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Abstract

We study the problem facing the operator of a lottery who is charged with raising rev-
enue for the public finances. Demand for the lottery is a function of both disposable income
and the pricing of the game. Departing from the current literature, we show that optimal
lottery pricing includes corrections for the degree of inequality and skewness in the income
distribution and features of the function relating lottery spend to disposable income. When
gross lottery expenditure is regressive, it is optimal for the operator to improve the terms of
the game by being more generous with the proportion of spend that is returned to players.
The opposite result holds when gross lottery expenditure is progressive. Using results from
analysis of the U.K. National Lottery’s Saturday game between 1997 and 2013, we show
that the effective price was about ten percentage points too low to be efficient, so that the
operator was not fully exploiting its lottery power. However, we also show that, were it to
have raised its price to improve efficiency, it would have increased inequality.
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Non-technical summary
National and state lotteries represent big business for countries seeking to raise money for the
public finances. Worldwide spend on lotteries is estimated at $3.4bn in 2019. In 2016, Americans
spent about $80.5bn on lotteries, Chinese expenditure was approximately $38bn in 2017 and
the figure in the U.K. was £7.2bn in 2018–2019. Lotteries are attracting much interest from
economists and there is a large body of empirical work which seeks to examine their operation,
how good they are at raising revenue for governments, and the characteristics of those who play
and those who do not. However, despite the large empirical literature, the theoretical modelling
of lotteries is underdeveloped.

We present a theory of how to design a lottery when the operator would like to maximise
revenue but faces a population whose members have different levels of income and whose will-
ingness to play the game varies according to the level of prize money offered. We find a new
optimal rule for the choice of prize money payout, which takes account of these population-level
differences. We compare our rule with a rule that ignores these population-level differences and
we show how it affects both the total revenue raised by the lottery and the degree of inequality
that the lottery generates.

We apply our model to the U.K.’s state lottery (the ‘National Lottery’) for the years 1997–
2013. We show that the operator was being more generous with the proportion of money paid
out in prizes than is suggested by our model and that it could have increased revenues by about
3.4% per weekly draw had it acted optimally. However, the operator was also more equitable in
its choice of prize money payout, suggesting that it may have been sacrificing revenue in order
to be more equitable.
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1 Introduction
National and state lotteries represent big business for institutions seeking to raise money for the
public finances. Worldwide spend on lotteries is estimated at $3.4bn in 2019 and is forecast
to grow at a compound rate of 5% per annum between 2019 and 2024 (WGR, 2019). In the
United States during 2016, Americans spent about $80.5bn on lotteries, with $22.5bn going
to state and local governments (North American Association of State and Provincial Lotteries,
2019). Total spend on the Chinese lottery in 2017 was CNY263bn (approximately $38bn) (World
Lottery Association, 2018) and the U.K.’s National Lottery had sales revenue nearing £7.2bn in
2018–2019, paying out around £4.1bn in prize money and generating about £1.7 for good causes
(Camelot UK Lotteries Limited, 2019).

A growing economic literature assesses whether the pricing policies of lottery operators are
revenue-maximising and investigates the relationship between the proportion of income spent on
lotteries and disposable income. Interest goes back at least as far as Sprowls (1970), who studied
the operation of the New York lottery and how it might be redesigned so as to increase sales.
Subsequent work has considered both the theory of lottery operation and empirical analysis of
games at the country level. Empirical work often estimates the price elasticity of demand for the
lottery, so as to assess whether operators price to maximise revenue (are efficient), and estimates
the income elasticity of demand, so as to assess the degree of inequality in lottery expenditure.

Despite the growth in both the worldwide lottery business and accompanying economic lit-
erature, the theory of the optimal design of lotteries remains underdeveloped. This gap in the
literature is surprising, especially given the breadth of empirical literature which addresses ques-
tions of efficiency and equity in lottery operation. More limited still is theoretical analysis of
how optimal game design impacts the distribution of income; once more, the theory lags behind
the empirics.

In this paper, we seek to redress the balance by presenting a theory of optimal lottery de-
sign when the operator faces a heterogeneous population of potential players, differentiated both
by their income and response to the design of the game. We provide a general formula for
revenue-maximising prices which incorporates distributional issues and population heterogene-
ity. In our most basic model, the lottery operator seeks to choose the lottery’s long term effective
price, accounting for the fact that the regressive or progressive nature of gross lottery expenditure
demands an adjustment away from the optimal price which applies when everyone in the popula-
tion spends a constant proportion of their disposable income on the lottery. By referencing results
from the literature on income inequality and optimal taxation, we show how optimal pricing af-
fects the degree of inequality in the distribution of gross lottery expenditure. Finally, reflecting
recent advances in the empirical literature, we show how the framework may be extended to
analyse models where play depends on the size of the jackpot and/or the higher moments of the
prize distribution.

Our theoretical results show that, the greater the degree of regressivity in gross lottery expen-
diture the more the operator should increase the proportion of gross lottery expenditure that is
returned to the players – the ‘return to player proportion’, or RTPP – above that which applies
when gross lottery expenditure is proportional. We show that the optimal pricing rule in the
latter situation is akin to the standard Lerner index rule that applies for a revenue-maximising
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monopolist under zero marginal cost of production. The opposite result holds when gross lottery
expenditure is progressive. However, regardless of whether the proportion of expenditure that is
returned to players lies above or below that returned under a proportional take, the distribution
of gross lottery expenditure is always more equal than that under the standard Lerner index rule.
Applying our results to the extensive analysis presented by Wheeler (2018) for the years 1997–
2013, we obtain an optimal RTPP for the U.K. National Lottery’s Saturday game of 0.408. This
is about ten percentage points less generous than the game’s actual RTPP of 0.514, but about
seventeen percentage points higher than the RTPP suggested by the standard Lerner index rule.
Our results suggest that, if the operator had priced optimally, it would have increased revenue by
about 3.4% (about £700,000 per weekly draw). Pricing according to the standard Lerner index
rule would reduce revenue by about £1.24m per draw.

Our results also show that, not only is the RTPP suggested by the standard Lerner index
pricing rule the most inefficient of the three RTPPs (the optimal RTPP, the actual RTPP and the
Lerner index RTPP), it is also the most regressive, in that the cumulative proportion of gambling
income paid by the poorer groups in the population is higher under Lerner index pricing than
under the other two. The least regressive is the actual RTPP used by the operator of the National
Lottery over the period in question. We conclude that, although the U.K. National Lottery oper-
ator was not fully exploiting its monopoly power over the period of analysis, and was therefore
losing out on a relatively small amount of revenue in non-rollover Saturday games, it was also
setting the least regressive RTPP. It may be argued therefore, that its choice of RTPP was in
line with its obligations as laid out in the National Lottery Act 1993, namely that the Secretary
of State should ‘do his best to ensure that the net proceeds of the National Lottery are as great
as possible’, while at the same time protecting participants in the lottery by not encouraging
excessive play or targeting particular groups.

We review the main background literature in section 2, state and solve our models in section 3
and present our empirical analysis in section 4. Section 5 concludes.

2 Background literature
National and state lotteries offer notoriously poor odds of winning – often the proportion of total
monies staked that is returned to the players can be lower than 0.5 – and the economics literature
has made a number of attempts to explain why risk neutral or risk averse individuals would
bet under such circumstances.1 Perez and Humphreys (2013) cite three possible explanations,
which are not necessarily mutually exclusive: versions of an expected utility model in which the
shape of the utility function permits unfair bets (Friedman and Savage, 1948); prospect theory, in
which the size of the jackpot drives demand (Kahneman and Tversky, 1979; Forrest et al., 2002);
treating lottery participation as being a form of entertainment, of hope, or a chance to ‘buy a
dream’ (Maeda, 2008; Conlisk, 1993; Clotfelter and Cook, 1989; Forrest et al., 2002). Other
contributions suggest that risk neutral agents will buy lottery tickets when they believe that the
lottery is being used to finance public goods which they value (Morgan and Sefton, 2000) and

1Grote and Matheson (2011) and Perez and Humphreys (2013) provide excellent surveys of the literature which
helped us write this review.
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that the skewness of returns can explain engagement (Golec and Tamarkin, 1998; Garrett and
Sobel, 1999; Walker and Young, 2001).

An extensive empirical literature investigates how demand for lotteries responds to factors
such as the expected return on playing (so-called ‘effective price models’), disposable income
and other features of game design such as how many numbers can be chosen, and from what
total, the number of prize classes, the size of jackpots and how frequently they are likely to
occur (so-called ‘jackpot’ models) and the higher moments of the prize distribution (so-called
‘higher moments’ models). These address a range of policy questions, such as whether empirical
evidence suggests that the lottery is revenue-maximising, its degree of regressivity and how it
may be redesigned to arrest a long-term decline in sales, as happened with the U.K.’s National
Lottery following its launch (Scoggins, 1995).

In the effective price model literature, Walker (1998) suggests that lotteries face a near-zero
marginal cost of production and should be considered to be revenue maximisers, setting their
optimal take-out rate as close as possible to the point at which the price elasticity of demand
is equal to -1. Using data from the U.K. National Lottery, they estimated the price elasticity
to be very close to this, at -1.06, a finding supported by Forrest et al. (2000) and Farrell et al.
(2000). Farrell and Walker (1999), using pooled cross-sectional data from the U.K. National
Lottery, estimated price and income elasticities of demand of -1.456 and 0.132, respectively.
They note that their estimated price elasticity is close to the value of -1.55 which was previously
estimated by Farrell et al. (1997) using time series data. Based on the estimate of the price
elasticity of demand, they concluded that the U.K. National Lottery was not maximising revenue;
based on the estimate of the income elasticity of demand, they concluded that the lottery was
regressive. Using U.K. National Lottery data from 1997 to 2013, Wheeler (2018) estimated the
price elasticity of demand to be -0.636 for Saturday draws and -1.472 for Wednesday draws. He
concluded that the effective price of the game should be raised on Saturdays, to 0.77, and reduced
on Wednesdays, to 0.362.

Forrest et al. (2002) compared results from the traditional effective price model with those
of the jackpot model and found long-run price elasticity estimates of -0.88 and -1.04 in the UK
National Lottery Saturday and Wednesday draws, respectively, neither of which were statistically
significantly different from -1. They found that their jackpot model fitted the data better and they
found strongly significant associations between jackpot size and sales. DeBoer (1990), Shapira
and Venezia (1992), Scott and Gulley (1995), Matheson and Grob (2001) and Garrett and Sobel
(2004) also estimated jackpot models of lottery demand. García and Rodríguez (2007) proposed
a model of football pools in which both the expected return and the jackpot size are included as
explanatory variables.

In the higher moments model of Walker and Young (2001), demand is modelled as a function
of the probability distribution of prizes, accounting for the expected value, variance and skew-
ness of the prize distribution. Walker and Young (2001) found a positive association between
lottery sales and the expected return and skewness and a negative association between sales and
variance. Recent work by Baker et al. (2019) uses the idea that lottery players have rational
expectations over the expected level of sales in making their best guesses of the moments of the
prize distribution. Using data from Spain’s El Gordo lottery, they find similar results to Walker
and Young (2001).
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A large body of empirical work has studied the effect of lotteries on the income distribution.
Perez and Humphreys (2013, Table 3) report the results of 16 empirical studies, the majority
of which found that lotteries are regressive, assessed either by estimating the income elasticity
of demand, the Suits index (Suits, 1977), or both. The regional dimension of the distributional
impact of gambling has also been assessed using Canadian data (Kitchen and Powells, 1991)
and more recently for Italian regions (Gandullia and Leporatti, 2018). In his analysis of the U.K.
National Lottery, Wheeler (2018) estimates a range of values for the income elasticity of demand,
from -1.4 to -0.7, suggesting that the lottery is an inferior good.

Concluding their review, Perez and Humphreys (2013) argue that the empirical literature
needs to ‘move on’ from the first generation demand studies and examine in more detail matters
such as the prize structure, in addition to the effective price of participation, in explaining lottery
demand. The authors judge that none of the three main empirical models that they review –
effective price, jackpot and higher moments – has shown itself to be the preferred approach to
modelling the demand for lotto.

The closest theoretical contribution to ours is that of Maeda (2008), who presents a model
of optimal lottery design for an operator selling to a population of homogeneous individuals
whose utility functions are additively separable in the utility of expenditure on the lottery and
net expenditure on other goods. Utility of lottery participation is a function of the level of prize
money and the probability of winning. Maeda studies two lottery models: a ‘fixed prize’ design,
in which players buy tickets to win a single class of prize such that, the more tickets that a player
buys, the greater their chances of winning; a ‘fixed probability’ (‘pari-mutuel’) design, in which
a proportion of the total pool of revenue staked is offered as prize money. Maeda extends the
basic models, which have a single class of prize, to the case of multiple classes.

Maeda’s utility function is quasi-linear, with utility from lottery participation modelled as a
Cobb-Douglas-type function showing diminishing returns to the probability of winning and the
size of the prize pool. The quasi-linear nature of utility means that individual income does not
influence demand. Maeda models the design as a two-stage game, in which the operator acts as
a leader and the players follow. For the fixed prize design, the optimality condition defines the
optimal level of the prize as a function of the total number of participants and the elasticities of
ticket purchases with respect to the probability of winning and the size of the prize. For the fixed
probability design, the optimal ratio of prize money to sales revenue is equal to the elasticity of
ticket purchases with respect to the prize that is offered. In Maeda’s multiple prize classes model,
the revenue-maximising rule for lottery design is that, for each prize class, the expected return
to revenue ratio should equal the elasticity of ticket purchases with respect to the amount of the
prize.

Few studies have developed a theory of optimal game design when gross lottery expenditure
is regressive, proportional or progressive. A notable exception is Clotfelter and Cook (1987),
who studied the ‘implicit tax’ that the lottery places on players, insofar as it raises public fi-
nances in the same way that indirect taxes do. They considered a state lottery to be a monopoly
and discussed the problems of using measures such as consumer surplus to measure welfare ef-
fects.2 They found that a reduction in the proportion of gross lottery expenditure kept by the

2These include matters such as consumers being misinformed about true odds of winning, addiction and the
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operator would benefit the poor proportionately more than the rich. Referencing the work of
Feldstein (1972), they suggest a rule for optimal lottery pricing which maximises a social wel-
fare function given a revenue constraint. They assume that state revenues rely on the sale of two
goods – the lottery and another – in which the rule that the ratio of optimal mark-ups be equal to
the price ratio is adjusted by an index reflecting what the authors call the ‘distributional charac-
teristic’ of the goods. This ‘distributional characteristic’ is a weighted average of the marginal
social utilities, where the weights are the consumption shares of each household. Absent a social
welfare function, this adjustment does not exist. Comparing data on the implicit tax of lotteries
with the tax rates on alcohol and tobacco, Clotfelter and Cook (1987) conclude that the rates on
the lottery are too high relative to those on alcohol and tobacco.

3 Models of lottery power
We consider the problem facing the operator of a lottery who is charged with maximising revenue
for the public finances. Following Maeda (2008) and Conlisk (1993), amongst others, we use the
entertainment value of the lottery to justify the existence of a demand function. The population
of potential lottery players is heterogeneous, in that demand for the lottery is assumed to be a
function of both income and the design of the lottery, which we take to comprise features of
the game such as the proportion of gross expenditure that is returned to players, the size of the
jackpot and the distribution of prizes. Following existing contributions to the literature (e.g.
Walker (1998)), we assume that the marginal cost of operating the game is negligible enough to
be ignored.

To reflect the three models of lottery demand that are described in the literature reviewed
above, we model a range of choice variables for the operator. In our first model, which we call
the ‘effective price model’, the operator chooses the effective long term price of the game. In
our ‘higher moments–jackpot models’, the operator chooses the size of the jackpot prize, which
can influence demand directly (the ‘pure jackpot model’) as well as indirectly, via the higher
moments of the prize distribution (the ‘pure higher moments model’). We develop a full set
of results for the efficiency and equality implications of optimal lottery design for the effective
price model and consider these empirically in section 4. For the latter two models, we state the
efficiency results only, owing to the fact that consideration of a wider range of incentives offers
the opportunity for different combinations of choice variables and effects.

3.1 The effective price model
In the effective price (EP) model, the operator’s choice variable is the lottery’s return to player
proportion (RTPP), αEP ∈ (0, 1), that is, the proportion of gross lottery expenditure that is re-
turned to players in the long run.3 Market demand for the lottery is assumed to be a function

existence of negative externalities.
3By taking the long-run perspective, we ignore draw-by-draw variation in the RTPP which arises from the pres-

ence of rollovers. A rollover occurs when a prize in one draw is not won and so ‘rolls over’ to the next. αEP refers
to the long-run RTPP, taking into account the presence of rollovers. As argued by Scott and Gulley (1995), our
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of both the lottery’s ‘effective price’, equal to 1 − αEP and also known as the ‘take-out rate’,
and disposable income, defined as the random variable YP . Pre-gambling disposable income has
density fYP on support [yP,min, yP,max], yP,min > 0, yP,max ≥ yP,min, with expected value µYP and
variance σ2

YP
.

The operator faces no threat of entry and may therefore exercise what we term ‘lottery power’
in choosing her RTPP. Let β(αEP, yP ) ∈ [0, 1] be the proportion of disposable income yP that is
spent on the lottery. β is assumed to be continuous and at least twice differentiable in each of its
arguments. We assume that, if nothing is returned to the players, nothing is spent (β(0, yP ) = 0
for all yP ) and, even with the most generous RTPP, in which all gross lottery expenditure is
returned to players, not all income need be spent (β(1, yP ) ≤ 1 for all yP ). We also assume
that β is strictly increasing in the RTPP, that is, βαEP > 0, and that it may be strictly increasing,
constant or strictly decreasing in yP .

At income yP , the operator takes yG = β(αEP, yP ) (1 − αEP) yP from players, leaving them
with post-gambling income yP−G = yP [1−β(αEP, yP )(1−αEP)]. When we express the proportion
of income spent on the lottery as a function of its effective price, 1 − αEP, rather than the RTPP,
we write the demand function as β̃(1− αEP, yP ) and consider this to be a rate of market demand
such that, the lower the effective price (the higher the RTPP), the more ‘generous’ the operator
and the higher the rate of demand (β̃(1−αEP) < 0). This property – higher demand at a lower
effective price – is borne out by some of the empirical studies that were reviewed in section 2
(Farrell and Walker, 1999; Forrest et al., 2000; Farrell et al., 2000; Forrest et al., 2002; Frontier
Economics, 2014; Wheeler, 2018).

In choosing a RTPP which maximises revenue REP from the game, the operator acts as a
monopolist facing a zero marginal cost (Clotfelter and Cook, 1987). By being more generous –
that is, increasing the RTPP (and so reducing the effective price) – the operator increases demand.
However, increasing the RTPP also increases the proportion of gross lottery expenditure that is
paid out in prize money. Normalising the size of the population to 1, the operator seeks to balance
these opposing forces by choosing a value of αEP which maximises:

REP(β(αEP, yP ), αEP) =

∫ yP,max

yP,min

[β(αEP, yP ) (1− αEP) yP ]fYP (yP ) dyP . (1)

Define such a choice as α∗EP. An interior solution for α∗EP satisfies the necessary condition
REP
αEP
|α∗

EP
= 0 and is sufficient when REP

αEPαEP
|α∗

EP
< 0, a condition which is always satisfied when

β is linear in αEP, which is what we assume in this paper.

3.1.1 Optimal pricing in the EP model

Under appropriate regularity conditions for the functional form of β and the income distribu-
tion,4 the following results show that the operator’s optimal choice of RTPP may be expressed
implicitly as a function of the sensitivity of market demand to changes in both the effective price

approach is consistent with the idea that lottery players have rational expectations of the effective price, based on
observation of previous sales, the prize distribution, the size of past rollovers and so on.

4Namely, either that we are able to express β as an nth degree polynomial in yP or, if this is not possible, that
appropriate regularity conditions (see e.g. Loistl (1976)) hold for β and the probability distribution for YP .

8



of the game and individual income, as well as the degree of inequality in the income distribution,
all evaluated at µYP . Proposition 1 expresses an optimal choice of αEP in terms of the demand
function β̃ and effective price when demand is additively separable in price and disposable in-
come and may be approximated by a third degree polynomial in income. Its proof also states the
sufficiency condition for such a choice. Corollary 1 expresses the optimal choice in terms of β
and the RTPP and introduces the idea of lottery power. Proofs are contained in Appendix A.

Proposition 1 (Optimal effective price). Under the above assumptions for the demand function,
the revenue-maximising lottery operator selects the optimal effective price, 1−α∗EP, to satisfy the
following modified Lerner index pricing rule:

−1 ≈ 1

εβ̃,1−αEP

[
1 + c2 εβ̃,yP

(
1 +

1

2
εβ̃yP ,yP

{
1 + Ω̃

})]
yP=µYP ,α

∗
EP

,

where Ω̃ ≈ cγ

(
1 +

1

3
εβ̃yP yP

,yP

)
,

(2)

where c = σYP /µYP is the coefficient of variation of the income distribution, γ is its skewness
and εa,b is the elasticity of a with respect to b evaluated at ((1 − α∗EP), µYP ), so that εβ̃,1−α∗

EP
=

[∂β̃/∂(1− α∗EP)]((1− α∗EP)/β̃) is the effective price elasticity of demand at µYP .

Corollary 1 (Lottery power in the EP model). The lottery operator choosing the effective price
to satisfy Eq. (2) equates the effective fractional odds of winning with an index of the operator’s
‘lottery power’, Υ∗EP, at µYP :

1− α∗EP

α∗EP

≈ Υ∗EP,

where Υ∗EP =
1

εβ,α

[
1 + c2 εβ,yP

(
1 +

1

2
εβyP ,yP

{
1 + Ω

})]
yP=µYP ,α

∗
EP

and Ω = cγ

(
1 +

1

3
εβyP yP

,yP

)
.

(3)

Hence, the stronger (weaker) is the operator’s lottery power (the higher (lower) is Υ∗EP), the
higher (lower) are the optimal effective fractional odds and the less (more) generous is the oper-
ator.

Proposition 1 shows that, when the demand function for the lottery varies according to dis-
posable income, the standard Lerner index rule for profit maximisation, εβ̃,1−αEP

= −1, must be
adjusted by the term in square brackets on the RHS of Eq. (2). This accounts for the degree of
inequality and skewness in the income distribution (as measured by c and γ), together with terms
which reflect the responsiveness of demand to changes in income, measured at mean disposable
income. The expression may easily be extended to accommodate higher order polynomials, or
restricted to deal with e.g. a quadratic function.

We can extend our analysis to consider how the presence of regressive/progressive gross
lottery expenditure affects optimal pricing, relative to the case when gross lottery expenditure is
proportional.
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Definition 1. Other things equal, for any non-degenerate income distribution and all demand
functions β̃:

gross lottery expenditure is regressive/proportional/progressive for all yP ⇔
∂β̃

∂yP
Q 0

for all yP ∈ [yP,min, yP,max].

Definition 2 (Proportional gross lottery expenditure and standard Lerner index rule pricing). For
any non-degenerate income distribution, define α̂EP as the RTPP which solves Eq. (2) when β̃ is
invariant to an individual’s income (so that gross lottery expenditure is proportional). Define
ˆ̃β ≡ β̃(0, yP ) for this scenario. Define Υ̂EP as the corresponding value of lottery power. Then
εβ̃,yP = 0 (by Definition 2) and εβ̃,1−α̂EP

= −1 (by Eq. (2)).

Proposition 2 (Optimal effective price when gross lottery expenditure is regressive/progressive
relative to when it is proportional). Define α∗EP as the optimal RTPP when gross lottery expen-

diture is regressive/progressive, such that β̃ passes through ˆ̃β(0, µYP ) as defined in Definition 2.
Then:

∂β̃

∂yP
≶ 0 ⇔ α∗EP ≷ α̂EP ⇔ Υ∗EP ≶ Υ̂EP,

The intuition behind these results may be explained by consulting Figure 1. The shaded
surface shows a demand function β̃ plotted in (1−αEP)× yP × β̃ space for the case of regressive
gross lottery expenditure. Three linear demand functions which hold yP constant and show how
β̃ varies with effective price are indicated by thick lines, one at yP,min, one at yP,max and one at µYP
(labelled A).

Consider first the case of a degenerate income distribution (so that c = 0), with all potential
players having disposable income equal to µYP . As is clear from inspection of Eq. (2), the
standard Lerner index pricing rule applies: revenue is maximised by setting the effective price
to the point on demand function A at which the price elasticity of demand (indicated by ε̂ in
Figure 1) is equal to -1. Define α̂EP as the optimal choice of RTPP for this scenario. For the case
of a nondegenerate income distribution, when gross lottery expenditure is proportional, so that
β̃ is does not change with income and passes through µYP when effective price is equal to zero,
the optimal RTPP is again equal to α̂EP. This result is clear from inspection of Eq. (2), this time
setting εβ̃,yP = 0.

Now consider Proposition 1, and the impact of regressive gross lottery expenditure on the
optimal choice of αEP, such that β̃ = ˆ̃β when price is equal to zero and yP = µYP . When gross
lottery expenditure is regressive, εβ̃,yP < 0 by Definition 2, and the term in square brackets on
the RHS of Eq. (2) lies between zero and one. Hence, for Eq. (2) to hold, the absolute value of
εβ̃,(1−αEP)

must fall, meaning that effective price must also fall. Eq. (2) shows that the operator
lowers effective price below 1 − α̂EP, being more generous in its choice of RTPP. The marginal
reduction in the revenue earned from the players is more than offset by the increase in revenue
that a reduction in price brings. From Eq. (3), the odds fall and the operator’s lottery power
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−1 < ε < 0

ε̂ = −1 ε < −1

ε = 0

ε = −∞

µYPyP,min

yP,max

A

β̃

(1− αEP)

β̃

1− α̂EP

β̃(0, µYP )

Figure 1: Market demand function and optimal effective pricing when gross lottery expenditure is regressive

is lower. Similar reasoning may be used to show that, for the case of progressive gross lottery
expenditure, the operator sets a lower RTPP (a higher effective price), higher odds and so has
higher lottery power.

To the best of our knowledge, these results are new to the literature on optimal lottery de-
sign. We note that the empirical literature that was reviewed in section 2 considers the revenue-
maximising RTPP to be α̂EP as defined in Definition 2, the value of the RTPP which satisfies the
standard Lerner index pricing rule. Proposition 1 makes clear that α̂EP is only optimal for the case
of proportional gross lottery expenditure and that α∗EP deviates from this choice under regressive
or progressive gross lottery expenditure. In considering optimal effective pricing, the empirical
literature does not take this regressivity/progressivity result into account, possibly because em-
pirical models have traditionally separated the estimation of price effects from those of income
effects.

3.1.2 Implications for the distribution of post-gambling income in the EP model

The discussion to date has considered the impact of regressive, proportional and progressive
gross lottery expenditure on optimal effective pricing. Consider now the distributional implica-
tions of our results for the gambling income YG that is taken by the operator (i.e. that is lost
by the players). We borrow results from the taxation literature on the liability progression index
(Lambert, 2001; Jakobsson, 1976), which in our context is:

`(αEP, yP ) = εyG,yP = εβ̃,yP + 1. (4)
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Applying Jakobsson (1976, Proposition 3) to our setting, we can state the following results.

Proposition 3 (Redistributive effect of pricing under regressive / neutral / progressive gross lot-
tery expenditure). Independently of the chosen value of αEP, gambling revenue is regressive when
∂β̃/∂yP < 0 for all yP , it is neutral when ∂β̃/∂yP = 0 for all yP and it is progressive when
∂β̃/∂yP > 0 for all yP .

Note that the result in Proposition 3 differs from the standard result in the direct taxation literature
owing to the function β̃ in the definition of yG: in the direct taxation literature a fixed tax rate is
always distributionally neutral.

We now use a result from Lambert (2001, Lemma 8.1) to set up our discussion of the equality
implications of the various pricing rules.

Result 1 (Lambert (2001)). Let m(yP ) and n(yP ) be two functions of yP . The concentration
curve for m with respect to yP lies nowhere below the concentration curve for n if and only if
εm,yP ≤ εn,yP for all yP .

From this, we can state the following result for optimal lottery pricing as defined in Proposition
1 relative to pricing which follows the standard Lerner index rule.

Proposition 4 (Implications of optimal lottery pricing for the redistribution of income). Let Y ∗G
be the revenue taken from players when α = α∗EP (as defined in Proposition 1). Let ŶG be the
revenue taken from players when α = α̂EP (as defined in Definition 2). Then, regardless of
whether α∗EP > α̂EP or α∗EP < α̂EP, ε∗yG,yP > ε̂yG,yP for all yP ∈ [yP,min, yP,max] and Y ∗G is Lorenz-
dominated by ŶG.

We note that, in the context of our model, if one distribution of YG Lorenz dominates another,
that distribution is more regressive, when viewed from the perspective of the concentration curve.
Hence, under the standard Lerner index pricing rule, any cumulative proportion of the population
ranked lowest to highest according to disposable income loses proportionally more on the lottery
than does the same cumulative proportion under optimal pricing.

To conclude the analysis of the EP model, we note that the above results are amplified by the
degree of inequality in disposable income.

Corollary 2 (Comparative statics for inequality in disposable income). Other things being equal,
the greater the degree of relative inequality in disposable income, c, the greater is |α∗EP − α̂EP|.

3.2 The jackpot and higher moments models
In the jackpot and higher moments models, we assume there exists a prize distribution which
comprises smaller prizes together with a jackpot, J . Market demand β is assumed to be a func-
tion of J relative to the value of the smaller prizes (which we assume are fixed), such that the
proportion of spend is increasing in J but at a decreasing rate (∂β/∂J > 0 and ∂2β/∂J2 < 0).
The ‘pure jackpot model’ posits a direct causal effect of J on demand. The ‘higher moments
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model’ posits an indirect causal effect of J operating via the higher moments of the prize distri-
bution, which we call φ. We solve the two models as one, so that the pure versions are special
cases of the general. We do so for the case of a second degree polynomial function linking β to
yP , noting that it is straightforward to extend the analysis for polynomials of higher order, using
the methods presented in section 3.1.5

The operator faces the problem of choosing a jackpot, J , to maximise:

RJHM(β(J, φ(J), yP ), αJ(J)) =

∫ ∞
0

β(J, φ(J), yP ) (1− αJ(J)) yPfYP (yP ) dyP , (5)

where ∂αJ/∂J > 0. Define J∗ as a solution to this problem and define α∗J ≡ α∗J(J∗) as the
corresponding RTPP. Subject to the appropriate regularity conditions for the income distribution
and β, proceeding as before leads to the following results.

Proposition 5 (Optimal jackpot size in the jackpot and higher moments models). When β is
additively separable in J , φ and yP , the revenue-maximising operator selects the optimal jackpot
size, J∗, to satisfy the following modified Lerner index pricing rule:

−1 ≈ ε1−αJ ,J

ηβ,J

[
1 + c2 εβ,yP

(
1 +

1

2
εβyP ,yP

{
1 + Ω

})]
yP=µYP ,J

∗
, (6)

where ηβ,J = [εβ,J + βφφJ ](J/β) is the elasticity of β with respect to J , operating directly on β
and indirectly via φ. Setting βφ = 0 yields the pure jackpot model and setting εβ,J = 0 yields the
pure higher moments model.

Corollary 3 (Lottery power in the jackpot and higher moments models). The lottery operator
choosing J∗ to satisfy Eq. (6) equates the effective fractional odds of winning with the index of
the operator’s lottery power, Υ∗J , at mean disposable income:

1− αJ(J∗)

αJ(J∗)
≈ Υ∗J ,

where Υ∗J =
εαJ ,J

ηβ,J

[
1 + c2 εβ,yP

(
1 +

1

2
εβyP ,yP

{
1 + Ω

})]
yP=µYP ,J

∗
.

(7)

The mechanism driving the optimal size of the jackpot is similar to that in the EP model.
However, in these models, the choice variable J affects both the RTPP and demand. When the
distribution of income is degenerate (c = 0), or ∂β/∂J = 0, Eq. (6) shows that the optimal
choice of J satisfies ε1−αJ ,J = −ηβ,J . The operator balances the revenue-increasing effect that
increasing J has on raising marginal willingness to pay with the revenue-diminishing effect that
it has on the effective price.

For the pure jackpot model, the analysis of section 3.1 may be applied once more to obtain
the following proposition.

5More sophisticated models could be solved. For example, an alternative specification would be one in which
increasing J may only be achieved by reducing the size of the smaller prizes. Another option would be explicit
modelling of demand as a function of the higher moments of the prize distribution, such as the variance and skew-
ness.
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Proposition 6 (Optimal jackpot size with regressive/progressive gross lottery expenditure). For
any non-degenerate income distribution, define Ĵ as the optimal size of the jackpot when lottery
participation is invariant to an individual’s income and define J∗ as the optimal size of the
jackpot when it is not. Then, for all market demand functions β which are additively separable
in yP and (1− αJ(J)):

Lottery participation is regressive/progressive for all yP ⇔
J∗ ≷ Ĵ ⇔ Υ∗J ≶ Υ̂J .

(8)

For the pure higher moments model and the mixed jackpot/higher moments models, results
depend on the net effect of changes in the higher moments of the prize distribution relative to the
direct effect of J on demand.

4 Does the U.K. National Lottery exploit its lottery power?
We apply the effective price model solved in section 3.1 using data from the U.K. National
Lottery’s Saturday game between 1997 and 2013 and compare the efficiency and equality impli-
cations of the actual, long-term, RTPP of the game with the revenue-maximising RTPP suggested
by our model (Proposition 1) and with the RTPP given by the standard Lerner index rule (Defi-
nition 2). We use results from the series of essays presented by Wheeler (2018), who estimated
price and income elasticities of demand for the U.K. National Lottery’s Saturday and Wednes-
day games. Appendix B presents full details of the calculations used in our analysis; below we
provide an overview of our methods and discuss the main results.

The slope of the demand function, ∂β̃/∂(1 − αEP), is estimated using Wheeler’s results for
the National Lottery’s Saturday game between 5 February 1997 and 2 October 2013 (Wheeler,
2018, Chapter 3). The parameters of the income distribution are obtained by fitting a truncated
lognormal distribution to data plotted from Wheeler’s analysis of expenditure data (taken as
a proxy for disposable income) from the U.K. Expenditure and Food Survey (EFS) (Wheeler,
2018, Figure 4.7), covering the period 2001 to 2013. A quadratic functional form is assumed
for β̃(yP ) and parameters for it are estimated from Wheeler (2018, Figure 4.7), which plots the
proportion of spend on the lottery as a function of disposable income. Results of the analysis
of fitting β̃ to disposable income and fitting the truncated normal distribution to the income
distribution are presented in Figures 2(a) and (b).6

4.1 Results
We obtain an optimal RTPP for the U.K.’s Saturday game of α∗EP = 0.408. This is about
ten percentage points less generous than the game’s actual RTPP over the period in question
(αEP = 0.514). The RTPP suggested by the standard Lerner index rule is α̂EP = 0.236, which
is in accord with the optimal effective price of 0.77 suggested by Wheeler (2018). However,

6Analysis is carried out using Maple 2017 and Matlab R2018a.

14



this standard Lerner index rule omits the role of the income distribution and the function relat-
ing lottery spend to disposable income in determining the optimal RTPP. The net result is that
the standard Lerner index RTPP is seventeen percentage points below the revenue-maximising
RTPP. Figure 2(c) shows how, as the RTPP falls (the effective price of the game rises), the pro-
portion of disposable income spent on the lottery falls across the income distribution. Figure 2(d)
shows how expected revenue changes as the RTPP changes. Comparison of the optimal value of
expected revenue with that under the actual RTPP suggests that switching from the actual RTPP
to the optimal one would increase the operator’s revenue by about 3.4%. Revenue is about 9%
higher under the optimal RTPP than under standard Lerner index pricing. Considered in terms
of the operator’s average take from the Saturday game for a non-rollover draw (Wheeler, 2018,
Table 3.1), this suggests the operator could have increased the average revenue from non-rollover
Saturday games from about £19.8m to £20.5m (an increase of around £700,000). If the operator
were instead to have priced according to the standard Lerner index rule, revenue per game would
have fallen by about £1.24m to £19.7m, which would be about £2.0m short of the maximum. So
the answer to the question ‘Does the U.K. National Lottery exploit its lottery power?’, insofar as
it relates to revenue-maximisation, is ‘not quite’: the operator could have increased revenue by a
small amount (3.4%) if it had been less generous in its choice of RTPP.

Consider now Figure 3, which shows the distributional implications of the three RTPPs.
Figure 3(a) shows that, under the actual RTPP and α∗EP, gambling revenue is an increasing and
concave function of weekly disposable income. However, it is increasing and then decreasing
in weekly disposable income under the standard Lerner index rule. Figure 3(b) shows that the
elasticity of yG with respect to yP is highest under the actual RTPP and lowest under α̂EP, with
the elasticity for α∗EP lying between the two. By Result 1, this implies that the concentration
curve for α̂EP dominates that for α∗EP, which in turn dominates that for the actual RTPP, a result
which is confirmed by the concentration curves that are plotted in Figure 3(d). Furthermore,
Figure 3(b) confirms the result of Proposition 4: the elasticity of yG with respect to yP at α∗EP is
strictly greater than the elasticity of yG with respect to yP at α̂EP, so that Y ∗G is Lorenz-dominated
by ŶG. Finally, note that Lorenz dominance in the distribution of YG under the three RTPPs may
be interpreted in terms of the regressivity in the revenue earned by the operator. Figure 3(c)
shows that the proportion of gambling revenue taken from the poor is highest under standard
Lerner index pricing, and also falls most rapidly as income increases. The proportion taken from
the poor is next highest under optimal pricing and remains so until weekly disposable income is
around £800.00. So the most progressive RTPP is under actual pricing.

The upshot of this analysis is that our results suggest that the U.K. National Lottery operator
was not fully exploiting its monopoly power over the period in question, and so was losing out
on a relatively small amount of revenue in non-rollover Saturday games. However, the operator
was also setting the least regressive RTPP of the three that are under consideration. It may be
argued therefore, that its choice of RTPP was broadly in line with its obligations as laid out in
the National Lottery Act 1993, namely that the Secretary of State should ‘do his best to ensure
that the net proceeds of the National Lottery are as great as possible’, while at the same time
protecting the participants in the lottery. Protecting participants means not designing games
which ‘encourage excessive play or target particular groups.’
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5 Discussion and conclusion
Although there exists an extensive empirical literature assessing the optimal design of state lot-
teries, there is more limited theoretical assessment of the factors which affect revenue maximi-
sation. We have presented a range of models for a lottery operator who is charged with raising
revenue for the public finances, in which demand is a function of both disposable income and the
pricing of the game. In a departure from the current literature, which applies standard monopoly
theory to assess whether or not an operator is acting efficiently by maximising revenue, we show
that optimal lottery pricing should account for corrections for the degree of inequality and skew-
ness in the income distribution and features of the function relating lottery spend to disposable
income. In particular, when gross lottery expenditure is regressive, it is optimal for the operator
to improve the terms of the game by being more generous with the proportion of spend that is
returned to players; when gross lottery expenditure is progressive, the operator should be less
generous. Compared with our optimal rule, standard Lerner index pricing is neither efficient, nor
is it the most equitable.

Our application has used results from analysis of the U.K. National Lottery’s Saturday game
between 1997 and 2013 to show that the effective price was about ten percentage points too
low to be efficient, so that the operator was not fully exploiting its lottery power. However, the
application has also shown that, were it to have raised the effective price of the game to improve
efficiency, it would also have increased inequality.

There are numerous directions for future research. The theoretical model could be improved
by solving a model in which β̃ is non-separable in disposable income and price, and more work
could be done to tease out the distributional implications of optimal pricing in the pure jackpot
and higher moments models. Further, it would be interesting to exploit other country-level data
on lottery spend and participation, with a view to assessing the degree to which operators place
efficiency considerations above those of inequality.

A Proofs
Proof of Proposition 1. The first order necessary condition for an interior solution which results
from solving the optimisation problem for the effective price model is:

(1− α∗EP)

∫ yP,max

yP,min

β1(α
∗
EP, yP )yPfYP (yP ) dyP =

∫ yP,max

yP,min

β(α∗EP, yP )yPfYP (yP ) dyP , (9)

where β1(α∗EP, yP ) = ∂β(α∗EP, yP )/∂αEP. The condition is sufficient when:

REP
αEPαEP

=

∫ ∞
0

[β11(α
∗
EP, yP )(1− α∗EP)− 2β1(α

∗
EP, yP )] yPfYP (yP )dyP < 0, (10)

where β11(α∗EP, yP ) = ∂2β(α∗EP, yP )/∂α2
EP. This condition always hold at interior values of the

RTPP given our assumption that β̃ is linear in effective price.
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Using Taylor series expansions for the two expected values in Eq. (9),

E [β1(α
∗
EP, yP )yP ] = β1(α

∗
EP, µYP )µYP +

σ2
YP

2

[
∂3β(α∗EP, µYP )

∂αEP∂y2P
µYP + 2

∂2β(α∗EP, µYP )

∂αEP∂yP

]
+h.o.t.,

(11a)

E[β(α∗EP, yP )yP ] = β(α∗EP, µYP )µYP +
σ2
YP

2

[
∂2β(α∗EP, µYP )

∂y2P
µYP + 2

∂β(α∗EP, µYP )

∂yP
+

σYP γ

3

(
∂3β

∂y3P
µYP + 3

∂2β

∂y2P

)]
+ h.o.t.

(11b)

These may be expanded to higher orders according to the characteristics of β̃ and the distribu-
tion of income. For the results in section 3.1, we work with a polynomial of degree 3 for β̃ and
a lognormal distribution for YP and hence use expansions to the third order. When β is addi-
tively separable in yP and αEP, the cross-partial derivatives in these expressions may be ignored.
Substituting Eqs. (11a) and (11b) into Eq. (9), simplifying, and noting that the effective price
elasticity of demand and the elasticity of demand with respect to the RTPP are related as follows:
εβ̃,1−αEP

= εβ,αEP(−(1− αEP)/αEP), gives Eq. (2).

Proof of Corollary 1. Replacing εβ̃,1−αEP
with (−(1−αEP)/αEP)εβ,αEP in Eq. (2) gives Eq. (3).

Proof of Proposition 2. If: when gross lottery expenditure is regressive, εβ̃,yP < 0 and so, since
εβ̃,1−αEP

< 0, from Eq. (2):[
1 + c2 εβ̃,yP

(
1 +

1

2
εβ̃yP ,yP

{
1 + cγ

(
1 +

1

3
εβ̃yP yP

,yP

) })]
yP=µYP ,α

∗
EP

> 0, (12)

But from Eq. (11b), it is the case that:

0 <

[
c2 εβ̃,yP

(
1 +

1

2
εβ̃yP ,yP

{
1 + cγ

(
1 +

1

3
εβ̃yP yP

,yP

) })]
yP=µYP ,α

∗
EP

< 1, (13)

Hence, for Eq. (2) to hold, |εβ̃,1−αEP
| < 1 and so α∗EP > α̂EP. Substituting α∗EP into the LHS of

Eq. (3) shows that the fractional odds fall and Υ∗EP < Υ̂EP. Only if: when Υ∗EP < Υ̂EP, it must be
the case that α∗EP > α̂EP (by Eq. (3)) and so, from Eq. (2), |εβ̃,1−αEP

| < 1. By Eq. (2) and Eq. (11b)
this can only be the case if εβ̃,yP < 0.

Similar reasoning may be applied for the case of progressive gross lottery expenditure.

Proof of Proposition 3. From Eq. (4), when ∂β̃/∂yP < 0 for all yP , ` < 1 for all yP and gam-
bling revenue is regressive (Lambert, 2001, pages 196–197). Similar arguments may be used for
the cases of ∂β̃/∂yP = 0 and ∂β̃/∂yP > 0.
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Proof of Proposition 4. Define ε∗yG,yP = ∂yG/∂yP (yP/yG)|α∗
EP

and ε̂yG,yP = ∂yG/∂yP (yP/yG)|α̂EP .
Then, when ∂β̃/∂yP > 0, α∗EP < α̂EP (from Proposition 2) and so ε∗yG,yP > ε̂yG,yP . A similar
argument can be used to show that the same result holds when ∂β̃/∂yP < 0. Hence, from
Jakobsson (1976, Proposition 3), it follows that Y ∗G is Lorenz-dominated by ŶG, regardless of
whether α∗EP < α̂EP or α∗EP > α̂EP.

Proof of Corollary 2. This result is clear from inspection of Eq. (2).

Proof of Proposition 5. The proof is similar to that of Proposition 1. Differentiating Eq. (5) with
respect to J and applying the usual approach to the Taylor series expansion (that is, assuming
additive separability of β in J , φ and yP ) yields Eq. (6).

Proof of Corollary 3. Replace ε1−αJ ,J = −εαJ ,JαJ/(1− αJ) in Eq. (6) to give Eq. (7).

B Application
For the application to the U.K. National Lottery’s Saturday game, we used results from Wheeler
(2018, Chapters 3 and 4).

We used Wheeler’s instrumented estimate of the price elasticity of demand at average income,
εβ̃,1−αEP

= −0.636 (Wheeler, 2018, Table 3.11, page 113), to estimate the slope of the demand
function, ∂β̃/∂(1 − αEP). This is assumed to be constant for all levels of yP . The estimate of β̃
at µYP was taken from Wheeler’s semi-parametric plot of the proportion of disposable income
spent on the lottery (Wheeler, 2018, Figure 4.7) and was β̃(µYP ) = 0.005. The long term
effective price of the Saturday game is 1 − RTPP = 0.486 (Wheeler, 2018, page 92). Hence
∂β̃/∂(1− αEP) = εβ̃,1−αEP

β̃(µYP )/(1− RTPP) = −0.0065.
We fitted a truncated lognormal distribution to an estimate of the histogram data presented in

Wheeler (2018, Figure 4.7) and obtained the following estimates of the expected value, standard
deviation and skewness: µYP = 456.7056, σYP = 273.5028 and skewness = 0.003656. A com-
parison of the truncated and untruncated distributions is shown in Figure 2(b). The coefficient of
variation was calculated using these parameters and estimated to be 0.5989.

To obtain an estimate of the relationship between β̃ and yP , we fitted a quadratic function to
data points from the plot of Wheeler (2018, Figure 4.7). We used seven points, corresponding
to values of the natural logarithm of disposable income at 4, 4.5, . . . , 6.5 and 7. The estimated
equation was β̃ = 0.0070232 − 4.627e−06 yP + 9.7022e−10 y2P at the game’s effective price of
0.486. Coefficients were statistically significant at the 5% level and the adjusted R2 was equal to
0.956. This gives the following function for β̃: β̃ = 0.0102− 4.627e−06 yP + 9.7022e−10 y2P −
0.0065(1 − αEP). This function was used to estimate the derivatives of β̃ with respect to yP for
use in expressions for the elasticities of β̃ with respect to yP in Eq. (2).

Substituting our values of c, skewness, the relevant expressions for the elasticities and αEP =
α∗EP into Eq. (2) leaves an expression in which the only unknown is α∗EP. Solving gives 1− α∗EP ≈
0.592, implying the operator’s optimal RTPP is approximately equal to 0.408. Repeating the
exercise when ∂β̃/∂yP = 0 gives the value of αEP which satisfies the standard Lerner index rule,
that is, 1− α̂EP = 0.764 and α̂EP = 0.236.
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