
were compared with calculated values for different ground
electrodes (plane metal, water, or water/ethanol mixture) (see
Fig. 7). The energy in the discharge was calculated using
the values presented in Table I (note that the high-voltage
electrode was covered with a 1-mm-thick quartz in this case).
In the experiment, the energy was measured for the whole
pulse, but the discharge ignites twice on the rising and falling
edges of the pulse. Therefore, pulse characteristics were τ =
5 ns and 1/ω = 1 ns, and the final energy value was
doubled. A good agreement between theoretical results (10)
and experimental data confirms the predicted dependence of
pulse energy release on various systems parameters, such as
including voltage, dielectric permittivity constant, and dielec-
tric thickness.



TABLE I

VALUES OF EXPERIMENTAL SYSTEM PARAMETERS USED FOR CALCULATIONS

VIII. CONCLUSION

In this paper, we described the power release in
microsecond- and nanosecond-pulsed DBDs. We demonstrated
that pulsed DBDs operate following the “maximum power
principle” and explained the relevant underlying physical
processes. Specifically, we presented the following.

1) The system evolution is governed by the decrease in
the resistance of plasma until the resistance reaches
approximately the impedance of the dielectric barrier,
at which state the discharge power reaches the maximum
and the evolution drastically slows down. The system
spends most of the time in the state with the maximum
power; thus, the average power of the discharge is
essentially equal to the maximum power.

2) The maximum power release of the discharge is propor-
tional to the capacitance of the dielectric and the square
of the applied voltage and only weakly depends on the
properties of the air gap.

3) The energy release in the pulse, as well as the average
power, mostly depends on the properties of the dielectric
(area, thickness, and permittivity). The increase in the
area or in the dielectric permittivity of dielectric, or the
decrease in its width, results in larger average power.

4) The total energy is larger for steeper growing volt-
age profiles. In this perspective, with other parameters
fixed, nanosecond pulses release more power than the
microsecond pulses. A good agreement between the-
oretical results (10) and experimental data confirms
the predicted dependence of pulse energy release on
systems parameters, including voltage, dielectric permit-
tivity constant, and dielectric thickness.
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