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A B S T R A C T

Objectives: Active screening is a crucial element for the prevention of carbapenemase-producing
Enterobacteriaceae (CPE) transmission in healthcare settings. Here we propose a culture-based protocol
for rectal swab CPE screening that combines CPE detection with identification of the carbapenemase
type.
Methods: The workflow integrates an automatic digital analysis of selective chromogenic media
(WASPLab1; Copan), with subsequent rapid tests for the confirmation of carbapenemase production
[i.e. detection of Klebsiella pneumoniae carbapenemase (KPC)-specific peak by matrix-assisted laser
desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS) or a multiplex immunochro-
matographic assay identifying the five commonest carbapenemase types]. To evaluate the performance
of this protocol in depth, data for 21 162 rectal swabs submitted for CPE screening to the Microbiology
Unit of S. Orsola-Malpighi Hospital (Bologna, Italy) were analysed.
Results: Considering its ability to correctly segregate plates with/without Enterobacteriaceae, WASPLab
Image Analysis Software showed globally a sensitivity and specificity of 100% and 79.4%, respectively. Of
the plates with bacterial growth (n = 901), 693 (76.9%) were found to be positive for CPE by MALDI-TOF/
MS (KPC-specific peak for K. pneumoniae) or by immunochromatographic assay. Only 2.8% (16/570) of
KPC-positive K. pneumoniae strains were missed by the specific MALDI-TOF/MS algorithm, being detected
by the immunochromatographic assay. The mean turnaround time needed from sample arrival to the
final report ranged between 18 and 24 h, representing a significant time saving compared with manual
reading.
Conclusion: This workflow proved to be fast and reliable, being particularly suitable for areas endemic for
KPC-producing K. pneumoniae and for high-throughput laboratories.
© 2019 International Society for Antimicrobial Chemotherapy. Published by Elsevier Ltd. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The global spread of carbapenemase-producing Enterobacter-
iaceae (CPE) is of great concern to health services worldwide [1,2].
Epidemics of international proportion due to CPE have been
described in different countries [3,4]. CPE represent an alarming
and dramatic problem for many reasons. First, the morbidity
associated with CPE infections is usually high, with a relevant
clinical and economic impact [5]. Moreover, therapeutic
options for CPE are often limited to a few drugs, thus leading to
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the emergence and spread of new resistance mechanisms
(e.g. polymyxin resistance) [6].

In the last years, several approaches to fight the global burden of
CPE have been proposed, among which hospital screening and
surveillance protocols as well as strict infection control measures
(e.g. hand hygiene, patient isolation, cohort nursing, personal
protection equipment, environmental surface decontamination)
have been adopted [7,8].

In this context, rectal screening for CPE carriage in high-risk
patients represents a common and useful method to limit the
spread of CPE [9]. Indeed, several guidance documents suggest
performing active surveillance for early detection of colonised
patients in order to prevent CPE introduction and transmission
[4,10]. Ideally, CPE detection for active screening purposes should
have a short turnaround time to ensure timely implementation of
infection control measures [7]. Besides the rapid detection of CPE
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carriers, identification of the type of carbapenemase is important
for surveillance, infection control and treatment purposes [7].

Various laboratory protocols for CPE rectal screening, based
both on culture techniques and molecular methods, have been
described so far [11–15]. Nevertheless, the optimal workflow in
term of sensitivity, specificity and cost:benefit ratio remains
unclear and debated [16,17].

In this study, a simple and reliable protocol for rectal CPE
screening in an endemic area of Northern Italy was evaluated.
This workflow allows CPE detection and identification of carba-
penemases by means of a culture-based technique that integrates
an automatic digital analysis of chromogenic media (WASPLab1;
Copan), followed by rapid confirmation tests [i.e. matrix-assisted
laser desorption/ionisation time-of-flight mass spectrometry
(MALDI-TOF/MS) and/or a multiplex immunochromatographic
assay].
Fig. 1. Workflow for rectal carbapenemase-prod
2. Materials and methods

2.1. Study setting

The proposed workflow is currently implemented as a routine
diagnostic procedure for rectal CPE screening at the Microbiology
Unit of S. Orsola-Malpighi University Hospital (Bologna, Italy). This
protocol has been adapted to the CPE epidemiological distribution
of our geographical area, following regional guidelines (available
at: http://assr.regione.emilia-romagna.it/it/servizi/pubblicazioni/
rapporti-documenti/indicazioni-pratiche-diagnosi-cpe-2017) and
European Committee on Antimicrobial Susceptibility Testing
(EUCAST) recommendations (http://www.eucast.org). All proce-
dures described below are performed following the manufacturer’s
instructions; detection of a Klebsiella pneumoniae carbapenemase
(KPC)-specific peak by MALDI-TOF/MS has been extensively
ucing Enterobacteriaceae (CPE) screening.

http://assr.regione.emilia-romagna.it/it/servizi/pubblicazioni/rapporti-documenti/indicazioni-pratiche-diagnosi-cpe-2017
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validated before the introduction in the routine diagnostic
workflow, as previously reported [18–20].

To evaluate the performance of the following protocol in depth,
data regarding rectal swabs submitted for active CPE screening in a
4-month period (March–June 2019) were collected and analysed.

As suggested by the regional guidelines, rectal swabs are
routinely collected from intensive care units, medical wards and
surgical wards of the hospital as part of normal CPE screening both
in naïve subjects and in the weekly follow-up of colonised patients.

This study was conducted according to the regulations of the
Ethical Committee of S. Orsola-Malpighi Hospital as well as the
1964 Helsinki Declaration and its later amendments. All samples
remained anonymous throughout the duration of the study.

2.2. Workflow for rectal carbapenemase-producing
Enterobacteriaceae screening

The workflow for rectal CPE screening is shown in Fig. 1 and is
described in detail below.

(i) Using WASPLab1 (Copan, Brescia, Italy) for processing, rectal
swabs (eSwabTM; Copan) are automatically plated onto a selective
chromogenic medium (CHROMagar KPC; Kima Meus, Padua, Italy).
This medium contains a carbapenem agent for the direct isolation
of Gram-negative bacteria with reduced susceptibility to carba-
penems. Moreover, specific chromogens allow the development of
colorimetric changes in bacterial colonies on the basis of the
species: Escherichia coli colonies appear dark pink to reddish;
colonies of Klebsiella spp., Citrobacter spp. and Enterobacter spp. are
metallic blue; and Pseudomonas spp. and Acinetobacter spp. appear
translucent or opaque cream-colored.

Inoculated plates are moved by a conveyor belt to a digital
imager, where an image is obtained at time point 0, and are then
moved into the WASPLab incubator, where the plates are incubated
at 35 �C in an aerobic atmosphere for 16 h.

(ii) As described elsewhere [21–23], the WASPLab contains a
digital imager to automatically take images of plates at programmable
time points throughout incubation. In our workflow, a plate image is
taken at 16 h post-inoculation, defined as the final incubation time on
WASPLab for 100% detection sensitivity for CPE [24]. Plates are
automatically screened by the Chromogenic Detection Module image
analysis software incorporated into WASPLab. This software analyses
the plates to identify differences in growth and colony colour and is
programmedtocorrespondspecificallytothemediumtypeusedbythe
laboratory. By means of an internal algorithm, the software automati-
cally separates ‘negative’ from ‘non-negative’ plates: in our protocol,
plates with no bacterial growth or with white/cream colonies are
markedasnegativeforCPE,whereasplateswithpink-redorgreen-blue
colonies are defined as positive.

(iii) All of the plates segregated as negative by the WASPLab are
quickly checked (30 plates at a time on WASPLab monitor) to confirm
the absence of potentially CPE, whereas plates marked as positive are
read to evaluate the presence and type of bacterial colonies.
Table 1
Carbapenemase-producing Enterobacteriaceae (n = 693) stratified by bacterial species 

Species KPC (n = 583; 84.1%) NDM (n = 48; 6

Klebsiella pneumoniae (n = 626; 90.3%) 570 (97.8%) 26 (54.2%) 

Escherichia coli (n = 46; 6.6%) 9 (1.5%) 22 (45.8%) 

Enterobacter spp. (n = 9; 1.3%)c 1 (0.2%) 0 (0.0%) 

Klebsiella oxytoca (n = 6; 0.9%) 1 (0.2%) 0 (0.0%) 

Citrobacter freundii (n = 5; 0.7%) 1 (0.2%) 0 (0.0%) 

Raoultella ornithinolytica (n = 1; 0.1%) 1 (0.2%) 0 (0.0%) 

a No case of IMP was observed.
b KPC + NDM (n = 6), NDM + OXA (n = 5) and VIM + OXA (n = 1).
c Including Enterobacter asburiae, Enterobacter cloacae and Enterobacter aerogenes.
(iv) In the case of blue/green colonies (i.e. Klebsiella spp.,
Citrobacter spp. and Enterobacter spp.), bacterial species identifi-
cation is achieved by MALDI-TOF/MS using a Bruker microflexTM

instrument (Bruker Daltonik GmbH, Bremen, Germany). In the case
of K. pneumoniae strains only, along with species identification,
MALDI provides data about the detection of a KPC-specific peak (11
109 m/z) by a dedicated algorithm integrated into the MALDI
Biotyper system [18–20].

For strains belonging to other species (i.e. Citrobacter,
Enterobacter) and for K. pneumoniae strains negative for the
KPC-specific peak, a multiplex immunochromatographic assay
(NG-Test CARBA 5; NG Biotech, Guipry, France) is performed
[25,26]. This test allows rapid (�15 min) detection of the five
commonest carbapenemases enzymes (i.e. KPC, IMP, VIM, NDM
and OXA-48-like) directly on bacterial colonies.

(v) Pink-reddish colonies (i.e. E. coli) immediately undergo
immunochromatographic assay for carbapenemase detection
(NG-Test CARBA 5), with no MALDI-TOF/MS processing.

(vi) Finally, on the basis of MALDI-TOF/MS and/or NG-Test CARBA
5 results, bacterial strains are categorised as CPE or non-CPE. For CPE,
species identification and the type of carbapenemase are reported
and antimicrobial susceptibility testing is also performed.

3. Results

During the study period, a total of 21 162 rectal swabs were
submitted to the Microbiology Unit for CPE screening. Using WASPLab
Image Analysis Software, 16 088 plates (76.0%) were correctly
segregated as negative for Enterobacteriaceae, with no false-negative
results. Conversely, automatic reading marked 5074 plates (24.0%) as
potentially positive, but only 901 (17.8%) of them showed colonies
suggestive for Enterobacteriaceae. In the remaining cases (4173 plates;
19.7% of the total), no bacterial growth was found; the presence of
abundant faecal material and other interfering substances led to the
creation of pink/green halos on the plates, wrongly considered as
bacterial colonies by the image software. Considering its ability to
correctlysegregate plates with/without Enterobacteriaceae, WASPLab
showed globally a sensitivity and specificity for Enterobacteriaceae
detection of 100% and 79.4%, respectively. Of the 901 plates with a
bacterial growth, 693 (76.9%) were found to be positive for CPE by
MALDI-TOF/MS (KPC-specific peak for K. pneumoniae) or by the
immunochromatographic assay (total prevalence rate of CPE, 3.3%).
In contrast, detection of carbapenemase was negative in 208
samples (23.1%) despite the presence of suggestive bacterial
colonies. Overall, the chromogenic medium (CHROMagar KPC)
showed a positive predictive value (PPV) for CPE of 76.9%.

Strains negative for carbapenemase production but grown on
the selective chromogenic medium (i.e. potentially carbapenem-
resistant) were represented mainly by Klebsiella spp. (46.7%) and
Enterobacter spp. (30%).

In Table 1, CPE are stratified by bacterial species and type of
carbapenemase detected. KPC was the most common enzyme in
and type of carbapenemasea.

.9%) VIM (n = 29; 4.2%) OXA-48 (n = 21; 3.0%) Double mechanism
(n = 12; 1.7%)b

10 (34.5%) 11 (52.4%) 9 (75.0%)
4 (13.8%) 8 (38.1%) 3 (25.0%)
7 (24.1%) 1 (4.8%) 0 (0.0%)
4 (13.8%) 1 (4.8%) 0 (0.0%)
4 (13.8%) 0 (0.0%) 0 (0.0%)
0 (0.0%) 0 (0.0%) 0 (0.0%)
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our setting (583/693; 84.1%), followed by NDM (48/693; 6.9%), VIM
(29/693; 4.2%) and OXA-48 (21/693; 3.0%); no case of IMP was
observed, Simultaneous production of two different carbapene-
mases was detected in 12 samples (1.7%). In this latter group, the
most frequent double resistance mechanisms were represented by
KPC + NDM (6/12) and OXA-48 + NDM (5/12).

Overall, KPC-producing K. pneumoniae represented the vast
majority of all CPE strains (>80%), whereas NDM-positive
K. pneumoniae and E. coli each accounted for �3.5%. In
Citrobacter spp. and Enterobacter spp. strains, VIM was the most
common carbapenemase detected. Finally, OXA-48 enzymes were
found mainly in K. pneumoniae (52.4%) and E. coli (38.1%).

It is worth underlining that only 2.8% (16/570) of KPC-positive K.
pneumoniae strains were missed by the specific MALDI-TOF/MS
algorithm (KPC-specific peak), being detected by the immuno-
chromatographic assay.

The proposed workflow was characterised by excellent
performances in term of turnaround time (TAT) and ease of use.
Indeed, the time needed for MALDI-TOF and immunochromato-
graphic analysis is very short (<30 min) and the whole protocol is
simple with reduced hands-on time, being particularly suitable for
a high-throughput laboratory. Globally, the mean TAT needed from
sample arrival to the final report (i.e. positive or negative for CPE;
species identification and type of carbapenemase for positive
samples) ranges between 18 and 24 h. Moreover, considering a
high number of samples per day (400–500 rectal samples),
automatic segregation of the plates leads to a time saving of 2–4 h
compared with manual reading.

4. Discussion

Active rectal screening is a crucial element to prevent CPE
transmission in healthcare settings [7]. Here we proposed a simple
and reliable workflow for rectal CPE screening using an automatic
digital analysis of chromogenic media (WASPLab1) and rapid
confirmatory tests (MALDI-TOF/MS and an immunochromato-
graphic assay).

First, we found that WASPLab Image Analysis Software is
particularly accurate at identifying negative CPE plates with
outstanding sensitivity (100%). On the other hand, it was observed
that agar plates can be falsely called positive by the WASPLab
software (specificity of �80%) because of the presence of
colorimetric pigmentation due to residual interfering substances.

The current results are in agreement with previous studies
about the use of WASPLab for automated scoring of chromogenic
media for the detection of methicillin-resistant Staphylococcus
aureus (MRSA) and vancomycin-resistant enterococci [21,22].
Indeed, the major finding was 100% sensitivity for the detection
of ‘non-negative’ specimens, with a lower specificity (89–90%)
[21,22]. To the best of our knowledge, this is one the first reports
about digital plate reading of a chromogenic medium for Gram-
negative rods: the excellent ability in categorising negative plates,
in conjunction with the high automation and greatly reduced
labour costs, makes WASPLab an excellent choice for CPE screening
in high-throughput laboratories.

Second, when evaluating the performance of the chromogenic
medium, a good PPV for the detection of CPE was found. It is not
surprising that in �20% of cases, grown bacteria were negative for
carbapenemase production by the confirmatory tests. Indeed,
other mechanisms, different from carbapenemase, can be
responsible of carbapenem resistance. In Enterobacteriaceae, the
presence of extended-spectrum β-lactamases (ESBLs) or AmpC
β-lactamases plus porin loss can lead to carbapenem resistance and
subsequent growth on selective media [27].

After WASPLab analysis, except for E. coli, we suggest a two-step
protocol to confirm carbapenemase production: (i) MALDI-TOF/MS
species identification combined with detection of a KPC-specific
peak; (ii) use of a multiplex immunochromatographic test for
K. pneumoniae negative for KPC-associated peak and for all
the remaining bacterial species (e.g. Enterobacter spp.,
Citrobacter spp.).

It has previously been shown that single-peak MALDI-TOF
detection assay predicts KPC production with high accuracy in K.
pneumoniae, with an overall PPV and negative predictive value
(NPV) of 98.7% and 96.8%, respectively [19,20]. Here we confirmed
the excellent sensitivity of MALDI-TOF for KPC detection, with <3%
of KPC-positive K. pneumoniae missed by MALDI-TOF and detected
only by the immunochromatographic test. In this context, it should
be remembered that the gene encoding the 11 109-Da protein is
lacking in some plasmids carrying the blaKPC gene, leading to the
possibility of false-negative results [28].

In our setting where KPC-producing K. pneumoniae is highly
endemic, use of MALDI-TOF is of particular diagnostic utility
considering the reduced TAT and extreme ease of use. Moreover,
MALDI-TOF identification of KPC-positive K. pneumoniae saves the
use of the immunochromatographic test with a significant cost
reduction and a better cost:benefit ratio.

However, when necessary, the multiplex immunochromato-
graphic test is easy to perform, with little hands-on time, and
provides a final result in <15 min [25]. Moreover, unlike MALDI-
TOF, the immunochromatographic test allows the detection of
strains producing more than one carbapenemase at the same time.
Although this information is not fundamental for patient
management in term of infection control measures, it can be
useful for epidemiological and surveillance purposes as well as for
adequate treatment in the case of CPE infections.

The lack of data about double resistance mechanisms in the
case of KPC-producing K. pneumoniae detected by MALDI-TOF
could be a significant limitation of our protocol. However, CPE
harbouring more than one carbapenemase gene are still very rare
in Italy. Recent national surveillance data show a rate of ‘double
mechanism’ strains of 1.3% in CPE bloodstream infections [29].
Moreover, by antimicrobial susceptibility testing, it is possible to
eventually recover K. pneumoniae positive for both KPC and a
metallo-β-lactamase (e.g. NDM, VIM) by checking strains showing
resistance to ceftazidime/avibactam.

The main limitation of the proposed workflow is the inability to
detect CPE strains harbouring rare types of carbapenemase
belonging to class A or class B β-lactamase (i.e. GES, NmcA, IMI
and SME, etc.). Indeed, these enzymes are uncommon worldwide
and their distribution is mainly restricted to a few Gram-negative
species [30]. Therefore, considering the marginal role of these
carbapenemases in the Italian epidemiology, the proposed
protocol may be well adapted to laboratories with a CPE
distribution similar to our country.

At the same time, our workflow could be easily integrated with
different phenotypic tests [i.e. biochemical colorimetric assays
(Carba NP) or combination disk test methods] able to detect any
carbapenemase activity [31,32].

A second limitation lies in the possibility to miss, by using
CHROMagar KPC medium, strains harbouring carbapenemases
with low-level hydrolytic activity towards carbapenems (i.e. OXA-
48). However, the percentage of OXA-48-positive strains found
during the study period (3.0%) is in line with other national
epidemiological reports [33]. Thus, although additional in-depth
evaluations of its performance against carbapenemases are
needed, CHROMagar KPC medium could be suitable to support
the growth of OXA-48-positive strains.

In conclusion, in view of laboratory automation, we propose a
CPE screening workflow characterised by a high ease of use and a
low TAT that combines different reliable technologies and
improves process traceability.
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This protocol allows to achieve both CPE detection and
carbapenemase identification and is particularly suitable for areas
endemic for KPC-positive K. pneumoniae. Further studies are
needed to better evaluate the potential clinical impact of this
protocol on patient management.
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