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Single nucleotide polymorphisms (SNPs) able to describe population differences can be used for important applications in livestock,
including breed assignment of individual animals, authentication of mono-breed products and parentage verification among several
other applications. To identify the most discriminating SNPs among thousands of markers in the available commercial SNP chip tools,
several methods have been used. Random forest (RF) is a machine learning technique that has been proposed for this purpose. In
this study, we used RF to analyse PorcineSNP60 BeadChip array genotyping data obtained from a total of 2737 pigs of 7 Italian pig
breeds (3 cosmopolitan-derived breeds: Italian Large White, Italian Duroc and Italian Landrace, and 4 autochthonous breeds: Apulo-
Calabrese, Casertana, Cinta Senese and Nero Siciliano) to identify breed informative and reduced SNP panels using the mean decrease
in the Gini Index and the Mean Decrease in Accuracy parameters with stability evaluation. Other reduced informative SNP panels
were obtained using Delta, Fixation index and principal component analysis statistics, and their performances were compared with
those obtained using the RF-defined panels using the RF classification method and its derived Out Of Bag rates and correct prediction
proportions. Therefore, the performances of a total of six reduced panels were evaluated. The correct assignment of the animals to its
breed was close to 100% for all tested approaches. Porcine chromosome 8 harboured the largest number of selected SNPs across all
panels. Many SNPs were included in genomic regions in which previous studies identified signatures of selection or genes (e.g. ESR1,
KITL and LCORL) that could contribute to explain, at least in part, phenotypically or economically relevant traits that might
differentiate cosmopolitan and autochthonous pig breeds. Random forest used as preselection statistics highlighted informative SNPs
that were not the same as those identified by other methods. This might be due to specific features of this machine learning
methodology. It will be interesting to explore if the adaptation of RF methods for the identification of selection signature regions
could be able to describe population-specific features that are not captured by other approaches.
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Implications

The identification of breed informative markers in the genome
of livestock species can have several practical applications.
This study evaluated the performances of a machine learning
approach (random forest) to identify informative single nucleo-
tide polymorphisms in seven pig breeds and compared the
results with other three methods (Fixation index, Delta and
principal component analysis). The random forest approach
proposed in this study introduced a useful methodology that
can be extended when it is needed to select informative single

nucleotide polymorphisms. Random forest was able to identify
markers in genes affecting phenotypic traits that could differ-
entiate the investigated pig breeds.

Introduction

Genetic diversity among livestock breeds and populations
derives from many different events that have contributed
to shape their peculiar population genetic structures and
uniqueness. Breeds are the results of artificial and natural
selection or adaptation to different farming and† E-mail: luca.fontanesi@unibo.it
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environmental conditions, genetic drift and admixture that
have modified allele frequencies and fixed (or almost fixed)
genetic variants. Commercial single nucleotide polymor-
phism (SNP) genotyping tools, developed for themost impor-
tant livestock species, including the pig, have been used
to describe genetic variability and to capture breed or
population-informative markers useful for several applica-
tions. Preselected and informative SNP panels have been
proposed for parentage verification, comparative selection
signature analyses, breed assignment of individual animals
and breed authentication of mono-breed products as well as
for several other applications (e.g. Wilkinson et al., 2011;
Bertolini et al., 2015).

To identify the most discriminating SNPs among thousands
of markers included in the commercial tools, several statistical
measures have been applied. One of the simplest proposed
methods is based on the Delta values, which are the absolute
allele frequency differences at each polymorphic marker in pair-
wise comparisons. For example, Delta statistic has been already
used to identify informative markers in British pig breeds
(Wilkinson et al., 2012). Fixation index (Fst) is another statistic
extensively applied to identify population-informative SNPs,
population structures and signature of selection in livestock
(Wilkinson et al., 2011; Hulsegge et al., 2013). It calculates
the standardized variance in allele frequencies among popula-
tions. Principal component analysis (PCA) is an unsupervised
linear technique for dimension reduction that allows to extract
axes of maximal variation from datasets (Jolliffe and Cadima,
2016). Principal component analysis has been first used on SNP
data to describe the structure of human populations (Paschou
et al., 2007). This multivariate approach has been subsequently
used in livestock to reduce dimensionality of large SNP datasets
and to identify cattle breed informative SNPs (Wilkinson et al.,
2011; Bertolini et al., 2015). Despite all these methods being
standard, their application in terms of compared populations
(i.e. all considered groups or only pairwise comparisons) and
evaluated SNP datasets (i.e. all SNPs across all autosomes, only
tag SNPs or only chromosome by chromosome analyses) has
not been consistent across studies. Most studies have not con-
sidered high levels of linkage disequilibrium (LD) among
informative SNPs when developing breed informative panels.

In many cases, these preselection statistics are then
coupled with other techniques that can classify or assign indi-
viduals to groups and estimate the discriminatory or alloca-
tion power or error. Random forest (RF) is a machine learning
technique that has been proposed for these purposes
(Bertolini et al., 2015 and 2018). Random forests are ensem-
ble techniques that derive prediction rules by combining sev-
eral binary decision trees obtained after introducing random
perturbations in the data. These random perturbations are
introduced to reduce correlation among the decision trees,
thus leading to ensemble prediction rules with a prediction
error lower than those derived from single decision trees
(Breiman, 2001). These ensemble prediction rules can be
applied to assign an unknown sample to one of the pre-
determined groups. Random forest has been used in popula-
tion genomics for several pilot applications that range from

genome-wide association studies (Kijas et al., 2013) to esti-
mation of genomic breeding values (Naderi et al., 2016). A
few works used RF for the detection of cryptic population
structures and the selection of informative markers without
any preselection steps (Jacobs et al., 2018). We recently
explored performances of RF to identify breed informative
SNPs in cattle breeds (Bertolini et al., 2015 and 2018). As
RF is computationally challenging when using thousands
of markers and prone to be biased by high LD between
markers (Meng et al., 2009), we combined this technique
with several SNP prefiltering approaches. These strategies
were able to identify SNPs that are located in genes or in
genomic regions known to affect cattle breed-specific traits
(Bertolini et al., 2015 and 2018).

In this study, we extended the use of RF to analyse SNP
chip data of seven Italian pig breeds (which have peculiar
production and phenotypic characteristics), including three
cosmopolitan-derived breeds (Italian Large White, Italian
Duroc and Italian Landrace) and four autochthonous breeds
(Apulo-Calabrese, Casertana, Cinta Senese and Nero Siciliano).
To reduce computational burden and the problem derived by
the potential high LD within selected SNP panels, a tagged
SNP dataset was used for the identification of informative
SNPs using RF methods and a few other statistics (Delta, Fst
and PCA). We then compared the performances of these SNP
panels in terms of individual allocation errors to these breeds
using RF classifications. We evidenced that many selected
SNPs are included in genomic regions in which previous studies
identified signatures of selection or that could contribute to
explain, at least in part, phenotypically or economically relevant
traits that differentiate cosmopolitan and autochthonous pig
breeds.

Material and methods

Animals and single nucleotide polymorphism datasets
A total of 2737 pigs from 7 pig breeds (Italian Large White,
n. 1983; Italian Duroc, n. 432; Italian Landrace, n. 48; Apulo-
Calabrese, n. 92; Casertana, n. 96; Cinta Senese, n. 38; Nero
Siciliano, n. 48) were genotyped with the PorcineSNP60
BeadChip array (Illumina, San Diego, CA, USA). The pigs
of the cosmopolitan-derived breeds were from performance-
tested animals evaluated under the national selection
program run by the National Pig Breeder Association
(ANAS). Apulo-Calabrese, Casertana, Cinta Senese and
Nero Siciliano are Italian local pig breeds under the conser-
vation program managed by ANAS. About 200 to 1000 pigs
of these breeds are registered to their respective herd books
(ANAS, 2018). Apulo-Calabrese pigs have solid black coat
colour. These pigs are raised in the Central-South of Italy.
Casertana pigs have dark coat colour (dark grey or black)
with a hairless phenotype, mainly raised in Molise,
Campania and Puglia regions (Central-South of Italy).
Casertana breed is considered the descendant of the
Neapolitan pig population that influenced the first British
breeds in the 19th century. Cinta Senese (Siena Belted) pigs,
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farmed in Toscana region, have a characteristic black coat
colour with a white belted phenotype. Nero Siciliano
(Sicilian Black) pigs, raised in the Sicily island, have solid
black coat colour. All these local breeds are raised in
extensive or semi-extensive farming systems. More informa-
tion on all animals included in this study are reported in
Supplementary Material Table S1.

Single nucleotide polymorphisms were mapped on the
Sscrofa11.1 (GCA_000003025.6, National Center for
Biotechnology Information). Only SNPs located in unique posi-
tions andmapped on autosomal chromosomes were analysed.
Single nucleotide polymorphisms were discarded if monomor-
phic in all breeds and if call rate in at least one breed was
<0.98. These basic statistics were computed with PLINK soft-
ware version 1.9 (Chang et al., 2015). Animals were discarded
when individual call rate was <0.90 of all SNPs.

Reference and test populations
Each pig breed was then randomly divided into a reference
population and a test population. The reference population
included 90% of pigs, whereas the test population included
the remaining 10% of animals. The reference population
was used for all SNP analyses, including the preselection
steps and allocation analyses. The test population was
created for the validation step of the subsequent analyses.
However, it is worth to mention that RF does not need
any cross-validation on a separate test set to get an unbiased
estimate of the test set error. Error in the RF classification is
estimated internally, directly during the run. However, the
use of the test population could provide a further validation
of the results. Multidimensional scaling (MDS) plots were
obtained using starting reference dataset, and subsequent
reduction (96 SNP panels) was obtained using PLINK soft-
ware version 1.9 (Chang et al., 2015) and plotted with the
R package ‘scatterplot3D’ (Ligges and Mächler, 2003).

Single nucleotide polymorphism selection strategies and
breed allocation
Tag SNPs from the whole filtered SNP dataset were identified
for each breed separately with the PLINK tagging option
‘–show-tags all’ without any distance threshold as follows:
(i) all SNPs with r 2 < 0.3 with any other SNPs, within breed,
were kept; (ii) when a group of SNPs within breed was tagged
by one SNP, only one SNP randomly chosen was kept. The
tagged SNP dataset was then analysed to identify breed
informative SNPs using Delta, Fst and PCA statistics and
two RF approaches that retained in total six 96 SNP panels
(see below for details). The RF approach was used to evaluate
the best panels among those obtained by the mentioned
approaches. The choice of this number of SNPs was due to
the practical possibility to develop multiplex SNP panels
for field applications (Bertolini et al., 2015).

Delta. Delta values were calculated as the absolute differ-
ence between allele frequencies at each considered SNPs
in pairwise comparisons: |pAi−pAj|, where pAi and pAj are
the frequencies of allele A in the ith and jth breeds,

respectively. Pairwise values were averaged across all pair-
wise comparisons to obtain and estimate value for each
SNP (Wilkinson et al., 2011).

Fixation index. The Fst, as proposed by Weir and Cockerham
(1984), was computed with PLINK considering population-
specific allele frequency at each SNP.

Principal component analysis. Principal component analysis
is an unsupervised learning technique for dimension reduc-
tion based on the singular value decomposition of the data
matrix containing one row for each pig and one column for
each SNP. Axes of maximal variations (sometimes referred
to as eigenSNPs in the context of genomic analysis) are
obtained by computing linear combinations of the SNPs using
the left singular vector of the data matrix. Principal compo-
nent analysis was computed using the prcomp function of the
R software 2.12 (https://www.r-project.org/), with default
parameters after codifying each animal with a vector of val-
ues (0, 1 or 2, depending on the number of minor alleles for
each SNP). The informativeness for the SNPs was determined
by considering the sum of the squares of the six first principal
components (PC), according to Paschou et al. (2007). The
choice of the number of PC was determined by the amount
of variance explained as previously defined (Bertolini et al.,
2015). The resulting values were used to rank SNPs.

Random forest. Random forest is a supervised learning
method to build classification rules based on the aggregation
of a number of classification trees. These trees are fitted after
introducing random perturbations in the data. The aim of
these random perturbations is to reduce correlation among
the prediction rules associated with each single tree. More
specifically, the recursive algorithm used to fit classification
trees is applied to a bootstrap version of the reference pop-
ulation, obtained by randomly selecting (i.e. after randomly
selecting pigs from the reference population with replace-
ment). Furthermore, at each step of this recursive algorithm
only a random subset of SNPs is considered in order to define
the optimal splitting rule to grow the tree. No pruning step is
performed after the growing step, so that the prediction rules
associated with the classification trees that compose the RF
are characterized by a small bias and a large variance. A final
aggregation step (typically by majority voting) leads to an
ensemble classification rule that preserves the small bias
associated with each single tree while reducing the variance,
thus leading to a lower prediction error. More details about
RF can be found in Breiman (2001), along with a proof show-
ing that the reduction in the prediction error due to the final
aggregation step increases as the correlation among the indi-
vidual trees decreases. It is worth mentioning that the use of
bootstrap to create random perturbations in the data leads to
the definition of an Out Of Bag (OOB) population for each
individual tree in the forest. This OOB population consists
of all the pigs that are not included in the bootstrap popu-
lation used to build a given single tree and that can be used
to obtain internal unbiased estimates of the prediction error
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and to evaluate variable importance. Random forest analyses
were performed on the mentioned vectors using the
randomForest package in R (Liaw and Wiener, 2002).
Classes were weighted depending on the number of animals
in each breed, using the parameter ‘classwt’. These weights
were chosen in order to counterbalance the unbalanced num-
ber of the genotyped pigs in the investigated breeds. Single
nucleotide polymorphisms were ranked using two different
ranking parameters implemented in the function ‘impor-
tance’: the mean decrease in the Gini Index (GI) and the
Mean Decrease in Accuracy (MDA). The GI is a variable
importance measure that was specifically devised for ensem-
ble of classification trees, such as RFs. It is based on the con-
tribution of each variable in reducing the within-node
heterogeneity of a tree. These contributions are averaged
over all the trees that compose the RF. A high value means
a high contribution of the SNP in shaping the structure of the
trees that compose the RF, and hence in determining cat-
egory assignments. The MDA is the decrease in the accuracy
of the prediction rule induced by a random permutation of
the values in each feature (for more details, see Hastie
et al. (2009)). It is worth mentioning that different runs of
the RF procedure can lead to different results in terms of
GI and MDA. These differences are due to the random per-
turbation mechanism that is applied to the data. In order to
assess the impact of these differences and to evaluate the
stability of the RF selection, 100 runs of the analysis were
performed. At each run, the SNPs were ranked by impor-
tance. Then, two approaches were used to assess stability
for the SNP selection procedure: (1) the number of times
an SNP was among the first top selected 96 was recorded
and the SNPs that occurred more frequently were then listed
as the most stable; (2) the importance value of the SNPs was
averaged over the 100 runs, then the 96 SNP panels were
chosen by selecting the SNPs with the highest importance
average value. These two methods applied to assess stability
and then to select the SNPs were used by considering the GI
and the MDA approaches separately, leading to four 96 SNP
panels. However, for the MDA, the 96 SNPs with the highest
average importance value were the same which occurred
most frequently in the 100 runs; therefore, the two panels
determined with the two different stability methods included
the same SNPs. For the GI, the two stability methods pro-
duced two non-identical 96 SNP panels (even if largely over-
lapping) that were evaluated separately.

To compare the performances of the different SNP prese-
lection methods in the same way, RF was then applied to
evaluate the corresponding OOB error rate (a method of
measuring the prediction error of the RF classifier) of all other
final 96 SNP panels defined using Delta, Fst and PCA statis-
tics. A further evaluation of the informativity of the six iden-
tified 96 SNP panels was obtained by running RF prediction to
the test population.

Single nucleotide polymorphism annotation
Genes annotated in the Sscrofa11.1 genome version
spanning a region of ±500 kb around all SNPs included in

the final panels were retrieved using Ensembl Biomart tool
(http://www.ensembl.org/biomart/martview/). The closest
genes to the SNPs in the final SNP panels were then reported.
Identified genes and corresponding chromosome regions
were then compared to selection signature regions described
in the Sus scrofa genome by previous studies.

Results

Population genetic parameters
The number of pigs for each breed that remained in the final
dataset was 1968 for Italian Large White, 432 for Italian
Duroc, 46 for Italian Landrace, 92 for Apulo-Calabrese, 96
for Casertana, 38 for Cinta Senese and 48 for Nero
Siciliano. One tenth of these animals were used to construct
the test population.

A total of 40 680 SNPs was retained after the filtering steps.
About 22.5% of these SNPs (n= 9172) constituted the tag
SNP dataset. Supplementary Material Table S2 reports the dis-
tribution of these SNPs in the 2 datasets (i.e. after filtering and
then after tagging) for the 18 autosomes. The number of
monomorphic SNPs in the tagged dataset ranged from 105
(in the Italian Large White breed) to 1328 (in the Casertana
breed). The comparison of these SNPs revealed that a total
of 119 SNPs had a private allele in one of the analysed breeds
(for the same allele: allele frequency > 0 in one breed and
allele frequency= 0 in all other breeds; Supplementary
Material Table S3). The highest number of private alleles (most
of them with minor allele frequency <0.01) was observed in
the Italian Large White breed, which accounted for the largest
number of analysed animals. Monomorphic SNPs (including
those with private alleles) were used in the subsequent SNP
selection methods as some of them could be very informative
in the breed comparisons.

Multidimensional scaling plots obtained using the whole
and tagged SNP datasets (Figure 1) showed a clear separa-
tion of the Italian LargeWhite and the Italian Duroc groups of
pigs, whereas all other breeds clustered in a partially overlap-
ping cloud.

Description of the 96 single nucleotide polymorphism
panels
A total of six different reduced panels that included 96 SNPs
each were selected by the different approaches that were
applied: one was derived using Delta, one using Fst, one
using PCA statistics (included for comparison) and three
using RF by applying GI and MDA ranking methods (two sta-
bility methods were applied for each RF approach; for the
MDA, the two stability methods obtained the same SNP
set). Supplementary Material Table S4 lists all SNPs included
in the six panels.

Table 1 reports the number of common SNPs among these
panels. If we consider the two panels derived using the two
stability methods of the RF GI approach, they shared 93 SNPs.
Common SNPs were in general low in all other pairwise-
based comparisons (ranging from 0 to 21). This might reflect
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the differences among the preselection techniques consid-
ered in this study. Being an unsupervised technique, PCA sim-
ply exploited the observed variability. As far as the other
techniques are concerned, RF is the only one that exploited
possible interactions among SNPs. Supplementary Material S1
shows bidimensional and tridimensional MDS plots obtained
using the six reduced SNP panels. Cinta Senese pigs are clearly
separated in the third dimension of the RF GI panels, whereas
Apulo-Calabrese pigs are well separated in the third dimension
of the Delta-derived SNP panel. Casertana animals are included
in a separated cloud in the two-dimensional RF MDA-derived
plot. Italian Large White and Italian Duroc pigs are always well
separated in all these plots.

Figure 2 shows the chromosome distribution of the
selected SNPs of the six panels. Within panel, SNPs per

Figure 1 (Colour online) Bidimensional and tridimensional multidimensional scaling (MDS) plots obtained using the untagged (a) and tagged (b) single
nucleotide polymorphism (SNP) datasets of the different pig breeds.

Table 1 Number of SNPs shared between pairs of pig SNP panels
determined with the six different methods reported in this study (in
the diagonal, the 96 SNPs)

Methods
RF Gini
index 11

RF Gini
index 22 RF MDA Delta Fst PCA

RF Gini Index 1 96
RF Gini Index 2 93 96
RF MDA 13 13 96
Delta 20 21 15 96
Fst 6 6 6 5 96
PCA 1 1 13 17 0 96

SNPs= single nucleotide polymorphisms; RF MDA= random forest Mean
Decrease in Accuracy; Fst= Fixation index; PCA= principal component analysis.
1Random forest (RF) Gini Index 1= stability mean.
2RF Gini Index 2= stability occurrence.
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chromosome ranged from zero (porcine chromosome (SSC) 1
with PCA, which was the only one chromosome/method
without any SNP) to 22 (SSC8 with RF GI with stability selec-
tion based on occurrence: RF GI 2). Considering panels
together, there was a similar distribution per chromosome
of the selected SNPs. The sum of all the SNP detected in
the six panel ranged from 15 SNPs on SSC9 to 41 SNPs on
SSC7 and SSC15; SSC8 was an evident outlier as it harboured
the largest number of SNPs in five out of six panels, with an
overall total of 94 SNPs (the RFMDAmethod identified only 6
SNPs, the lowest number among the six panels for this
chromosome).

Out Of Bag values of the six single nucleotide
polymorphism panels
Random forest analyses were applied to the six panels with
the purpose of learning a classification rule to assign animals
to the seven pig breeds included in this study. Out Of Bag
rates and correct prediction proportions in the reference pop-
ulation dataset are reported in Table 2. The highest OOB was
observed for the SNP panel derived using the PCA method
(2.15%), the lowest was observed for the Fst method
(0.79%) whereas all RF derived panels had OOB values that
ranged from 1.16% to 1.28% and the value for the Delta
derived panel was 1.45%. The correct prediction proportions
were always 100% except for two cases in which Fst and PCA
methods mis-assigned just one Italian Duroc pig to the Italian
Large White group. A general low error rate was also
obtained in the test population (Supplementary Material
Table S5): two to three Nero Siciliano pigs were mis-assigned
to the Italian LargeWhite population with all methods except
for the Fst-derived panel that had the 100% of correct assign-
ment. Finally, the PCA-derived panel assigned two Italian
Landrace pigs to the Italian Large White breed and one
Italian Landrace pig to the Italian Duroc breed.

Marked genes
The closest genes to the SNPs contained in the six reduced
SNP panels are listed in Supplementary Material Table S4.
A total of 42 SNPs of the two RF GI panels were within 42
different genes. For the other panels (RF MDA, Delta, Fst
and PCA panels, respectively) a total of 50, 45, 38 and 48

Figure 2 (Colour online) Distribution on the 18 porcine autosomes of the SNPs selected for the 96 SNP panels using the six different methods described in this
study (RF GI 1= random forest Gini Index stability mean; RF GI 2= random forest Gini Index stability occurrence; RF MDA= random forest Mean Decrease in
Accuracy; Delta; Fst= Fixation index; PCA= principal component analysis) for the analysis of different pig breeds.

Table 2 OOB error rate (%) and the CPP of the reference pig
populations (total: considering all breeds together; or separated by
breeds) using the six 96 SNP panels obtained using the RF, Delta, Fst
and PCA methods

Parameters/
methods

RF Gini
index 11

RF Gini
index 22

RF
MDA Delta Fst PCA

OOB error
rate %

1.16 1.28 1.12 1.45 0.79 2.15

CPP3 total 1 1 1 1 0.99 0.99
CCP Italian
Large White

1 1 1 1 0.994 0.994

CPP Italian
Landrace

1 1 1 1 1 1

CCP Italian
Duroc

1 1 1 1 1 1

CCP Apulo-
Calabrese

1 1 1 1 1 1

CCP Casertana 1 1 1 1 1 1
CCP Cinta
Senese

1 1 1 1 1 1

CCP Nero
Siciliano

1 1 1 1 1 1

OOB= Out Of Bag; CPP= correct prediction proportion; SNP= single nucleotide
polymorphism; RF= random forest; Fst= Fixation index; PCA= principal com-
ponent analysis; RF MDA= random forest Mean Decrease in Accuracy;
Fst= Fixation index; PCA= principal component analysis.
1Random forest (RF) Gini Index 1= stability mean.
2RF Gini Index 2= stability occurrence.
3CCP= (1 − Classification Error).
4One pig was assigned to the Italian Duroc breed.
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SNPs were within annotated genes. Summarizing, 31 SNPs
from the six panels marked 26 genes that have been already
reported to affect production and morphological traits or that
are within selection signature regions reported by other stud-
ies in pigs (Table 3). For example, four panels (i.e. the two RF
GI panels, Fst and PCA panels) included one or two SNPs
close to the ligand dependent nuclear receptor corepressor
like (LCORL) gene, which has been already reported by
Rubin et al. (2012) to be in a selection signature region of
SSC8. A large number of selected SNPs were located on this

chromosome, confirming the informativity of SSC8 markers
to differentiate pig breeds (Rubin et al., 2012; Wilkinson
et al., 2013). An SNP within the estrogen receptor 1
(ESR1) gene was listed in the RF MDA panel. Variability in
this gene was associated with the number of piglets borne
and weaned per sow (Rothschild et al., 1996). The KIT ligand
(KITLG ) gene was listed among those annotated for the
RF GI SNP panels. Variability in this gene has been associated
with different coat colour phenotypes in pigs (Wilkinson
et al., 2013).

Table 3 SNPs included in the panels selected by the six different methods used in this study (RF GI1, RF GI2, RF MDA, Delta, Fst and PCA) that are
within or close to genes located in SSC regions in which other authors have reported signature of selection

Methods1 SSC SNPs Position2 Ensembl ID3
Gene
symbol Distance4 References

Fst 1 MARC0049965 1208216 ENSSSCG00000004013 SMOC2 0 Wilkinson et al. (2013)
RF MDA 1 DRGA0000162 14280903 ENSSSCG00000025777 ESR1 0 Wilkinson et al. (2013), Li et al. (2013),

Yang et al. (2017)
RF MDA 1 H3GA0001444 35058376 ENSSSCG00000004209 PTPRK 0 Wang et al. (2018)
RF MDA 1 ALGA0009192 251437923 ENSSSCG00000005455 SVEP1 0 Li et al. (2013), Wang et al. (2018)
Delta, Fst 3 MARC0043512 5129774 ENSSSCG00000007590 PMS2 0 Li et al. (2013)
PCA 3 ALGA0019028 53207188 ENSSSCG00000008169 TBC1D8 0 Li et al. (2013)
Fst 4 H3GA0011590 6538154 ENSSSCG00000005941 KHDRBS3 91381 Yang et al. (2014)
RF GI1, RF GI2,
Fst

4 H3GA0013086 75531190 ENSSSCG00000006243 PENK 0 Li et al. (2013)

RF MDA 4 MARC0073404 107197826 ENSSSCG00000006767 MAGI3 77791 Li et al. (2013)
PCA 4 MARC0073404 107197826 ENSSSCG00000006767 MAGI3 77791 Li et al. (2013)
RF GI1, RF GI2 4 MARC0025311 115921374 ENSSSCG00000006857 COL11A1 80668 Wang et al. (2018)
RF GI1, RF GI2 5 ALGA0033636 93710246 ENSSSCG00000035495 KITLG 306741 Wilkinson et al. (2013), Li et al. (2013)
Fst 7 INRA0023116 1629309 ENSSSCG00000028777 MYLK4 0 Schiavo et al. (2016)
RF GI1, RF GI2 8 H3GA0024312 12664341 ENSSSCG00000026232 FAM184B 0 Yang et al. (2014)
RF GI1, RF GI2 8 ASGA0037865 12703060 ENSSSCG00000026232 FAM184B 0 Yang et al. (2014)
RF GI1, RF GI2,
Fst

8 H3GA0024318 13010923 ENSSSCG00000008748 LCORL 40929 Rubin et al. (2012), Li et al. (2013),
Wilkinson et al. (2013)

Fst, PCA 8 ASGA0037875 13830411 ENSSSCG00000008748 LCORL 860417 Rubin et al. (2012), Li et al. (2013),
Wilkinson et al. (2013)

Delta, PCA 8 ASGA0037899 14973392 ENSSSCG00000008749 SLIT2 16403 Wang et al. (2018)
RF GI1, RF GI2 8 H3GA0024339 15102410 ENSSSCG00000008749 SLIT2 0 Wang et al. (2018)
RF GI1, RF GI2,
RF MDA

8 ALGA0048895 102209143 ENSSSCG00000009092 TRPC3 2197 Schiavo et al. (2016)

PCA 8 ALGA0049529 124763157 ENSSSCG00000029621 BMPR1B 0 Li et al. (2013)
Delta 10 ALGA0117795 50907471 ENSSSCG00000011075 KIAA1217 0 Wang et al. (2018)
Delta 11 ASGA0051087 61168204 ENSSSCG00000031946 GPC5 0 Li et al. (2013)
RF GI1, RF GI2,
Delta

13 INRA0039430 4711430 ENSSSCG00000011199 TBC1D5 0 Wang et al. (2018)

Delta 13 ASGA0058976 137020019 ENSSSCG00000027952 ADCY5 0 Rubin et al. (2012)
RF MDA 13 MARC0015751 200576767 ENSSSCG00000012059 HLCS 0 Schiavo et al. (2016)
Fst 14 ASGA0062298 25679165 ENSSSCG00000038915 TMEM132D 0 Ai et al. (2013), Li et al. (2013)
Delta, PCA 14 MARC0060803 25778376 ENSSSCG00000038915 TMEM132D 0 Ai et al. (2013), Li et al. (2013)
RF GI1, RF GI2 15 MARC0006806 24186234 ENSSSCG00000015715 EN1 217137 Zhang et al. (2018)
Delta, PCA 17 ASGA0075694 19679617 ENSSSCG00000007067 JAG1 49532 Li et al. (2013)
RF GI1, RF GI2,
Delta

18 ALGA0096892 8348758 ENSSSCG00000016492 AGK 0 Wang et al. (2018)

SNPs= single nucleotide polymorphisms; RF= random forest; GI= Gini index; MDA=Mean Decrease in Accuracy; Fst= Fixation index; PCA= principal component
analysis; SSC= porcine chromosome.
1Method acronyms are defined in the notes to Tables 1 to 3.
2Position of the SNP on the chromosome (coordinate system on the Sscrofa11.1 genome version).
3Ensembl annotated gene identification.
4Distance in bp of the indicated gene to the SNP. When ‘0’ is reported, the SNP is within the annotated gene.
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Discussion

Breed informative SNPs are useful when there is the need to
allocate animals and their derived products to a population.
For example, brand mono-breed products that have been
recently developed in several livestock species, including
pork products, can be authenticated using population-
informative markers (e.g. Wilkinson et al., 2011; Fontanesi
et al., 2016). Other applications of breed informative markers
span from their use in parentage testing and conservation
genetic programs among several other applications (e.g.
Huisman, 2017).

Several approaches have been proposed for the identifica-
tion of population-informative markers which could have
pros and cons compared to the approaches of this study,
depending on the starting hypothesis, number of tested
populations, genetic diversity among populations and
technical aspects related to the computational time or to
the availability of dedicated computational tools (e.g.
Wilkinson et al., 2011; Bertolini et al., 2015 and 2018).

Single nucleotide polymorphism data from seven Italian
breeds were used in this study. Italian Large White, Italian
Duroc and Italian Landrace are cosmopolitan-derived heavy
pig breeds under the national selection program which is
aimed to select purebred animals useful to obtain crossbred
terminal animals whose legs are processed for the production
of Protected Designation of Origin (PDO) dry-cured hams.
The four analysed autochthonous pig breeds (Apulo-
Calabrese, Casertana, Cinta Senese and Nero Siciliano)
produce highly appreciated niche processed or fresh pork
products that are usually sold at a higher price than other
commercial or undifferentiated products. Fresh pork from
Cinta Senese has recently obtained the PDO label. All these
breeds are slow-growing and less efficient in terms of feed
conversion and reproduction performances than cosmopoli-
tan breeds.

To design the strategy for the identification of breed
informative SNPs, this study took advantage from previous
works that showed that one of the main problems for the
identification of fully informative SNP panels is derived by
the high level of LD that is present in most livestock popula-
tions (Bertolini et al., 2015). This aspect cannot be completely
managed by most SNP selection and reduction strategies
(based on established or more sophisticated statistics) which
tend to co-select SNPs that are in high LD (based on their
single informativity, despite they are not independent). A
few approaches were then proposed to overcome this prob-
lem, including the use of chromosome by chromosome analy-
ses (with limited number of markers that can be selected for
each chromosome) or averaged statistics across all popula-
tions considered (Wilkinson et al., 2011; Bertolini et al.,
2015). Moreover, Bertolini et al. (2018) demonstrated that
using Delta, Fst and PCA preselection statistics and then
including a further selection step based on RF for the final
identification of a smaller SNP panel, the problem could
be reduced, at least in part, but could not be completely
solved. Therefore, this study started from reducing the

redundancy of the whole SNP panel from the beginning, con-
sidering only SNPs not in high LD (the prefiltering step used
only SNPs having r2< 0.3 with any other SNPs, within breed).
This preselection step made it possible to apply on the
remaining dataset, reduced at about 1/5 of the untagged
SNP panel, a machine learning approach (i.e. RF methods,
based on the mean decrease in the GI and on the MDA)
to directly select informative SNPs useful to discriminate pigs
of seven breeds. Implementing RF on the whole SNP dataset
(resulting only from a first filtering step) would be too com-
putationally demanding, preventing any potential advan-
tages derived from this machine learning methodology.
Stability of RF selections was then assessed implementing
a method based on iterations (and evaluating the frequencies
by which SNPs were selected and the mean values of the
ranking parameters) as already proposed for other applica-
tions of RF methodologies (e.g. Genuer et al., 2015).
Stability statistics ranked SNPs in terms of importance: a
large fraction of the selected 96 SNPs had the same occur-
rence frequency or similar frequencies or values (depending
on the considered method; Supplementary Material Table S4)
suggesting that the prefiltering step which retained only tag
SNPs stabilized the dataset, reducing the randomness in the
tree construction. Then, RF selection methods were com-
pared to the performances of other three statistics used to
identify informative SNPs in breed comparative analyses
(Delta, Fst and PCA) on the same reduced starting SNP data-
set. Performances of the final 96 SNP panels obtained using
all reductionist statistics were assessed using the samemeth-
odology. Again, RF was used for this purpose: it provided the
OOB error rate and the correct prediction proportion which
estimate the population assignment error rates based on
the selected 96 SNP panels. This is one of the advantages
of this machine learning methodology that can be applied
for both selection and evaluation purposes.

Based on these statistics, all 96 SNP panels performed
quite well. The correct prediction proportion for all analysed
breeds in the reference dataset was 100% for the three SNP
panels defined directly using RF methods and for the Delta-
derived panel (Table 3). Only one Italian Large White pig out
of 1968 animals of this breed was incorrectly assigned using
the Fst and PCA panels. In the test dataset (which included
only 10% of the animals of the whole investigated popula-
tion) a few animals were wrongly assigned to another breed.
In particular, a few Nero Siciliano pigs were wrongly assigned
to the Italian Large White breed with four out of six panels.
This incorrect assignment might reflect the high level of vari-
ability that is present in this breed that experienced in the
past several admixture events from other breeds (Russo
et al., 2004).

It should be however clear that the most informative SNPs
might change according to the breeds that are included in the
marker selection procedures. Another factor affecting the
choice of the informative SNP panels and thus their perfor-
mances is the size of the reference populations. For the
SNP selection procedures, a high number of genotyped ani-
mals could take into account the whole within population
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variability. This, in turn, might reduce the possibility that a
few animals are not assigned correctly due to atypical gen-
otypes (Hulsegge et al., 2013). This aspect might also need
some adjustments in terms of numbers of informative SNPs
that are selected (i.e. not only the same 96 final number).
However, for many practical reasons it is not always possible
to use large reference datasets for all considered breeds
(some breeds have a small population size or are difficult
or too expensive to sample and genotype; e.g. Wilkinson
et al., 2011). In this study, the problem related to the different
numbers of genotyped animals per breed was managed in
part by weighting the RF analyses on the number of animals
in each breed. Moreover, the needed scalability of the gen-
otyping tools imposes in practise 96 or multiples of 96 SNPs
(Bertolini et al., 2015).

Despite performances of the SNP panels were similar, it
was interesting to note that there was a general low SNP
overlapping between the tested approaches (excluding the
RF panels). That means that different SNPs (or SNP combina-
tions) might be able to provide the same level of informativ-
ity. It was also interesting to note that there was an even
chromosome distribution of the selected SNPs that does
not reflect the chromosome size. Among the porcine auto-
somes, SSC8 captured the highest number of SNPs in most
panels. As the prefiltering step retained only tag SNPs with
low level of LD, SSC8 markers were distributed along the
whole chromosome (Supplementary Material Table S4).
This chromosome contains several selection signature
regions reported by previous studies (e.g. Rubin et al.,
2012; Wilkinson et al., 2013; Schiavo et al., 2016). The
LCORL gene, which was identified by SNPs selected in four
panels, is located on this chromosome. This gene has been
implicated in mechanisms affecting BW, height, size and
growth traits in humans, cattle and horses (reviewed in
Takasuga, 2016). In pigs, it is located in selection signature
regions which might be due to its effects on these traits
(Rubin et al., 2012). The compared pig breeds have clearly
different size and growth performances that might capture,
indirectly, SNPs close to LCORL. Other genes that are well
known for their effects on economically relevant traits or
morphological traits were captured by the selected SNPs
(Table 3 and Supplementary Material Table S5). On SSC1,
ESR1 was marked by an SNP in the RF GI panels. A polymor-
phism in this gene has been associated with several repro-
duction parameters of the sows (Rothschild et al., 1996).
The use of this variant has been one of the first examples
of marker-assisted selection in the pig breeding industry
to improve reproduction performances. Commercial and
autochthonous pig breeds have extreme reproduction effi-
ciency that might have driven the identification of an ESR1
gene marker. A gene affecting coat colour (KITLG ) was iden-
tified by a marker on SSC5. Variability in this gene has been
suggested to be involved in the Berkshire breed coat colour
phenotype (Wilkinson et al., 2013). As none of the investi-
gated breeds have a similar phenotype, it could be possible
that some variants might be needed to express other coat
colour patterns (i.e. solid or belted). Four panels (i.e. RF

MDA, Delta, Fst and PCA panels) included an SNP within
the adenylate cyclase 8 (ADCY8) gene. This gene was signifi-
cantly associated with cholesterol blood content in Italian
Large White pigs (Bovo et al., 2019).

Among the different approaches used, RF methods cap-
tured, on the whole, 16 SNPs that have been already reported
to be close or within genes located in selection signature
regions, performing quite well compared to other methods
that are traditionally used to identify selective sweep regions
(i.e. Delta and Fst). It is worth mentioning that the purpose of
this study was not that of detecting selection signature
regions in the genome of the investigated breeds, but it
seems evident that the adopted methodologies could reach
this goal.

This study is a further step forward on the application of
RF for the identification of population-informative markers
derived by high-throughput genotyping platforms. Random
forest selection procedures highlighted informative SNPs that
were not the same as those identified by other methods
(Delta, Fst and PCA). This might be due to specific features
of this machine learning methodology and, particularly, to its
ability in discovering and exploiting information about SNP
interdependences and interactions, which can lead to sub-
stantial improvements in case of non-linear class boundaries.
It will be interesting to explore if the adaptation of RF meth-
ods for the identification of selection signature regions could
be able to describe population-specific features that are not
captured by other approaches.
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