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Abstract 

High Resolution Topography data sets have improved the spatial and temporal scales at which 

we are able to investigate the landscape through the analysis of landform attributes and the 

computation of topographic changes. Yet, to date, there have been only limited attempts to 

infer key geomorphic processes in terms of contributions to shaping the landscape. Highly 

erodible landscapes such as badlands provide an ideal demonstration of such an approach 

owing to the rapid changes observed over a relatively short time frame. In this technical note 

we present the Mapping Geomorphic Processes in the Environment (MaGPiE): a new 

algorithm that allows mapping of geomorphic process signatures through analysis of repeat 

High Resolution Topography data sets. The method is demonstrated in an experimental 

badland located in the Southern Central Pyrenees. MaGPiE is a GIS-based algorithm that uses 

as input: (a) terrain attributes (i.e. Slope, Roughness and Concentrated Runoff Index) 

extracted from Digital Elevation Models (DEM), and (b) a map of topographic changes (DEM 

of Difference, DoD). Initial results demonstrate that MaGPiE allows the magnitude and the 

spatial distribution of the main geomorphic processes reshaping badlands to be inferred for 

the first time.  

 

Key words: Geomorphic process signatures, badlands, Structure from Motion, Topographic 

Changes, Mapping Geomorphic Processes in the Environment algorithm (MaGPiE). 
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1. INTRODUCTION  

The proliferation of High Resolution Topography data sets, driven by the development of new 

surveying platforms (e.g. Unmanned Aerial Vehicles, UAVs), sensors (e.g. High Resolution 

Multispectral Cameras) and algorithms (e.g. Structure from Motion photogrammetry, SfM) 

has permitted quantification of topographic changes at unprecedented spatial resolutions 

over a wide range of temporal and spatial scales (see, for example,  reviews in Passalacqua et 

al., 2015; Smith et al., 2015; Tarolli, 2014; Vericat et al., 2017). SfM-based topography has 

reduced substantially the cost involved in surveying. SfM may provide data sets at equivalent 

resolution and precision than other more-expensive surveying methods such as Terrestrial 

Laser Scanning (e.g. Carrivick and Smith, 2018; Smith and Vericat 2015; Westoby et al., 2012). 

Additionally, depending on the platform used to acquire the photographs, SfM allows large 

spatial scales to be surveyed in a short time, allowing the reconstruction of landscape 

topography at temporal scales that were difficult to reach before. High-frequency surveying 

has the potential to describe short-term controls on geomorphologic changes and more 

accurate analysis of processes (e.g. Cucchiaro et al. 2019; Williams et al. 2018). Therefore, we 

are now capable of acquiring detailed facsimiles of the landscape before and after 

disturbances, quantifying changes in form and, from these, we may infer the main reshaping 

geomorphic processes.  

Badlands are described as highly dissected landscapes with steep hillslopes in soft rock 

outcrops or unconsolidated sediments and regolith, with little or no vegetation, being useless 

for agriculture (Gallart et al., 2002; Yair et al., 1980). Badlands are highly erodible with rapid 

erosion rates and high sediment yields (Bryan and Yair, 1982; Clotet et al., 1987) that make 

disproportionately large contributions to catchment scale sediment budgets (e.g. López-

Tarazón et al., 2012; Nadal-Romero and Regüés, 2010) with potential negative effects on the 

downstream channel network (e.g. clogging, Buendía et al., 2013; Piqué et al., 2014) and 

infrastructure (e.g. reservoir siltation; Baade et al., 2012; Martínez-Casasnovas and Poch, 

1998; Mueller et al., 2010). In general, surface features result from the interaction between 

highly erodible materials (soft or unconsolidated) with multiple geomorphological processes 

acting at different temporal and spatial scales (Moreno-de las Heras and Gallart, 2018; Nadal-

Romero and García-Ruiz, 2018). The main factors controlling badland development are 

lithology, rainfall, temperature, vegetation cover, human activities and the degree of 
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connectivity, that is directly related to main landform attributes such as topography and 

roughness (Clarke and Rendell, 2010; Faulkner, 2008). Ultimately, geomorphic processes in 

such environments are determined by the interactions of these factors.  

Topographic changes in badlands are generally estimated from sparse observations across 

relatively small scales (e.g. erosion pins in Barnes et al., 2016; Benito et al., 1992; Sirvent et 

al., 1997; experimental plots in Nadal-Romero et al., 2007; Regüés et al., 1995). High 

Resolution Topography offers the opportunity of examining topographic changes in a 

spatially-distributed way at multiple temporal and spatial scales. During the last decade 

several authors have used these data sets to monitor topographic changes in badlands (e.g. 

Ferrer et al., 2017; Nadal-Romero et al., 2015; Neugirg et al., 2016; Nobajas et al., 2017; Smith 

and Vericat, 2015; Stöcker et al., 2015; Vericat et al., 2014).  Although these studies have 

greatly improved the quantification of rates of erosion or deposition and sediment yields, to 

our knowledge there has yet to be an attempt to further interrogate the rich data sets and 

quantify the magnitude and spatial distribution of the changes in form in relation to main 

geomorphic processes.  There is a knowledge gap related to mapping geomorphic process 

signatures in a quantified manner to determine their spatial and temporal variability. Such 

maps will help to infer the magnitude of the main geomorphic processes controlling sediment 

export, landscape changes and evolution, and would help to prioritise and target catchment 

management practices aimed at reducing sediment yields. In this methodological note, we 

present the Mapping Geomorphic Processes in the Environment (MaGPiE) algorithm: MaGPiE 

facilitates the quantitative mapping of main geomorphic process signatures through analysis 

of repeat SfM-based High Resolution Topography data sets. We first present the MaGPiE 

algorithm followed by its application in an experimental badland landscape in the Southern 

Central Pyrenees.  

 

2. THE MaGPiE ALGORITHM 

MaGPiE is a GIS-based algorithm that uses as input: (i) terrain attributes extracted from Digital 

Elevation Models (DEM), and (ii) a map of topographic changes obtained via DEM of 

Difference (DoD). Therefore, DEMs before and after topographic changes are required. In 

general, main geomorphic process signatures are first identified, together with their main 
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characteristics in terms of both spatial extent and the magnitude and sign of the topographic 

changes associated with these. The inputs are then combined to provide the signatures that 

infer each process. Finally, a decision tree algorithm is applied to map the geomorphic 

processes on a cell-by-cell basis. The complete MaGPiE workflow is presented in Figure 1 and 

explained below. 

 

Step 1. Identification of Main Geomorphic Process Signatures. We have combined a 

literature search and field observations to identify and classify the most relevant geomorphic 

process signatures that can be observed in badlands, the focus of this MaGPiE demonstration. 

A similar exercise would be needed to apply the MaGPiE algorithm in other geomorphologic 

landscapes in which main processes may differ to those identified here. In the case of sub-

humid badlands, dominant geomorphic processes were divided into two main groups: (a) 

weathering-based processes and (b) erosional-based processes. Erosional processes are split 

between overland-flow and mass movement driven processes (following Barnes et al., 2016; 

Bryan and Yair, 1982; Clotet et al., 1987; Gallart et al., 2002; Huggett, 2011; Nadal-Romero 

and Regües, 2010; Nadal-Romero and García-Ruiz, 2018; Moreno-de las Heras and Gallart, 

2018). Despite this classification, badlands are complex landscapes in which the interaction 

between (i.e. overlapping) geomorphic processes is often present (e.g. Vergari et al., 2019). 

In our case we have considered overlapping processes those that cannot be classified as any 

of the other identified.  We are aware that the overlapping processes class may also include 

other processes not identified as the main geomorphic process signatures. The main 

overlapping geomorphic process signatures in the study area were Sheet Washing and 

Regolith Cohesion Loss, which take place mainly in areas with low slope and high exposure. 

Table 1 shows the main badland geomorphic processes that are possible to be inferred from 

their signatures based on terrain attributes and changes in form. The table also presents the 

main drivers and some references in which these specific processes are described. In that 

way, a total of 6 specific geomorphic processes were identified: (1) Sheet Washing; (2) Rilling 

and Gullying; (3) Cutting and Filling; (4) Mass Wasting (5) Regolith Cohesion Loss; and (6) 

Overlapping Processes.  
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It is worth mentioning that sub-surface geomorphic processes (i.e. pipping) were not taken 

into account here because these are not acting in Eocene marls such as the ones observed in 

the experimental badlands. Even so, changes in form associated with these processes may be 

dominant in other environments (e.g. Faulkner, 2018; Gutiérrez et al. 1997), requiring 

consideration in the identification of main geomorphic process signatures in such 

environments.  

 

Step 2. Preparing Inputs: landform attributes & topographic changes 

Following Wheaton et al. (2013), we consider a geomorphic process signature arise when a 

distinct main process leads to a consistent topographic change, being also characterised by 

specific landform attributes. A total of three landform attributes (Slope, Roughness and a new 

developed Concentrated Runoff Index) extracted from the second (or ‘new’) DEM are used 

alongside the DoD to define key signatures of each geomorphic process.  

The local Slope was selected as an input because is considered one of the main parameters 

that determine (slope) stability, and consequently, triggering mass movements (Bishop and 

Morgenstern, 1960; Morgenstern and Price, 1965). In the same way, Slope is also a main 

factor determining the distribution of erosional landforms associated with concentrated-

fluxes (e.g. rills, gullies, channels; Gallart et al., 2002). Usually, the erosional stream landform 

size is negatively correlated with the slope and positively correlated with the upslope 

catchment area. Thus, Slope was used to differentiate between the processes that took place 

in steep areas (e.g. erosion caused by Mass Wasting and by Rilling and Gullying) and those 

occurring in relatively flat areas (e.g. Regolith Cohesion Loss, Sheet Washing). Slope is defined 

here as the maximum rate of change in elevation from each cell to its neighbours.  

Several authors (e.g. Gallart et al., 2002; Regüés and Torri, 2002; Römkens et al., 2001) 

reported that Roughness is one of the main landform attributes that determines erosion and 

a range of geomorphic processes. Roughness values help to discern between deposition in 

main channels caused by in-channel processes (i.e. Filling) and deposition caused by lateral 

Mass Wasting, with the latter exhibiting higher roughness values (based on field 

observations; see some examples in figures of section 3.3). Roughness is defined as the mean 
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of the detrended standard deviation of the elevations within regular grid cells (see specific 

details in section 3).  

The Topographic Wetness Index (TWI), a quantification of the topographic control on 

hydrological processes, is considered as a proxy of the concentrated surface water fluxes (Ali 

et al., 2014; Beven and Kirkby, 1979). Although the relation between slope and upslope area 

on which TWI is based has been used to discern between concentrated (i.e. channel) and 

diffuse (i.e. slope) processes (e.g. Roering et al. 2001; Vergari et al. 2019; Willgoose et al., 

1991), it assumes a fully connected hydrological system. Badlands, however, can present 

different degrees of disconnectivity. In order to overcome this limitation, we have developed 

the Concentrated Runoff Index (CRI), a landform attribute based on a modification of the TWI. 

The CRI takes into account not just the magnitude of the TWI but also the Planform Curvature 

(PC). We assume that concave surfaces reflect more locally connected areas than convex 

areas. The CRI was calculated by means of the expression TWI+(PC×-1); where the TWI was 

computed as ln(A/tanβ), A is referred to the upslope area of a given cell (m2), and β is the 

local gradient (in degrees). PC represents the normalised (from -1 to 1) planform curvature 

value obtained from the most recent DEM. The values were normalized by this range in order 

to not dominated the signal and only affect in those cases in which the TWI was very close to 

the threshold between concentrated and diffuse. Normalised PC values are multiplied by -1 

in order to invert the sign of concave and convex surfaces. In that way, concave surfaces will 

be positive while convex surfaces will be negative, having an additive and subtractive weight 

on the TWI.  The CRI was used to distinguish between overland flow processes caused by 

concentrated runoff (e.g. rills, gullies and channels, from small to big size), and those caused 

by diffuse runoff (e.g. Sheet Washing).  

Finally, topographic changes were obtained by the comparison of the DEMs between surveys 

(the DoD). The old DEM is subtracted from the new DEM, where negative values indicate 

surface lowering or erosion and positive values indicate surface raising or deposition. It is 

important to note that negative and positive DoD values do not imply always erosion and 

sedimentation. For instance, in the case of the Regolith Cohesion Loss, the elevation of the 

surface increases when the old and the new DEMs are compared, but this is not related to 

any depositional process occurred during the study period. In this case physical weathering 

controls the expansion of the regolith (e.g. so-called ‘popcorn’ features) in relation to climate 
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and geological conditions (e.g. Gallart et al., 2002; Kasanin-Grubin, 2013; Nadal-Romero and 

Regüés, 2010). The DoD is calculated using the Geomorphic Change Detection (GCD) 

extension for ArcMap (available at http://gcd.joewheaton.org/; see Wheaton et al., 2010) 

which has the advantage of incorporating uncertainty analysis based on minimum Level of 

Detection (minLoD), propagated errors or probabilistic thresholding.  

 

Step 3. Defining the combination of landform attributes and topographic changes for each 

Geomorphic Process signature. 

An expert-map of the main geomorphic process signatures is first elaborated examining i) 

topography; ii)  orthomotomosaics;  and iii) oblique photographs taken from a trail camera. 

The 90% of the mapped process signatures are used to (a) establish the thresholds of the 

classes of each attribute and DoD, and (b) to define the signatures (i.e. combination of classes) 

of each geomorphic process. The remaining 10% of the processes mapped in the field are 

used for validation of the classification.  

Each landform attribute was divided in two classes: high and low in case of roughness and 

slope; or diffuse flow and concentrated flow in case of the Concentrated Runoff Index. DoD 

values are divided into four classes: high lowering, low lowering, low raising and high raising. 

The thresholds of each class and their combinations are based on the distribution of the 

values of the landform attributes and DoD per each geomorphic process. In the case of the 

landform attributes, the median value of each attribute was calculated across the whole DEM. 

These values will determine the class boundaries. In order to assign each geomorphic process 

signature to a class, the median value of the same attribute for cells classified into each 

geomorphic process is then compared with the class ranges and categorised accordingly (see 

example in Figure 1). In case of the thresholds for the DoD values, 0 defines the division 

between surface lowering and raising classes, while the 90th and 10th percentiles of the DoD 

values define the thresholds between high and low raising and lowering, respectively. Again, 

once the thresholds were established, the median DoD values in each process were analysed 

to classify each process. The expert-map identification of thresholds and combinations of 

attributes and DoD classes has been chosen to decrease the subjectivity and to allow a 
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validation of the results. The class boundaries and combinations identified for each 

geomorphic process are now described below.   

In the case of Slope, two classes were defined: High Slopes (>45°) and Medium to Low Slopes 

(<45°). The selected threshold of 45° allows us to: (i) identify steep areas in which mass 

movements can be observed (e.g. Mass Wasting); and (ii) discern between concentrated 

runoff processes in rills and gullies (i.e. Rilling and Gullying) and those observed in the main 

channel (i.e. Cutting and Filling). These thresholds are agreement with Zhang et al. (2017) 

who identified the slope gradient of 47% to be the threshold value of increasing runoff and 

associated soil loss. 

Roughness was grouped in two classes: High Roughness (>0.03 m) and Low Roughness (<0.03 

m).  In particular, regolith deposits coming from mass movements (e.g. Mass Wasting) tend 

to have a higher roughness than the values observed in deposits coming from overland-flow 

processes (e.g. Sheet Washing, Cutting and Filling). Gallart et al. (2002) described that in steep 

badlands hillslopes, unestablished regolith mass may fall towards the valley bottom with a 

consequent coarser roughness than the regolith transported by the channel system. 

CRI was divided in two groups, a value of 1 was selected as a threshold between Diffuse flow 

(CRI<1) and Concentrated Flow (CRI>1), with the latter being mainly attributed to Rilling and 

Gulling and Cutting and Filling processes. Recently, Jancewicz et al. (2019), stated that the 

thresholding of TWI from the mean value plus standard deviation helps to recognize pathways 

of water and possible sediment transfer (i.e. concentrated flow). Similarly, here we have used 

the curvature to modify the results provided by the TWI when values are very close to the 

threshold between concentred and diffuse flows. 

Finally, the DoD was grouped into four classes: High Lowering (<-0.15 m), Low Lowering (-0.15 

– 0 m), Low Raising (0 – 0.07 m) and High Raising (>0.07 m). These values are in agreement 

with the average values of topographic changes observed in sub-humid badlands developed 

on marls for similar study periods (i.e. less than one year; Clarke and Rendell, 2010; James et 

al., 2017; Mathys et al., 1996; Nadal-Romero and Regüés, 2010; Smith and Vericat, 2015; 

Vericat et al., 2014). However, it is worth mentioning that the thresholds between these 

classes will depend on the considered time span and require what re-evaluation if the survey 

interval is altered.  
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The combination of these classes provides a unique signature or combination per each 

process. The inset table in Figure 1 shows the combined signatures of each process. For 

instance, the signature that defines surface lowering caused by Rilling and Gullying is: High 

Slope, High or Low values of Roughness, Concentrated Flow (High CRI) and either High or Low 

surface lowering. Therefore, a pixel that has all these inputs will be characterised as lowering 

potentially caused by Rilling and Gullying. It is worth to mention that in our case we have 

considered Overlapping Processes those yielding a distinct signature to the other identified 

processes.  

Finally, the accuracy of the classes was estimated by a confusion matrix calculated following 

the method described by Chuvieco (2016). In this way, the 10% of the expert-mapped 

processes are used as training areas. These areas are compared with the MaGPiE results to 

assess the percentage agreement between observed and MaGPiE-based process as a 

measure of the accuracy of the classification. The results of the confusion matrix also allow 

to identify which processes were most reliable and which were more confused based in the 

classification results.   

 

Step 4. Mapping Geomorphic Process Signatures 

Once the thresholds of the classes of all inputs were defined, the classified rasters were 

combined in a multiband raster: a single data set in which each pixel has associated the 

different combinations of the input data sets. The signatures of each process were then 

considered to classify the multiband raster. In order to automate the processes and repeat it 

in subsequent analyses, a supervised Maximum Likehood Image Classification was performed. 

First, a training sample for each process is created and a signature file for the whole training 

samples was saved. This signature file can be considered valid for mapping geomorphic 

processes in badlands based on the specific mentioned process signatures, and the thresholds 

defined per each class of the input data sets.   
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3. MAPPING AND QUANTIFYING GEOMORPHIC PROCESSES IN BADLANDS 

 

3.1 Study area 

The study area is located in an experimental badland (0.05 km2) located in the Soto catchment 

(10 km2; Figure 2A and 2B). The Soto is a small tributary of the Upper River Cinca (8275 km2, 

Central Pyrenees, Ebro Catchment, Iberian Peninsula). The main land covers of the catchment 

are forest (56%), badlands (26%), and field crops (18% surface). The badlands are located at 

an average altitude of 600 m.a.s.l. and the slope gradient can be more than 15 m with steep 

slopes and high degree of dissection (Figure 2A and 2B). The badlands are composed by a 

sequence of Eocene marls with different degrees of bedrock compactness with some few 

layers of sandstones. Therefore, erosional processes are hypothesised to be highly complex 

and spatially variable (Smith and Vericat, 2015; Figure 2B). The experimental badland in this 

study is described further in Smith and Vericat (2015) and at 

https://sites.google.com/site/badlandscan/. Specifically, the badland has a low vegetation 

cover (i.e. <20%), composed by isolated shrubs (e.g. Buxus sempervirens) on steep slopes and 

small groups of relatively young trees (e.g. Pinus halepensis) on low slopes (Figure 2A). The 

site has a continental climate with an annual rainfall around 700 mm. Maximum rainfall is 

observed during spring and autumn (e.g. maximum intensities around 47 mm h-1 were 

registered for the period 1981-2018). The average temperature is 11°C, while temperatures 

below freezing are often observed in winter. Figure 2B indicates some representative 

examples of signatures attributed to the main geomorphic processes reshaping the 

experimental badland. 

 

3.2. Data 

Rainfall was measured continuously by a Campbell ARG100 tipping bucket rain gauge, while 

air temperature was registered by means a Campbell Temperature Probe-109 (see location in 

Figure 2B). Both were recorded in the same a datalogger (Campbell CR200X) at a 5-minute 

interval.  

Topographic data sets were obtained through Structure from Motion photogrammetry (SfM). 

Two field campaigns were performed: June 19th (S1) and December 7th 2016 (S2). Around 650 

pictures per campaign were taken using a Panasonic Lumix DMC-TZ60 compact camera (focal 

https://sites.google.com/site/badlandscan/


 

 

This article is protected by copyright. All rights reserved. 

length 4 mm which is a 35-mm equivalent of 25 mm; 10 Mpx) mounted on a 10 m telescopic 

inspection pole. SfM processing was implemented using standard workflows within Agisoft 

Photoscan Professional 1.3.4.  Dense point clouds with an average point density of around 

5x104 obs m-2 (i.e. 5 obs cm-2) were obtained. Georeferencing and scaling were performed by 

a secondary control network of 30 Ground Control Points (GCPs) surveyed with a Leica 

TPS1200 Total Station (TS). The TS was set up based on a primary control network of four 

(fixed) benchmarks. The coordinates in each benchmark were obtained by means of a Leica 

Viva GS15 GNSS system and RINEX data from 3 reference stations.   

3D data quality after post-processing was 0.006 m on average. Reported errors in terms of 

scaling and georeferencing were 0.0185 m (2.298 pixels) and 0.0222 m (1.195 pixels) for the 

S1 and S2 surveys, respectively. In terms of quality assessment, an independent validation 

dataset of 270 (S1) and 256 (S2) Check Points (ChPs) were obtained with the TS.  The 

corresponding differences between SfM-derived point clouds and the ChPs were calculated 

by the M3C2 plugin (Lague et al., 2013) implemented in the open source software 

CloudCompare 2.6.2. Results indicated a Mean Absolute Error (i.e. MAE) of 0.0187 m (S1) and 

0.0157 m (S2), and a Standard Deviation of the errors of 0.0261 m (S1) and 0.0214 m (S2). 

Point clouds were filtered to remove outliers and vegetation. Outliers were filtered by means 

the Statistical Outlier Filter (SOR) of Cloud Compare 2.6.2 (Girardeau-Montaut, 2016), 

meanwhile the points located in vegetated areas were removed using the results of the 

supervised image classification. The open-source Topographic Point Cloud Analysis Toolkit 

(ToPCAT; Brasington et al., 2012; Rychkov et al., 2012) was then used to regularize the point 

cloud. A 0.05 x 0.05 m grid was selected taking into account the magnitude of the study area 

topographic changes and the size of the small geomorphic features (e.g. rills). Observations 

within each grid were analysed and a series of statistics of these were calculated (e.g. 

maximum, mean and minimum elevations and detrended standard deviation of elevations). 

The minimum elevation within each grid was used to represent the ground elevation within 

each cell. A Triangular Irregular Network or TIN was calculated based on these observations 

for each survey. Finally, a 0.05 m resolution DEM was computed from each TIN. The most 

recent DEM or DEMS2 was used to calculate the terrain attributes: (i) Slope, (ii) Roughness, 

and (iii) Concentrated Runoff Index (all inputs of MaGPiE). Following Brasington et al. (2012), 
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Smith and Vericat (2015) and Vericat et al. (2014), roughness was calculated using the 

detrended standard deviation of the elevations in each grid.  

The DEMs for the two periods (DEMS2-DEMS1) were compared (DoD) to assess the topographic 

changes during the study period. The MAE of each data set was considered to represent the 

DEM error and the minLoD was calculated by the propagation of both DEMS1 and DEMS2 

errors. Therefore, those DoD cells with absolute values below the minLoD were considered 

uncertain and not used in the computation of topographic changes (i.e. thresholded DoD). 

For MaGPiE, the thresholds of each attribute class and the combinations between attributes 

and DoD classes were based on an expert-map of processes (see an example of the expert-

map in Figure 1 of the Supplementary Materials section). The processes identified in the field 

occupied an area of 20 m2 ( represents 38% of the total area that experienced a significant 

topographic change during the study period, i.e. changes above the minLoD). Of this 20 m2 

area, 90% was used as a training area while 10% was used to validate the classification. 

Processes in this area were compared with the MaGPiE classification in order to assess the 

percentage of agreement between observed and MaGPiE-based process, being considered as 

a proxy of the accuracy of the classification. 

All rasters were combined in a multiband raster data set and classified. The classification was 

performed based on the signatures associated with each process. The map of geomorphic 

process signatures (i.e. integer type raster) was transformed to a feature class (polygons). 

Finally, the DoD was segregated based on each geomorphic process (feature class) through 

the GCD ArcMap-based extension. This last step allows identification of the vertical and 

volumetric changes associated with each process.    

 

3.3 Results 

The study period (142 days) was characterised by a total rainfall of 355 mm distributed in 12.5 

rainy days with an average intensity of 2.17 mm h-1, and a maximum of 20.4 mm h-1. The mean 

temperature was 18.2 °C, with 13 days in which the temperature reached values below 0°C 

with an average value of -1.4 °C and a minimum value of -4.2 °C for these days. 

The thresholded DoD indicates that the majority of the area was subjected to a change below 

the minLoD (i.e. uncertain topographic change). Only the 8% of the total study area presents 



 

 

This article is protected by copyright. All rights reserved. 

changes above the minLoD. The spatial variability of these changes is revealed as surface 

lowering or erosional processes are mainly located in high slope areas, in the highest flat areas 

and in the main channels (76% of total area with detectable change, see Figure 3A). 

Conversely, surface raising or deposition is mainly located in west-facing slopes and in main 

channels (24 % of the total area with detectable change; Figure 3A). In terms of vertical 

changes, areas showing erosion have an average change of -0.06 m, while areas subjected to 

surface raising yield an average difference of 0.07 m (Figure 3A). Finally, the net change during 

the study period was -5.7 m3 with -9.9 m3 of erosion and 4.1 m3 of surface raising or deposition 

(69% and 31% of the total volumetric changes respectively, Figure 3A). 

The percentage of agreement between observed and MaGPiE-based process was around 

75%, being the Regolith Cohesion Loss and deposition caused by Rilling and Gullying the more 

reliable signatures (i.e. 90% of agreement) and the erosion caused by Mass wasting the more 

confused signature (i.e. 60% of agreement). Figure 3B represents the DoD segregation results 

indicating the extension, and the vertical and volumetric changes associated to each process, 

while Figure 4 shows the map of main geomorphic process signatures reshaping the form of 

the experimental badland during the study period. Results indicate that the majority of the 

processes are concentrated in steep slopes, selected flat areas, and in the main channels.  

 

Mass Wasting features, located mainly in the steepest north-facing slopes (Figure 4D), are 

the main geomorphic process signatures observed during the study period, both in terms of 

extension (54.2% of the total area with significant change) and volumetric change (47.3% of 

the total volumetric change; Figure 3B). These observations are in agreement with the results 

of Gallart et al. (2002) and Ciccacci et al. (2008), who explained that the main source of the 

sediments transferred from the hillslopes to channel networks in badlands developed on 

cohesive marls and claystones in mountain areas is via regolith falling. This gravitational 

process is mainly triggered by gelivation together with overlapping rainfall-driven processes 

(e.g. Nadal-Romero and Regüés, 2010). Regolith that was previously weathered by freeze-

thaw and soil moisture changes is mobilized  from steep slopes to the bottom of the main 

channels (see example D in Figure 4), or to small accumulation zones located at the base of 

the slopes near the main channel (C in Figure 4). The magnitude of these erosional processes 

in slopes is generally low and is likely to be below the minLoD and thus not mapped. It is 
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important to recognise that the omission of such low magnitude yet spatially extensive 

processes would bias the sediment yield estimates. The magnitude of deposition caused by 

Mass Wasting is larger, mainly due to both the accumulation of materials in small areas and 

the decrease in the density of the regolith after its fracture (D in Figure 4; Nadal-Romero et 

al., 2007). In both cases, 55% of the Mass Wasting geomorphic process signatures correspond 

to lowering or erosion while te 45% correspond to raising or deposition changes.  

The second geomorphic process signature in terms of magnitude was Sheet Washing (25.7% 

of total surface and 15.8% of volumetric changes; Figure 3B). This process is mainly caused by 

laminar flows and rainfall drops (rainsplash) in less steep but highly exposed slopes (Figure 

4B). The magnitude of Sheet Washing in terms of volumetric change is lower than in terms of 

extension (i.e. 9.9% less) due to the fact that the associated vertical changes were very low 

(i.e. -0.05 m on average, the process signature associated with the second-smallest vertical 

negative change; see B in Figure 4).  

Cutting and Filling signatures were observed over 17.9% of the surface (Figure 3B) and 

represented the 15.6% of total volumetric change (A in Figure 4), while Rilling and Gullying 

were observed over the 8.1% of the surface of change, representing a similar volumetric 

change (i.e. 10.9%). Both processes are mainly caused by concentrated surface flows (runoff) 

but with the principal difference is that Rilling and Gullying was observed in steep slopes 

perpendicular to main channels (A in Figure 4), while Cutting and Filling occurred in the main 

channel bottoms (C in Figure 4). In terms of extension, both geomorphic process signatures 

presented a negative change (i.e. lowering or erosion) in more than the 85% of the surface. 

Finally, the signatures process that yielded the lowest magnitudes were Regolith Cohesion 

Loss (0.7% of surface and 0.3% of volumetric change with <0.05 m of surface raising on 

average) and the rest of combinations being considered the result of Overlapping Processes 

(0.4% of surface and 3.2% of volumetric change with 0.02 m of surface raising and -0.3 of 

surface lowering, on average). The low values of Regolith Cohesion Loss are attributed to the 

fact that, although freeze-thaw is considered one of the main weathering process in these 

landscapes, the study period was not sufficiently long to yield significant changes (i.e. only 13 

days with T<0°C). Similar observations were made in Barnes et al. (2016) and Tsutsumi and 

Fujita (2016).  
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In summary, the main processes in the study badlands were both erosional and depositional 

processes associated to Mass Wasting (55% erosion and 45% deposition) and Sheet Washing 

(16% of the total volumetric change). Cutting and Filling (15.6%) and Rilling and Gullying 

(10.9%) were also evident processes presenting higher erosion than deposition values. These 

represent the key processes controlling badland evolution in the Soto catchment, yielding 

erosive landscapes with highly dissected shapes and high drainage densities (as observed e.g. 

Howard, 2009; Moreno-de las Heras and Gallart, 2018). 

 

4. LINKING PROCESSES, SEDIMENT SOURCES AND SINKS 

Several studies have tried to infer on geomorphic processes by combining landform analysis 

through remote sensing but at coarser resolutions than the reported here (e.g. Bartsch et al., 

2002; Gude et al., 2002; Haas et al., 2016). In all cases, the most challenging task has been to 

establish relationships between processes and the trajectory and movement of sediment in 

time and space. Within this context, Sidle et al. (2019) established that hydrological and 

sediment connectivity is a key aspect for the parameterization of process-based models. 

According to Heckman et al. (2018), hydrological and sediment connectivity can be defined 

as the degree to which a system facilitates the transfer of water and sediment through itself, 

through coupling relationships between its components. The degree of connectivity in a given 

landscape is not static and varies over time and space due to the interaction between the 

external forcing (mainly precipitation and temperature), landscape properties (i.e. structural 

connectivity), and the magnitude of the water and sediment fluxes (i.e. functional 

connectivity), that will ultimately determine the frequency, distribution and magnitude of 

geomorphic processes (Bracken et al., 2015; Harvey, 2001; Wohl et al., 2018). Cavalli et al. 

(2013) developed a raster-based Index of Connectivity (IC) that quantitatively assesses the 

spatial distribution of structural sediment connectivity, the potential of a landscape to be 

connected according to its attributes; while Heckmann and Vericat (2018) presented a 

method to infer on the functional sediment connectivity by the computing of spatially 

distributed Sediment Delivery Ratios (SDR). Therefore, the approach presented here can be 

used to map main geomorphic process signatures and link these to the degree of connectivity 

to infer on source to sink trajectories at multiple spatial and temporal scales.  
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Figure 5 shows two examples on how the connections between geomorphic process 

signatures and structural and functional sediment connectivity can be further investigated. 

On one hand, the maps of geomorphic process signatures allow the classification of main 

processes acting during a given period of time (Figure 5A), while the IC maps represent the 

potential of a landscape to be connected in a given time (Figure 5B). A first look at the 

differences between both maps indicates a positive relation between IC and Mass Wasting 

Erosion and Rilling and Gullying Erosion processes (i.e. located in highly connected areas), 

while Sheet Washing processes are negatively related to the IC (i.e. located in disconnected 

areas). Lu et al. (2019) found a spatial correlation between the IC and geomorphic processes 

caused by overland flow, but did not find a consistent relationship with mass wasting 

processes. On the other hand, SDR maps (Figure 5C) permit the transfer of sediments through 

the landscape to be inferred alongside sediment pathways between eroding areas (i.e. 

source) and depositional areas (i.e. sink) and their link to main geomorphic processes 

triggering the flux.  

 

5. LIMITATIONS AND CONCLUDING REMARKS   

MaGPiE is based on landform attributes and topographic changes obtained from high 

resolution DEMs. The quality or accuracy of the map will be directly related to the resolution 

and precision of the DEMs. In the same way, uncertainties in the DoDs will have a direct effect, 

especially in landscapes like the experimental badland or during short temporal scales, in 

which the magnitude of observed changes may be in the range of the minLoD. In our case 

study, we assessed DoD uncertainty by the propagation of two uniform errors extracted from 

an independent network of Check Points. Although our method is widely used in the literature 

(e.g. Brasington et al., 2000; Lane et al., 2003; Milan et al., 2011; Wheaton et al. 2010), 

Anderson (2018) has recently demonstrated that net changes estimated from repeat high 

density observations may be affected by correlated or fully systematic errors and 

uncorrelated or random errors. Other more complex or complete approaches can be also 

applied for the assessment of uncertainties as for instance probabilistic thresholding through 

Fuzzy Inference Systems (e.g. Bangen et al., 2016; Wheaton et al., 2010). In the same way, 

more recently, James et al. (2017) presented an approach (developed in the same 
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experimental badland) to establish spatially variable precision maps for SfM-based surveys 

that enables a confidence-bounded quantification of topographic changes. In complex 

topography like the study area, direct 3D point cloud comparison (e.g. Lague et al., 2013) is 

particularly recommended.  

Although the selection of the thresholds for the classes of the inputs and the different 

signatures or combinations were based on an expert-map-based procedure there remains a 

degree of uncertainty at this stage. A more objective identification of the thresholds and 

process signatures would be possible using Machine Learning Software such as Weka (Witten 

et al., 2011). Smith and Warburton (2018) previously demonstrated this machine-learning 

approach to select the best roughness metrics for classifying peat surfaces. In the case of 

MaGPiE, field observations can be used to create a training data set containing each of the 

main geomorphic processes which can be then used to establish the best combinations of 

inputs (i.e. signatures) to classify the processes.   

In this technical note we have presented MaGPiE: a new algorithm that permits the mapping 

of geomorphic process signatures in the landscape through the analyses of repeat High 

Resolution Topography data sets. The method is demonstrated in an experimental badland 

using DEMs obtained 142 days apart. Our results indicate that MaGPiE not only allows the  

main geomorphic processes to be inferred, but also the evaluation of the role of each process 

driving the extent, vertical and volumetric changes. Through segregation of observed 

topographic changes the link between changes in form and geomorphic processes can be 

elucidated alongside evaluation of their contributions to catchment sediment yields in 

relation to meteorological drivers at multiple spatial and temporal scales, altogether helping 

in understanding landscape evolution.   
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Table 1. Key geomorphic processes in badlands in relation to the main drivers and according 

to previous literature and field observations. 

Geomorphic 

process 
Description Main drivers References 

Sheet Washing 
Uniform erosion of soil in thin 

superficial layers. 

Laminar surface 

runoff (overland 

flow) and 

rainsplash  

Gallart et al., 

2002; Nadal-

Romero and 

García-Ruiz, 

2018 

Rilling and 

Gullying 

Shallow channels cut into hillside 

soil or soft rock outcrops. Smaller 

incised channels are considered 

rills while larger channels are 

known as gullies. 

Concentrated 

surface runoff 

(overland flow) 

Clotet et al., 

1987; Moreno-

de las Heras and 

Gallart, 2018 

Cutting and 

Filling 

Fluvial processes that take place 

in the main channel bottom with 

relatively low slope and higher 

section width in comparison with 

the rest of the drainage network. 

Concentrated 

surface runoff 

(overland flow) 

Clotet et al., 

1987; Gallart et 

al., 2002 

Mass Wasting 

Caused by regolith slope mass 

movements (falling) produced 

after its destabilization. 

Freeze-thaw 

(winter), 

wetting-drying 

cycles and 

rainsplash 

Barnes et al., 

2016; Nadal-

Romero and 

Regües 2010 

Regolith 

Cohesion Loss 

Surface raising caused by the 

fracture or expansion of the 

superficial regolith. 

Freeze-thaw 

(winter) and 

wetting-drying 

cycles 

Barnes et al., 

2016; Nadal-

Romero and 

Regües 2010 

Overlapping 

Processes 

Geomorphic processes that 

interact/overlap and it is not 

possible to infer from the 

signatures based on landform 

attributes and changes in form. In 

the study area the main 

overlapped process signatures 

are Sheet Washing and Regolith 

Cohesion Loss in exposed flat 

areas. 

Interaction of 

different drivers 

Vergari et al., 

2019 
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Figure 1. The MaGPiE GIS-based decision tree algorithm used to obtain Maps of Geomorphic 

Process Signatures in sub-humid badlands. Note that the algorithm was developed to map 

the signatures of the main processes observed in sub-humid Badlands but it can be modified 

according to other landscapes as discussed in the text. Overlapping Processes are 

considered those yielding a distinct signature to the other identified processes, being not 

able to be classified. 
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Figure 2. A. Location of the Experimental Badland (red dot) and Photo-rendered point cloud 

of the targeted Badland with 2 close up photo views (i and ii). Note that contour lines with 

an equidistance of 1 m are also shown on it. The blue dot indicates the location of both the 

Rain Gauge and Temperature Sensor. B. Examples of the signatures of main geomorphic 

processes observed in the experimental badland. 
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Figure 3. A. Topographic changes in the Experimental Badland for the period July 2016 (S1) 

to December 2016 (S2) expressed in terms of areal extent (m2), vertical (m) and volumetric 

(m3) changes. Note that the coloured bars represent the average values and the error bars 

show the possible variation (+/-) related to the propagated error. Average values are also 

presented above each bar. B. DoD segregation results of experiencing changes areas based 

on mapped geomorphic processes: areal extension of each process (%), mean vertical 

differences (m), and volumetric differences expressed in percentage (%). 
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Figure 4. Map of geomorphic processes in the experimental badland for the period July 2016 

(S1) to December 2016 (S2) with selected examples of field observations of processes in 

close agreement with the MaGPiE outputs (A-D). Note that the extension of the Field 

Observation did not fully match with the extent of the MaGPiE Map zoom due to it 

corresponds to oblique photography taken form the ground. 
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Figure 5. Inferring the connections between Geomorphic Process Signatures and structural 

and functional sediment connectivity for two representative micro-catchments of the study 

badlands. A. Geomorphic Process Signatures map obtained from the application of the 

MaGPiE algorithm. B. Map of Index of Sediment Connectivity (IC) developed by Cavalli et al. 

(2013). C. Spatial Distributed Sediment Delivery Ratio (SDR) computed by the method 

presented by Heckmann and Vericat (2018). Note that the erosion and deposition features 

are also shown as indicative of source and sink of sediment trajectories respectively. 
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Geomorphic process signatures reshaping sub-humid 

Mediterranean badlands: 1.  Methodological development based 

on High Resolution Topography 

Llena, M.*, Vericat, D., Smith, M.W., Wheaton, J.M.  

 

Key findings: 

- This paper presents a new algorithm (MaGPiE) to map geomorphic processes signatures through 

the analyses of repeat High Resolution Topography data sets. 

- MaGPiE is a GIS-based algorithm that requires as input landscape attributes and a map of 

topographic changes. 

- MaGPiE allows inferring in the magnitude and the spatial distribution of the main geomorphic 

processes reshaping badlands. 

 

Representative figure:  

 


	Copertina_postprint_IRIS_UNIBO (2) - Copy
	Llena_et_al_2020_MaGPiE_develop_not_edited



