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ABSTRACT
Based on the DUSTGRAIN-pathfinder suite of simulations, we investigate observational
degeneracies between nine models of modified gravity and massive neutrinos. Three types
of machine learning techniques are tested for their ability to discriminate lensing convergence
maps by extracting dimensional reduced representations of the data. Classical map descriptors
such as the power spectrum, peak counts, and Minkowski functionals are combined into a joint
feature vector and compared to the descriptors and statistics that are common to the field of
digital image processing. To learn new features directly from the data, we use a convolutional
neural network (CNN). For the mapping between feature vectors and the predictions of their
underlying model, we implement two different classifiers; one based on a nearest-neighbour
search and one that is based on a fully connected neural network. We find that the neural
network provides a much more robust classification than the nearest-neighbour approach and
that the CNN provides the most discriminating representation of the data. It achieves the
cleanest separation between the different models and the highest classification success rate
of 59 per cent for a single source redshift. Once we perform a tomographic CNN analysis,
the total classification accuracy increases significantly to 76 per cent with no observational
degeneracies remaining. Visualizing the filter responses of the CNN at different network depths
provides us with the unique opportunity to learn from very complex models and to understand
better why they perform so well.
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1 I N T RO D U C T I O N

The standard Lambda cold dark matter (�CDM) cosmological
model – based on a cosmological constant as the source of the
observed accelerated cosmic expansion (Riess et al. 1998; Schmidt
et al. 1998; Perlmutter et al. 1999) and on cold dark matter particles
as the bulk of the clustering mass in the Universe (White & Rees
1978; White 1993, 1996; Springel et al. 2005) – has survived the past
two decades of cosmological observations targeted to a wide range
of independent probes. This includes the statistical properties of
cosmic microwave background anisotropies (Bennett et al. 2013;
Planck Collaboration VI 2018), the large-scale distribution and
dynamics of visible galaxies (Parkinson et al. 2012; Alam et al.
2017; Pezzotta et al. 2017), weak gravitational lensing signals (Fu
et al. 2008; Hildebrandt et al. 2017; Joudaki et al. 2017; Hikage et al.
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2018; Troxel et al. 2018), the abundance of galaxy clusters, as well
as its time evolution (Vikhlinin et al. 2009; Planck Collaboration
XXIV 2016b).

Despite this astonishing success, the fundamental nature of the
two main ingredients of the �CDM model – summing up to about
95 per cent of the total energy density of the Universe – remains
unknown. On one side, the energy scale associated with the cosmo-
logical constant does not find any reasonable explanation in the con-
text of fundamental physics, with predictions based on the standard
model of particle physics failing by tens of orders of magnitude. On
the other hand, no clear detection – direct or indirect – of any new
fundamental particle that may be associated with cold dark matter
has been made despite a longstanding chase through astrophysical
observations (Aartsen et al. 2013; Ackermann et al. 2017; Albert
et al. 2017) and laboratory experiments (see e.g. ATLAS Collabo-
ration 2013; CMS Collaboration 2016; Bernabei et al. 2018).

This leaves the next generation of cosmological observations
with the arduous challenge of clarifying the fundamental nature
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of the dark sector by systematically scrutinizing the huge wealth
of high-quality data that will be made available in the near future
by several wide-field surveys (such as Ivezic et al. 2008; Laureijs
et al. 2011; Benitez et al. 2014; Spergel et al. 2015). As a matter of
fact, any possible insights from future data sets must come in the
form of very small deviations from the expectations of the �CDM
model, otherwise past observations would have already detected
them. This suggests that either the fundamental physics behind dark
energy and dark matter is indeed extremely close to that of general
relativity (GR) with a cosmological constant and heavy fundamental
particles with negligible thermal velocities, respectively, or that a
more radical shift from this standard paradigm is hidden and masked
by other effects such as an observational degeneracy with some not
yet fully constrained cosmological parameter. The latter scenario
may result in a severe limitation of the discriminating power of
observations, thereby providing a particularly challenging test bed
for the next generation of cosmological surveys.

A typical example of such a possible intriguing situation is given
by the well-known degeneracy between some modified gravity
(MG; see e.g. Amendola et al. 2018, for a recent review on a
wide range of MG scenarios) theories and the yet unknown value
of the neutrino mass. It is now generally accepted (He 2013;
Motohashi, Starobinsky & Yokoyama 2013; Baldi et al. 2014;
Wright, Winther & Koyama 2017) that MG theories such as f(R)
gravity (Buchdahl 1970) are strongly observationally degenerate
with the effects of massive neutrinos on structure formation (see
Baldi et al. 2014). Some commonly adopted statistics such as the
matter autopower spectrum (Giocoli, Baldi & Moscardini 2018a),
the lensing convergence power spectrum (Peel et al. 2018a), and the
halo mass function (Hagstotz et al. 2018) may hardly distinguish
standard �CDM expectations from some specific combinations of
the f(R) gravity parameters and the total neutrino mass.

As such degeneracies extend down to the non-linear regime of
structure formation, the use of full numerical simulations currently
represents the only viable method to explore these scenarios, even
though alternative approaches based on approximate methods (see
e.g. Wright et al. 2017) have been developed in the last years
and are being tested and calibrated against simulations. In this
work, we will explore the prospects of using machine learning
techniques applied to numerical simulations of both MG and
�CDM cosmologies that are highly observationally degenerate
through standard observational statistics.

Several variants of higher order statistics have been applied in
the past to characterize cosmological data sensitive to the late-time
evolution of structure in the Universe. Recent analyses of the weak
lensing (WL; Bartelmann & Schneider 2001) data from CFHTLens
(Heymans et al. 2012) used either higher order (>2) moments of
the convergence field (Van Waerbeke et al. 2013), or Minkowski
functionals (Petri et al. 2015) to draw cosmological inference from
a data description that goes beyond two-point statistics. Martinet
et al. (2018) and Shan et al. (2018) applied peak count statistics
(Dietrich & Hartlap 2010; Kratochvil, Haiman & May 2010) to
shear and convergence fields from KiDS (Hildebrandt et al. 2017),
and Gruen et al. (2018) used counts-in-cells (Friedrich et al.
2018) to extract information from the DES (Abbott et al. 2018)
catalogues. A new set of techniques based on deep learning (LeCun,
Bengio & Hinton 2015) currently has gained momentum in many
scientific fields, including astrophysics. The extremely complex
models that can be constructed through a modular building-block
concept (e.g. Chollet 2017) have been very successful for tasks
like language translation (e.g. Johnson et al. 2016; Wu et al. 2016),
text and handwriting recognition (e.g. Graves 2013), as well as

for the classification of images (starting with the seminal work of
Krizhevsky, Sutskever & Hinton 2012). In cosmology, deep learning
is used for the extraction of information from N-body simulations
(Ravanbakhsh et al. 2017), to learn the connection between initial
conditions and the final shape of structure (Lucie-Smith et al. 2018),
for the characterization of point spread functions (Herbel et al. 2018)
or the measurement of shear for WL (Springer et al. 2018), the
characterization of non-Gaussian structure in mass maps (Gupta
et al. 2018), the determination of galaxy cluster X-ray masses
(Ntampaka et al. 2018), and the fast creation of simulated data
using generative adversarial networks (Rodriguez et al. 2018). In
this work, we will use such techniques to break the degeneracies
between models of MG in the presence of massive neutrinos.

The text is organized as follows. Section 2 gives an overview of
the numerical simulations and the creation of the mass maps that
constitute our main data set. In Section 3, we introduce the different
characterization and classification techniques that we apply to the
mass map data and show the results that they produce in Section 4.
We present our conclusions in Section 5. Two appendices provide
more details on certain technical aspects of the computer vision
(Appendix A) and deep neural network (Appendix B) methods we
are using.

2 NUMERI CAL SI MULATI ONS

We perform our analysis on a set of WL maps extracted from
a suite of cosmological dark matter-only simulations called the
DUSTGRAIN-pathfinder runs. These simulations represent a pre-
liminary calibration sample for the DUSTGRAIN (Dark Universe
Simulations to Test GRAvity In the presence of Neutrinos) project,
an ongoing numerical effort aimed at investigating cosmological
models characterized by a modification of the laws of gravity from
their standard GR form and by a non-negligible fraction of the
cosmic matter density being made of standard massive neutrinos.

2.1 DUSTGRAIN-pathfinder

The modification of gravity considered in the DUSTGRAIN project
consists in an f(R) model defined by the action (Buchdahl 1970)

S =
∫

d4x
√−g

(
R + f (R)

16πG
+ Lm

)
. (1)

We assume a specific analytical form for the f(R) function (Hu &
Sawicki 2007)

f (R) = −m2 c1

(
R

m2

)n

c2

(
R

m2

)n + 1
, (2)

where R is the Ricci scalar curvature and m2 ≡ H 2
0 �M is a mass

scale, while {c1, c2, n}≥ 0 are free parameters of the model. Such a
form is particularly popular and widely investigated as it allows one
to recover with arbitrary precision a �CDM background expansion
history by choosing c1/c2 = 6��/�M. Here, �� and �M are the
vacuum and matter energy density, respectively, under the condition
c2(R/m2)n � 1, so that the scalar field fR takes the approximate form

fR ≈ −n
c1

c2
2

(
m2

R

)n+1

. (3)

By restricting to the case n = 1, the only remaining free parameter
of the model can be written as

fR0 ≡ − 1

c2

6��

�M

(
m2

R0

)2

(4)
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Table 1. The subset of the DUSTGRAIN-pathfinder simulations considered in this work with their specific parameters. fR0 represents the MG parameter, mν and
m

p
ν the neutrino mass in electron volts and in M�/h as implemented in the simulation, m

p
CDM cold dark matter particle mass, and �CDM and �ν the CDM and

neutrino density parameters, respectively.

Simulation name Gravity type fR0 mν (eV) �CDM �ν m
p
CDM (M� h−1) m

p
ν (M� h−1)

�CDM GR – 0 0.313 45 0 8.1 × 1010 0
f4 f(R) −1 × 10−4 0 0.313 45 0 8.1 × 1010 0
f5 f(R) −1 × 10−5 0 0.313 45 0 8.1 × 1010 0
f6 f(R) −1 × 10−6 0 0.313 45 0 8.1 × 1010 0
f 0.3

4 f(R) −1 × 10−4 0.3 0.306 30 0.007 15 7.92 × 1010 1.85 × 109

f 0.15
5 f(R) −1 × 10−5 0.15 0.309 87 0.003 58 8.01 × 1010 9.25 × 108

f 0.1
5 f(R) −1 × 10−5 0.1 0.311 07 0.002 38 8.04 × 1010 6.16 × 108

f 0.1
6 f(R) −1 × 10−6 0.1 0.311 07 0.002 38 8.04 × 1010 6.16 × 108

f 0.06
6 f(R) −1 × 10−6 0.06 0.312 02 0.001 43 8.07 × 1010 3.7 × 108

and its absolute value |fR0| will quantify how much the model departs
from GR.

The DUSTGRAIN-pathfinder simulations have been devised to
sample the {fR0, mν} parameter space and to identify highly
degenerate combinations of parameters. Some analyses of the
corresponding WL signal have been presented by Giocoli et al.
(2018a) and Peel et al. (2018a), while Hagstotz et al. (2018) have
used the simulations to calibrate a theoretical modelling of the halo
mass function in f(R) gravity with and without the contribution
of massive neutrinos. In this further paper, we will use machine
learning techniques to tackle the issue of observational degeneracy
in these combined models based on the WL reconstruction described
in Giocoli et al. (2018a). A similar approach, focused on a subset of
particularly degenerate models, is presented in Peel et al. (2018b).

From a technical point of view, the DUSTGRAIN-pathfinder runs
are cosmological collisionless simulations including 7683 dark
matter particles of mass mCDM = 8.1 × 1010 M� h−1 (for the case
of mν = 0) and as many neutrino particles (for the case of mν >

0) in a (750 Mpc/h)3 cosmological volume with periodic boundary
conditions evolving under the effect of a gravitational interaction
defined by equation (1). The simulations have been performed with
the MG-GADGET code (see Puchwein, Baldi & Springel 2013),
a modified version of the GADGET code (Springel 2005) that
implements all the modifications that characterize f(R) gravity (see
Puchwein et al. 2013, for more details on the algorithm). MG-
GADGET has been extensively tested (see e.g. the MG code compari-
son project described in Winther et al. 2015) and employed recently
for a wide variety of applications (Arnold, Puchwein & Springel
2014; Arnold, Puchwein & Springel 2015; Arnold, Springel &
Puchwein 2016; Arnold et al. 2019; Baldi & Villaescusa-Navarro
2018; Naik et al. 2018; Roncarelli, Baldi & Villaescusa-Navarro
2018). For the DUSTGRAIN-pathfinder simulations, as was already
done in Baldi et al. (2014), we have combined the MG-GADGET

solver with the particle-based implementation of massive neutrinos
developed by Viel, Haehnelt & Springel (2010). This allowed us
to include massive neutrinos in the simulations as an independent
family of particles with its own initial transfer function and velocity
distribution. Initial conditions have been generated following the
approach of, e.g. Zennaro et al. (2017) and Villaescusa-Navarro et al.
(2018) at the starting redshift of the simulation zi = 99 with thermal
neutrino velocities added on top of the gravitational velocities by
random sampling the neutrino momentum distribution at the initial
redshift.

Standard cosmological parameters are set to be consistent with
the Planck 2015 constraints (Planck Collaboration XIII 2016a).
Concerning non-standard parameters, the DUSTGRAIN-pathfinder
simulations spanned the range −1 × 10−4 ≤ fR0 ≤ −1 × 10−6

for the scalar amplitude and 0 eV ≤ mν ≤ 0.3 eV for the
neutrino mass, for a total of 20 simulations. In this work, we will
consider a subset of the full DUSTGRAIN-pathfinder suite consist-
ing of nine simulations whose specifications are summarized in
Table 1.

2.2 Lensing light cones

For all simulations, we stored 34 snapshots at different redshifts that
allow us to construct lensing light cones up to a source redshift zs =
4 without gaps. Different methods have been developed to produce
lensing light cones from large cosmological N-body simulations.
Recent works have employed post-processing reconstructions based
on the slicing of a set of comoving particle snapshots (as e.g. in
Hilbert et al. 2008, 2009; Giocoli et al. 2016; Shirasaki et al. 2017),
as well as on-the-fly algorithms capable of storing only the projected
matter density on a given field of view without resorting on the flat-
sky approximation (see e.g. Barreira et al. 2016; Arnold et al. 2019).
In this work, we use the MAPSIM routine (Giocoli et al. 2014; Tessore
et al. 2015; Castro et al. 2018), which is based on the former strategy.
We use the particles stored in 21 different snapshots to construct
our continuous past light cones up to z = 4, building 27 lens planes
of the projected matter density distribution, considering a square
sky coverage of 5 deg on a side. For each cosmological model, we
construct 256 different light-cone realizations by randomizing the
various comoving cosmological boxes (Giocoli et al. 2018a; Peel
et al. 2018a).

2.3 Convergence maps

The MAPSIM pipeline is composed of two algorithms. The first one
– called i-MAPSIM – constructs lensing planes from the different
simulation snapshots, saving for each plane l and on each pixel with
coordinate indices (i, j) the particle surface mass density �

�l(i, j ) =
∑

k mk

Al

. (5)

Al represents the comoving pixel area of the lens plane l and
∑

kmk

the sum over all particle masses associated with the given pixel. The
second algorithm named ray-MAPSIM projects the matter density
distribution along the line of sight by weighing the lens planes with
the lensing kernel in the Born approximation regime (Bartelmann &
Schneider 2001; Schäfer et al. 2012; Giocoli et al. 2016; Petri 2016;
Giocoli et al. 2017, 2018b; Petri, Haiman & May 2017; Castro et al.
2018). From �l, we can derive the convergence κ at a given source
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redshift zs as

κ =
∑

l

�l

�crit,l,s
, (6)

where l varies over the different lens planes with the lens redshift zl

smaller than zs, and �crit,l,s represents the critical surface density at
the lens plane zl for sources at redshift zs

�crit,l,s ≡ c2

4πG

Dl

DsDls
. (7)

Here, c is the speed of light, G is the Newton’s constant, and Dl, Ds,
and Dls are the angular diameter distances between observer lens,
observer source, and source lens, respectively. The final κ maps
cover the 25 square deg field of view with 20482 pixels, resulting
in a map resolution of ∼8.8 arcsec.

3 M E T H O D O L O G Y

A variety of machine learning techniques is applied to the
DUSTGRAIN-pathfinder convergence maps. It was shown by Peel
et al. (2018a) that summary statistics up to second order do not
reliably separate such mass maps. Higher order statistics, especially
peak counts (e.g. Peel et al. 2017; Lin & Kilbinger 2018; Martinet
et al. 2018; Shan et al. 2018), do a better job but still leave room
for improvement when distinguishing between a large number
of models and in the presence of noise. Most commonly used
methods to characterize observational data are naturally based on
physical models. In the following, we present an agnostic approach,
which also applies techniques and algorithms found in the fields of
computer science and specifically digital image processing.

We distinguish two subsequent steps in the process of mass map
classification. The first is to find a feature extraction function �,
which takes a high-dimensional data vector x as input and finds a
general, dimensional reduced representation of it in the form of a
feature vector F

�(x; wf ) = F . (8)

The feature extraction function can have several parameters that
are stored in the feature weight vector wf. In order to arrange the
data vector x in a meaningful way, we introduce an index notation
xijc. The first two indices reflect a spatial ordering of the 2D data
along the coordinate axes. This means that all elements with i = 1
are located in the first row of the pixelized image and all elements
with, e.g. j = 10 are located in the tenth column of the image. This
notation also includes 1D data, ordered or not, by setting i = 1 ∀j,
c. The third index c – commonly dubbed as a channel – allows us
to collect multiple aspects of the same entity represented by x. For
the example of an RGB image, c = 1 would be the red channel of
the image, c = 2 the green, and c = 3 the blue channel. Finally,
we define the shape of a data vector with a bracket notation. The
shape of our input convergence maps is #x = (2048, 2048, 6) since
we have 2048 × 2048 pixel maps with convergence values κ at
six different source redshift channels and where in the above we
have introduced the shape operator # that returns the shape of a data
vector.

The second step classifies F into a set of target classes. The
classification function ζ , which can again depend on a set of
parameters wm, should not only output a single class prediction,
but rather a prediction vector P of shape #P = (1, 1, n) with
probabilities to belong to each of n target classes

ζ (F,wm) = P . (9)

It must hold that Pn ∈ [0, 1],
∑

Pn = 1 and in our case n ∈ (1, ..., 9).
In the following, we explore different choices for the feature

extraction and classification functions and find ways to optimize
their parameters to achieve an optimal classification. We do so
with the help of training sets, which are data vector–label pairs
(x, yl), meaning mass maps for which we a priori know the
underlying cosmological model. Specifically, the label yl is an
indicator function for the class l ∈ (1, ..., 9) with elements yl

k for
which

yl
k =

{
1 if k = l

0 else.
(10)

3.1 Definition of data sets

Our full data set consists of 256 convergence maps of shape
(2048,2048,6) for each of the nine cosmological models. We split
each map further into 64 smaller patches to define our main data
vectors with #x = (256, 256, 6). 75 per cent of those maps (12 289)
are used as a training set in order to optimize the parameters of our
models. We use 15 per cent of the maps (2457) as a validation set
where the correct labels y are known to us, but not to the optimization
algorithm. Performing a classification on the validation data serves
as quality control and helps us to decide if an optimization is
successful and when to stop it. Another 10 per cent of the maps
(1638) are used as a test set, where the labels are not known to us a
priori and to which our trained and validated algorithms are applied
to blindly. The success rates on those test sets will be the main result
of this work. We provide examples of the actual data in the left-hand
panel of Fig. 1, which shows example convergence maps, chosen at
random from the test set, for four instructive models. This includes
the �CDM reference, f4 that deviates most from �CDM, f 0.06

6 that
is observationally most degenerate with �CDM, and a sample map
of f 0.1

5 that is between the two extremes. The source redshift for all
the maps shown is zs = 1.0.

3.2 Mass map feature extraction

Two important subclasses for � are possible. In the first, the
parameters wf are free and can be optimized during a training phase.
In the second, they are fixed. We want to highlight that we do not
perform any initial transformations of the data, which have proven
to be useful for the analysis of lensing mass maps. It was shown
in, e.g. Peel et al. (2018a) that an aperture mass transformation
(Schneider 1996; Schneider et al. 1998) can largely improve the
discrimination power of certain statistics, but we want to stay as
general and agnostic as possible at this stage and use the raw pixel
data of the convergence maps as the initial data vector.

3.2.1 Standard mass map descriptors

Examples of fixed feature extraction are the mass map descriptors
that are commonly used in the cosmological community to describe
convergence or shear catalogues. For the purposes of this work,
such descriptors serve as the reference for other techniques that
we apply. We combine a number of mass map features, which
we extract with the LensTools package1 by Petri (2016) into a
feature vector of shape (1,1,99). The first four entries in this vector
are the mean, variance, skewness, and kurtosis of the convergence

1https://github.com/apetri/LensTools
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Figure 1. The left-hand panel shows randomly chosen convergence maps from the test set in four specifically chosen models of structure formation. Those
models span the range of observational degeneracy from the �CDM reference, with f4 being the most distinct, f 0.06

6 the most similar, and f 0.1
5 the middle

ground between the extremes. The right-hand panel shows, for the same models, the average power spectrum over all maps in the test set on the top panel and
the peak counts as a function of signal-to-noise ratio on the bottom panel. The coloured lines indicate the results for the four different models, while the grey
shaded areas indicate typical variations within the test set sample for the case of �CDM. The source redshift in all cases is zs = 1.0.

maps. This is followed by 11 percentiles between the 0th percentile
(the minimum) and the 100th percentile (the maximum) in steps of
10 per cent. The normalized histogram of the convergence values
in each map is sorted with 14 bins and the value for each bin
is appended to the feature vector. Next, we calculate the power
spectrum in 14 logarithmically spaced bins between l = 1000 and
32 000, which cover the angular size and resolution of our mass
maps. Finally, we use the standard deviation of each map to define
14 signal-to-noise bins between −2 and 5. For each such bin, we
calculate the peak counts, as well as the first three Minkowski
functionals (e.g. Kratochvil et al. 2012; Petri et al. 2015, and
references therein), which concludes our collection of 99 features.
The right-hand panel of Fig. 1 shows examples for the variation
between models for such classical features. Presented there are the
average power spectrum and peak count for all maps in the test set
and for the four instructive models we chose in Section 3.1 for data
visualization purposes.

3.2.2 Classical computer vision

We know from Peel et al. (2018a) that at least some of the standard
descriptors above are not optimally suited for the task at hand
and it is, at this point, not entirely obvious how to define better
ones. This is why we now aim to derive as many fixed features
as possible. The publicly available wnd-charm algorithm (Orlov
et al. 2008; Shamir et al. 2008; Shamir et al. 2010) was designed for
the classification of microscopy images and derives a particularly
large feature vector of shape (1,1,2919). This includes most of
the common statistics and descriptors known to digital image
processing. Many features are thereby not only calculated from the
raw image, but also from some of its alternative representations
like the Fourier, Wavelet, Chebyshev, or Edge transformation.
Moreover, some features are also extracted from transformations
of transformations. While we did state earlier that we do not want

to vet our data with transformations, we want to point out that the
listed transformations are by no means inspired by the mechanisms
of lensing or structure formation. We refer the interested reader to
Orlov et al. (2008) for the full description of the algorithm and
the description of the full feature vector, but we do provide a short
summary in appendix A and a compact overview in Table A1.

3.2.3 Convolutional neural networks (CNNs)

As the class of feature extraction functions that are able to change
their shape during the training process, we chose multilayered neural
networks (LeCun et al. 2015; Goodfellow, Bengio & Courville
2016). The input data vector x is manipulated and eventually reduced
in dimension by a long – deep – chain of simple layers θ , which
implement a specific mathematical operation. The output of one
layer becomes the input of the following layer and contains its own
set of parameters wi. The set of all layer parameters becomes the
feature parameter vector wf.

�(x, wf ) = θn ◦ θn−1 ◦ ... ◦ θ1 (11)

θi ◦ θi−1(·) ≡ θi (θi−1(·, wi−1), wi) (12)

wf ≡ {wi}n
i=1 (13)

Deep neural networks source their performance from the sheer
number of layers they are comprised of and have gained much
popularity in recent years. This is mainly due to the advancements in
numerical performance by, e.g. exploiting many-core architectures.2

This allows for the construction of particularly deep and complex

2General Purpose Graphics Processing Units (GPGPUs) are a popular
example of a many-core architecture.
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networks with hundreds of millions of parameters. The functional
forms of the layers that are used in a deep neural network depend on
the problem at hand. For image classification, CNNs have proven
to be particularly useful (Krizhevsky et al. 2012; Simonyan &
Zisserman 2014; Szegedy et al. 2014; He et al. 2015; Lin et al. 2017)
and hence we chose this class of models for our purposes. The main
functionality of a CNN is provided by a convolutional layer Conv(n,
m, �i, �j, p, C) that applies a number of C convolutions with kernel
size (n, m) to a 2D input vector Iijc with #Iijc = (X, Y , l). The
stride parameters �i and �j allow one to implement dimensional
reduction and the parameter p controls if the input data are padded
(p = v) or unaltered (p = s). We provide a thorough mathematical
definition of all deep neural network layers used in this work,
including the convolutional one, in Appendix B1.

Convolution layers are often followed by pooling layers for
dimensional reduction. We implement average pooling layers Avg-
Pool(n, m, �i, �j, p) that average entries of the 2D data vector within
a window of size (n, m), apply a stride defined by �i and �j, and fol-
low the same padding scheme that was introduced earlier. Maximum
pooling layers MaxPool(n, m, �i, �j, p) work in a similar manner
but instead of the average they return the maximum within a given
window. Both pooling layers exist also as global versions, indicated
by GlobalMaxPool and GlobalAvgPool, where all entries per chan-
nel are considered for either the maximum or averaging operation.

Up to this point, we only allowed for layers to be placed strictly se-
quential. In order to implement a horizontal layout, we connect sev-
eral layers to the same input and combine their results Iijc1 , ..., Iijcn

with the help of a concatenation layer Concatenate(Iijc1 , ..., Iijcn
).

This concept of performing not only one operation at a given depth
of the network but several has proven very successful for image
classification as, e.g. shown in Szegedy et al. (2014), who dubbed
such horizontal layers as inception modules.

The output of a layer can be followed by a non-linear activation
function. For convolution and pooling layers, we mainly deploy
rectangular linear units (ReLUs) and we give the full detail about the
activation functions used in this work in Appendix B2. To avoid the
network from overfitting, the so-called dropout layers are introduced
as a regularization. In there, a given percentage of the elements of
an input vector is chosen at random and is subsequently discarded
from the output (Srivastava et al. 2014). Finally, to compensate for
fluctuations in the amplitudes of input vectors at different network
depths, Ioffe & Szegedy (2015) introduced the concept of batch
normalization that we also use after each convolutional layer. The
output of the last layer in the CNN, the feature vector F, is used for
classification in a final section of the network, which is commonly
referred to as top. The concrete architecture of the CNN that we use
in this work is provided in Section 4.3 and Appendix B3.

3.3 Feature-based classification

We now turn our attention to the classification function ζ (F; wm).
We investigate two different approaches to classification. The first
one is a nearest-neighbour-search scheme based on distances in
feature space. The other approach, based again on a class of neural
networks, uses regression through a training set to find the optimal
mapping between features and labels.

3.3.1 Feature-space distances

In the following, we denote with T all those feature vectors that
belong to a sample from the training set and with Tn the subset that

belongs only to class n of the training set. We calculate a Fisher
discriminant (e.g. Bishop 2006) to find suited classification weights
wm for each individual feature Ti.

(wm)i =

N∑
n=1

(〈Ti〉 − 〈
T n

i

〉)2

N∑
n=1

(σn
Ti

)2

N

N − 1
(14)

Here, N is the total number of classes and (σn
Ti

)2 is the variance of
the feature i within class n.

Once we found the weights wm, we can define a weighted nearest-
neighbour distance (WNN) of any feature vector F to all the classes
n in the training set.

dn
WNN = min

T ∈T n

M∑
i=1

(wm)i (Fi − Ti)
2 , (15)

where M = |F| is the length of the feature vector. The problem with
this WNN distance is the fact that it is based only on a single element
in the training set, the one that minimizes the sum in equation
(15). To remedy this, Orlov et al. (2006) introduced a weighted
neighbour distance (WND), which takes into account the distance to
all elements in the training set, but largely penalizes large distances
through the free parameter b

dn
WND =

∑
T ∈Tc

[
M∑
i=1

(wc)i (Fi − Ti)
2

]b

|T c| . (16)

Orlov et al. (2006) found that the results do not strongly depend on
b once b > 2 and that b = 5 is a generally good, numerically stable,
choice. The final step in order to make predictions P is to define a
similarity using a distance of choice, e.g. WNN or WND, and by
normalizing appropriately

Pn =
(

dn

N∑
i=1

(di)
−1

)−1

. (17)

3.3.2 Fully connected neural networks

A different approach to the classification task is another form of
neural network (equation 11). The main layer in such a neural
network is a fully connected – sometimes called affine – layer FC(n),
which implements a linear mapping between the input vector of
length m and the output vector of length n using a matrix of nm free
parameters and an additional bias parameter (see Appendix B1).

Such layers are again chained together and the last layer produces
an output vector of the same length as the number of classes N. As
before, in between those layers one may use dropout, activation,
and normalization layers. The top of the network is followed by a
specific activation function called a softmax (see Appendix B2) that
provides the desired predictions Pn.

Since the optimal weights wm are found by a regression, we define
a loss function L, which in the case of this classification problem is
a categorical cross entropy

L(x; wm) = −
N∑

n=1

yn log Pn(x; wm). (18)

y are the labels for the elements in the training data x and Pn(wm)
their class predictions given a current set of parameters wm. In order
to minimize the loss, while continuously looping over the training
data, we use a specific implementation of stochastic gradient
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descent called ADAM (Kingma & Ba 2014). The gradients of our
model dζ

dwm
are thereby calculated via a back-propagation algorithm

(Rumelhart, Hinton & Williams 1986). We end this description
of our methodology by noting that for a full feature extraction
and classification chain P = ζ [�(x; wf); wm], with a CNN as �

and a neural network as classifier ζ , the classification and feature
extraction weights can be optimized at the same time.

3.4 Numerical set-up

As mentioned earlier, we use the Python package lenstools3

(Petri 2016) for the extraction of the standard map descriptors
from Section 3.2.1. For the computer vision fixed features from
Section 3.2.2, we slightly adapted the publicly available version
of wnd-charm.4 We altered the C++ version of the feature
extraction algorithm to accept FITS files (Hanisch et al. 2001)
as an input image container with pixel values as double precision
floating-point numbers. We then use the feature output files of
wnd-charm as an input for our own distance-based classification
pipeline written in Python. We make these routines publicly
available in this repository.5 All deep learning elements of our
analysis stack use the widely used tensorflow6 framework,
which uses NVIDIA’s CUDNN (Chetlur et al. 2014) library to carry
out tensor operations on GPUs. We pair a tensorflow backend
with the high-level deep learning Python interface keras7 as a
frontend. The network training was carried out on two NVIDIA
Titan Xp GPUs. All convergence maps and Jupyter8 notebooks
used to produce the results in this work are either linked to or
publicly available in the aforementioned repository. In there, we
refer the reader to the ‘reproducible science’ folder.

4 RESULTS

Section 3 introduced a number of methods to perform mass map
characterization and classification. We now present the results
obtained by applying those methods and provide details on their
training process with the help of the validation sets. For the most
successful method, we investigate the dependence of the results on
the convergence map source redshift and we end this section with
a closer look at the most relevant features, which are extracted by
the different methods. If not stated otherwise, the results in this
section are based on training, validation, and test set maps at a
source redshift zs = 1.0.

4.1 Classification based on feature distance

For the case of the distance-based classifier from Section 3.3.1, the
training process is just the derivation of the Fisher weights shown in
equation (14). We calculate them using the training set and present
the 20 top-ranked features for the classical descriptors in Table 2
and for the wnd-charm features in Table 3. For the first case, we
see quite a mix of features in the top, with the power spectrum and
peak counts being the most important ones. This result is nicely
confirmed by the right-hand panel of Fig. 1, which shows that the

3https://github.com/apetri/LensTools
4https://github.com/wnd-charm/wnd-charm
5https://bitbucket.org/jmerten82/mydnn
6https://www.tensorflow.org/
7https://keras.io/
8http://jupyter.org/

Table 2. The top-ranked classical mass map features according to their
Fisher score (equation 14). The meaning of each feature and the explanation
of its index can be found in Section 3.2.1.

Rank Name Index Weight

1 Power spectrum 11 0.106
2 ’ 10 0.104
3 ’ 9 0.092
4 ’ 12 0.084
5 Peak counts 13 0.083
6 Power spectrum 8 0.078
7 Peak counts 12 0.078
8 Power spectrum 7 0.065
9 Peak counts 5 0.064
10 Skewness – 0.059
11 Peak counts 14 0.055
12 Power spectrum 6 0.051
13 Percentile 100 0.051
14 Minkowski functional 1 14 0.049
15 Percentile 0 0.049
16 Power spectrum 13 0.046
17 Minkowski functional 2 14 0.045
18 Peak counts 11 0.044
19 Power spectrum 5 0.042
20 Kurtosis – 0.042

Table 3. Same as Table 2 but for the wnd-charm features. We refer the
reader to Appendix A for the definition of each feature and the exact meaning
of the feature index and the transform column.

Rank Transform Name Index Weight

1 F Zernike coefficients 20 0.285
2 F ’ 42 0.270
3 F(W) ’ 50 0.255
4 F(E) ’ 52 0.242
5 F(W) ’ 21 0.236
6 F(E) ’ 39 0.214
7 F ’ 12 0.205
8 F(W) ’ 22 0.204
9 F(E) ’ 37 0.196
10 F(W) ’ 56 0.183
11 F(E) ’ 5 0.174
12 F(E) ’ 28 0.170
13 W Haralick textures 5 0.169
14 F Zernike coefficients 17 0.166
15 F(E) ’ 34 0.166
16 F(E) Haralick textures 0 0.164
17 F(E) ’ 14 0.161
18 F(E) Zernike coefficients 24 0.159
19 F ’ 60 0.154
20 – Edge features 0 0.152

bins with 5000 < l < 15 000 of the power spectrum indeed show a
clear separation between the more degenerate models. For thewnd-
charm features however, the ranking is completely dominated by
Zernike coefficients on transformations of the image, with a few
contributions of Haralick textures. One should keep in mind though
that we extract a total of 2919 features, out of which 51 have a
weight >0.1, 868 have a weight >0.01, and only 193 features have
a vanishing weight. It is the combination of all the non-zero weights
that will lead to the distance-based classification later on.

For the 99 standard features, we find a total classification success
rate of 22 per cent, meaning that out of 14 742 samples in the test
set, only 3243 were classified correctly. For some specific classes,
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Table 4. The sequence of layers used in the neural network to classify
fixed mass map features. The output shape notation follows the convention
introduced in Section 3. The description of all layers can be found in Sections
3.2.3 and 3.3.2, their formal definition in Appendices B1 and B2. The
numbers in square brackets refer to the case where the wnd-charm feature
vector is used instead of the smaller vector of classical features.

Index Layer Free parameters Output shape

1 Input 0 (1,1,99[2919])
2 FC(32) 3200 [93 440] (1,1,32)
3 leakyReLU(0.03) 0 (1,1,32)
4 FC(9) +297 (1,1,9)
5 Softmax 0 (1,1,9)

Output = 3497 [93 737] 9

the classification success rate is barely above the success rate for
a random guess (11 per cent). The important �CDM class, for
example, shows a success rate of 13 per cent. The picture improves
marginally when using the 2919 wnd-charm features instead. The
total classification success over all classes rises mildly to 25 per cent.
While especially the three f6 models still show success rates around
or even below 11 per cent, at least some classes, including �CDM,
are now significantly above the 20 per cent level. We do not show
more details9 on the distance-based classification since it is clear
from those results already that this classification method does not
qualify for a successful discrimination of our models.

4.2 Classification based on neural network

We now use the same set of fixed features but feed them into a
fully connected neural network for classification. For the case of
the 99 standard features, we show the very simple topology of
the classification network in Table 4. The same network is used
to classify the 2919 wnd-charm features but due the larger input
vector, the number of free parameters is larger, which we indicate by
a square bracket notation in the same table. The regression to find the
optimal parameters of the main fully connected layers is based on the
training set. In total, we train with 110 601 feature vectors of shape
(1,1,99) or (1,1,2919) and where one iteration over all those ele-
ments during the regression is commonly called an epoch. Gradient
evaluations and corresponding changes to the network parameters
are made after a subset of an epoch, usually called a batch. The
batch size in this case was set to 128. After each epoch, we evaluate
the current performance of the network with the 22 113 (2457 per
class) feature vectors in the validation set. Fig. 2 shows for both
feature sets the evolution of the loss function for the training and
validation data as a function of training epoch. For the larger feature
vector, the validation loss starts to saturate around epoch 70 while
the training loss keeps declining. This indicates that the network
starts to overfit, meaning that it learns training-set specific features
that are of no use to characterize the validation set or any data
unknown to the model. This is where we stop the training and save
the model parameters that produced the smallest validation loss.

The neural network classification yields significantly better
results compared to the classification based on feature-space dis-
tances. In the case of the 99 standard features, the total classification
rate rises to 39 per cent and to 35 per cent in the case of the
wnd-charm features. Most interestingly, the smaller vector of
99 classical features produces better results than the much larger

9A full success rate analysis is provided in the repository (https://bitbucket.
org/jmerten82/mydnn) associated with this article.

Figure 2. The evolution of the loss as a function of epoch for the training
of the neural network. Shown are both cases where either a smaller vector of
standard is the input for the network, or a larger set of wnd-charm features.

feature vector provided by wnd-charm. Some of the most dis-
criminative features from the computer vision method shown in
Table 3 are certainly describing the data well and should be used
in future analyses; however, once the information from all standard
descriptors such as the binned power spectrum, peak counts, and
Minkowski functionals is combined in an optimal way by a neural
network, there is no advantage in using features that are inspired
by only computer vision. Table 5 shows the classification success
matrix for the standard features, where each row refers to a subset of
the test data comprising only maps from that true class labelled by
the first column. The first number in each block of four shows how
many times the 1638 members of this subset have been sorted into
the respective predicted class, which is indicated by the label in the
very first row. The second number is the percentage of predictions
with respect to the total number of maps in the class. The third and
fourth numbers are the mean and its standard error on the prediction
probability for all maps in the subset given by the row and for the
class predictions indicated by the label of the column. For an optimal
classification, only the diagonal of this matrix (those fields typeset
in boldface) would show non-zero values.

While Table 5 gives a good indication of what to expect from a
classification of single maps, only the mean and its standard error on
the class predictions give an idea on how well the full ensemble of
test set maps is classified. We therefore further evaluate the statistics
of the prediction vectors for each true test set class. Fig. 3 shows
nine panels of box plots, each of which represents the statistics
for one such subset. The black box in each panel represents the
correct predictions, equivalent to the bold diagonal of Table 5. The
horizontal line spanning each panel is the median for all the true
class predictions and the error band shows the scatter of medians
derived from 100010 bootstrap samples. The upper and lower ends
of each box show the 75th and 25th percentiles, respectively, and the
whiskers show the outlier cleaned minimum and maximum value
of the class predictions. Whenever a box that is not the true label is
shown in green, it means that the median and its errors, indicated
by the notches of each box, are lower than the one of the correct
prediction box and do not overlap with its horizontal error band. If
those criteria are not met, the respective box is shown in red.

When looking at the results in Table 5 and Fig. 3, the following
observations catch the eye. Although the overall classification

10This number is of course arbitrary but is close to the sample size and we
also checked that the bootstrap-derived error does not depend significantly
on the number of bootstraps.
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Table 5. The classification success matrix for the neural-network-based classification of the classical features. Each row represents a different subset of the
test data indicated by the first column. The first number in each block of four in a column is the number of samples in the subset that was assigned to the
predicted class indicated by the column label on the top. The second number is the relative classification success rate for the subset. The third number is the
mean of all predictions in the subset and the fourth number is its standard error. The success rates indicate that only the two f4 models and to a lesser degree
f5, f 0.15

5 , and �CDM are well separated from the other models with correct classification rates of 40 per cent or above and false classification rates for other
models of 17 per cent or less. f 0.1

5 and the two f6 models with non-vanishing neutrino mass are basically undistinguished from other models and f6 (success
rate 31 per cent) shows still a large degeneracy with �CDM (15 per cent misclassification rate).

f4 f 0.3
4 f5 f 0.15

5 f 0.1
5 f6 f 0.06

6 f 0.1
6 �CDM

f4 958 80 157 103 97 137 26 24 56
58 per cent 5 per cent 10 per cent 6 per cent 6 per cent 8 per cent 2 per cent 1 per cent 3 per cent

0.376 0.052 0.122 0.083 0.11 0.087 0.068 0.056 0.046
±0.007 ±0.003 ±0.003 ±0.002 ±0.002 ±0.002 ±0.002 ±0.001 ±0.002

f 0.3
4 70 1135 1 72 10 18 31 116 185

4 per cent 69 per cent 0 per cent 4 per cent 1 per cent 1 per cent 2 per cent 7 per cent 11 per cent
0.05 0.468 0.006 0.052 0.018 0.058 0.091 0.12 0.137

±0.002 ±0.007 ±0.001 ±0.002 ±0.001 ±0.001 ±0.002 ±0.002 ±0.003

f5 232 6 857 158 275 84 10 5 11
14 per cent 0 per cent 52 per cent 10 per cent 17 per cent 5 per cent 1 per cent 0 per cent 1 per cent

0.129 0.008 0.354 0.129 0.246 0.055 0.036 0.026 0.018
±0.004 ±0.001 ±0.005 ±0.003 ±0.002 ±0.002 ±0.001 ±0.001 ±0.001

f 0.15
5 149 90 173 651 254 120 38 52 111

9 per cent 5 per cent 11 per cent 40 per cent 16 per cent 7 per cent 2 per cent 3 per cent 7 per cent
0.082 0.052 0.129 0.229 0.182 0.087 0.086 0.08 0.073

±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.002 ±0.002 ±0.002 ±0.002

f 0.1
5 223 22 485 333 413 98 18 14 32

14 per cent 1 per cent 30 per cent 20 per cent 25 per cent 6 per cent 1 per cent 1 per cent 2 per cent
0.113 0.02 0.249 0.18 0.243 0.067 0.054 0.043 0.031

±0.003 ±0.001 ±0.005 ±0.003 ±0.003 ±0.002 ±0.001 ±0.001 ±0.001

f6 193 103 44 181 65 512 126 171 243
12 per cent 6 per cent 3 per cent 11 per cent 4 per cent 31 per cent 8 per cent 10 per cent 15 per cent

0.091 0.061 0.048 0.094 0.065 0.192 0.17 0.155 0.123
±0.003 ±0.003 ±0.002 ±0.002 ±0.002 ±0.003 ±0.002 ±0.002 ±0.003

f 0.06
6 128 194 30 163 39 377 147 257 303

8 per cent 12 per cent 2 per cent 10 per cent 2 per cent 23 per cent 9 per cent 16 per cent 18 per cent
0.07 0.095 0.032 0.087 0.05 0.169 0.176 0.176 0.146

±0.003 ±0.003 ±0.002 ±0.002 ±0.002 ±0.002 ±0.002 ±0.002 ±0.003

f 0.1
6 71 262 18 164 39 279 109 345 351

4 per cent 16 per cent 1 per cent 10 per cent 2 per cent 17 per cent 7 per cent 21 per cent 21 per cent
0.049 0.12 0.023 0.086 0.042 0.154 0.176 0.189 0.162

±0.002 ±0.004 ±0.001 ±0.002 ±0.002 ±0.002 ±0.002 ±0.002 ±0.003

�CDM 69 265 5 135 9 158 60 166 771
4 per cent 16 per cent 0 per cent 8 per cent 1 per cent 10 per cent 4 per cent 10 per cent 47 per cent

0.043 0.14 0.014 0.074 0.028 0.12 0.146 0.164 0.271
±0.002 ±0.004 ±0.001 ±0.002 ±0.001 ±0.002 ±0.002 ±0.002 ±0.004

success rate is only 39 per cent, none of the classes is classified
incorrectly as an ensemble. In the case of the two f4 models, we see
a clear separation between the correct predictions from the other
classes. This is confirmed by the classification matrix, which shows
no substantial overlap (> 11 per cent) with any other model. This
however changes for the three f5 and three f6 models. Although
the median for the correct predictions is the highest for all of the
models,11 the degeneracies within the same model of gravity are
strong in those cases as one can see from the basically equal heights
of the centres of the boxes in Fig. 3 and from the classification

11The mean is not in the case of f 0.1
5 .

matrix, which lists a large number of misclassifications up to
30 per cent in the case of f 0.1

5 misclassified as f5. A lot more severe
is the case of the three f6 models. For them, we find substantial
overlap of up to 21 per cent with �CDM. Even the predictions for
�CDM itself are not completely separate from the three f6 models
and f 0.3

4 with an overlap of up to 16 per cent.

4.3 CNN

The CNN extracts the characterizing features directly from the
pixel data of the training mass maps. We have experimented
with a number of architectures, including classic topologies that
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Figure 3. The prediction statistics of the classical feature vector classified
by a neural network. Each labelled panel represents all predictions for one
true class of the test set. In every panel, each box summarizes the statistics
of the model predictions indicated by the bottom labels. The median and its
bootstrap error for the correct prediction are shown by the red line with error
band. For this method, only the two f4 models are clearly distinguished from
the other models. The f5 and f6 models, especially, remain largely degenerate
within themselves, but also with �CDM.

Table 6. The sequential structure of the CNN used in this work. All layers
marked by ‘∗’ are batch normalized. More complicated inception layers are
shown in the respective figure.

Layer Free parameters Output shape

1 Input 0 (256,256,1)
2 Conv(3,3,2,2,v,32)∗ 288 (127,127,32)
3 lReLU(0.03) 0 (127,127,32)
4 Conv(3,3,1,1,v,32)∗ +9216 (125,125,32)
5 lReLU(0.03) 0 (125,125,32)
6 Conv(3,3,1,1,s,64)∗ +9216 (125,125,32)
7 StemInception∗ (Fig. B1) +555 008 (29,29,384)
8 InceptionA∗ (Fig. B2) +316 416 (29,29,384)
9 ReductionA∗ (Fig. B3) +2304 000 (14,14,1024)
10 InceptionB∗ (Fig. B4) +2931 712 (14,14,1024)
11 ReductionB∗ (Fig. B5) +2744 320 (6,6,1536)
12 InceptionC∗ (Fig. B6) +4546 560 (6,6,1536)
13 GlobalAvgPool 0 (1,1,1536)
14 Dropout(0.33) 0 (1,1,1536)
15 FC(9) +13 833 (1,1,9)
16 Softmax 0 (1,1,9)

17 Output = 13 469 865 9

implement a large number of 3 × 3 convolutions inspired by
VGG-net (Simonyan & Zisserman 2014), as well as architectures
presented in Ravanbakhsh et al. (2017) and Gupta et al. (2018). The
model that worked best for our purposes is almost exclusively based
on the inception layers first presented in Szegedy et al. (2014). Here,
we adopt one of its latest iterations, version 4 introduced in Szegedy,
Ioffe & Vanhoucke (2016). The global linear structure of our CNN
is shown in Table 6 and we describe in detail the different elements
of this network and their purpose in Appendix B3. We visualize the
evolution of the network’s loss during training in Fig. 4.

The total classification success rate of the CNN is 52 per cent
and its classification success matrix is shown in Table 7. Compared
to the fixed feature results in Table 5, we find much larger true
prediction values for many models. Exceptions are f 0.1

5 and f 0.06
6 .

Figure 4. The evolution of the loss as a function of epoch for the training
of the CNN.

Fig. 5 shows the statistics of the predictions for all classes in the test
set and reveals that the f 0.06

6 and f 0.1
6 models, even as an ensemble,

cannot be classified correctly by the CNN since the error bars on
the medians of the predictions in their samples overlap with other
f6 models. However, the degeneracy with �CDM is now broken
for all models and the CNN robustly discriminates most of the nine
models from each other.

4.4 Dependence on redshift

A source redshift of zs = 1 is realistic for future space- and ground-
based surveys but it is certainly optimistic for current ground-based
surveys. On the other hand, it also does not test the full potential
of our classification methods since one would expect a better
classification accuracy for larger source redshifts. We therefore
repeat training and classification for one lower (zs = 0.5) and
one higher (zs = 2) source redshift. For simplicity, we restrict this
analysis to the CNN, which delivered the best results.

For a source redshift zs = 0.5, the overall accuracy drops
significantly from 52 to 44 per cent. When comparing the prediction
statistics of the full set at this redshift in Fig. 6 with the reference
at zs = 1 in Fig. 5, one can see that the decrease in the overall
accuracy mainly stems from a weaker separation of the two f4

models, f5, and �CDM. The known issue of degeneracies between
the three neutrino masses for f5 and f6 are already present and
more prominent. The issue of model misclassification for f6 gravity
gets worse with now two misclassifications. The improvements
when going from zs = 1 to 2 are highlighted by Fig. 7. For zs =
2, the network’s ability to distinguish between the base models
increases and the overall classification accuracy is now 59 per cent.
The discrimination accuracy for massive neutrinos within each
gravity model increases for the f5 models, and only the two f6

models with massive neutrinos show significant overlap. Those
models are also the only ones that show residual, but insignificant
overlap with �CDM. Given the fact that the ensemble of f 0.1

6 maps
also gets misidentified as f 0.06

6 , it is clear that the discrimination
within the f6 models remains an issue even at a larger source
redshift.

As a last analysis using the CNN, we perform a tomographic
classification. For each line-of-sight realization, we are not using a
single mass map at a specific source redshift but we feed data vectors
of shape #x = (256, 256, 4) into the CNN where the four channels
refer to zs = 0.5, 1, 1.5, and 2, respectively. The classification suc-
cess matrix for this analysis is shown in Table 8, and Fig. 8 shows the
familiar box-plot representation of the prediction-vector statistics.
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Table 7. The classification success matrix for the CNN. The general structure of the table is the same as in Table 5. We see successful classifications of the
two f4 models, f5, f6, and �CDM. However, large degeneracies remain within the neutrino mass variants of f5 and f6 gravity, respectively. In some cases, the
wrong predictions can outnumber the correct ones as is the case for f 0.1

5 and f 0.06
6 .

f4 f 0.3
4 f5 f 0.15

5 f 0.1
5 f6 f 0.06

6 f 0.1
6 �CDM

f4 1307 116 36 21 31 88 12 5 22
80 per cent 7 per cent 2 per cent 1 per cent 2 per cent 5 per cent 1 per cent 0 per cent 1 per cent

0.646 0.085 0.045 0.035 0.05 0.049 0.036 0.025 0.028
±0.008 ±0.004 ±0.002 ±0.002 ±0.002 ±0.002 ±0.002 ±0.001 ±0.002

f 0.3
4 51 1298 0 11 0 7 8 27 236

3 per cent 79 per cent 0 per cent 1 per cent 0 per cent 0 per cent 0 per cent 2 per cent 14 per cent
0.046 0.658 0.001 0.014 0.004 0.02 0.031 0.037 0.19

±0.003 ±0.007 ±0.0 ±0.001 ±0.0 ±0.001 ±0.001 ±0.002 ±0.005

f5 105 1 1065 90 320 48 2 1 6
6 per cent 0 per cent 65 per cent 5 per cent 20 per cent 3 per cent 0 per cent 0 per cent 0 per cent

0.064 0.002 0.444 0.114 0.316 0.028 0.016 0.011 0.006
±0.003 ±0.0 ±0.005 ±0.003 ±0.002 ±0.002 ±0.001 ±0.001 ±0.001

f 0.15
5 103 37 161 721 347 78 14 31 146

6 per cent 2 per cent 10 per cent 44 per cent 21 per cent 5 per cent 1 per cent 2 per cent 9 per cent
0.059 0.031 0.153 0.3 0.235 0.048 0.044 0.041 0.088

±0.003 ±0.002 ±0.004 ±0.005 ±0.003 ±0.002 ±0.002 ±0.002 ±0.004

f 0.1
5 122 5 624 271 514 70 5 7 20

7 per cent 0 per cent 38 per cent 17 per cent 31 per cent 4 per cent 0 per cent 0 per cent 1 per cent
0.071 0.007 0.323 0.187 0.315 0.036 0.025 0.019 0.018

±0.004 ±0.001 ±0.005 ±0.004 ±0.003 ±0.002 ±0.001 ±0.001 ±0.001

f6 51 27 11 42 44 968 74 307 114
3 per cent 2 per cent 1 per cent 3 per cent 3 per cent 59 per cent 5 per cent 19 per cent 7 per cent

0.035 0.022 0.023 0.034 0.036 0.326 0.235 0.218 0.072
±0.002 ±0.002 ±0.001 ±0.002 ±0.002 ±0.004 ±0.002 ±0.002 ±0.003

f 0.06
6 36 46 11 40 35 713 95 458 204

2 per cent 3 per cent 1 per cent 2 per cent 2 per cent 44 per cent 6 per cent 28 per cent 12 per cent
0.026 0.036 0.017 0.034 0.029 0.271 0.235 0.24 0.112

±0.002 ±0.002 ±0.001 ±0.002 ±0.002 ±0.003 ±0.002 ±0.002 ±0.004

f 0.1
6 20 79 5 35 17 558 64 565 295

1 per cent 5 per cent 0 per cent 2 per cent 1 per cent 34 per cent 4 per cent 34 per cent 18 per cent
0.018 0.05 0.01 0.03 0.02 0.24 0.23 0.253 0.149

±0.001 ±0.003 ±0.001 ±0.001 ±0.001 ±0.003 ±0.002 ±0.002 ±0.004

�CDM 41 179 0 43 3 99 43 144 1086
3 per cent 11 per cent 0 per cent 3 per cent 0 per cent 6 per cent 3 per cent 9 per cent 66 per cent

0.027 0.141 0.005 0.04 0.014 0.087 0.111 0.129 0.445
±0.002 ±0.005 ±0.0 ±0.002 ±0.001 ±0.002 ±0.002 ±0.002 ±0.006

The overall classification success rate rises to 76 per cent and all
models besides f 0.06

6 and f 0.1
6 now show correct classification rates

of 74 per cent or clearly above. The probabilities of correctly clas-
sifying a single map in those two models are only 38 or 50 per cent,
respectively; however, a look at Fig. 8 reveals that they are correctly
classified as an ensemble and at high significance. Finally, it is worth
noting that none of the models shows any degeneracy with �CDM,
which is larger than 4 per cent according to Table 8.

4.5 Remarks on extracted features

After presenting the raw classification results for different methods,
we now briefly investigate what insight can be gathered into the
actual meaning and importance of specific features that drive the
classification success of different methods. To do so, we take a
closer look at the training process. The first important observation is

strikingly highlighted in Table 3, which shows that almost all of the
most discriminating wnd-charm features are Zernike coefficients
derived from the Fourier transform of the raw image or from the
Fourier transform of the edge- or wavelet-processed image. This
is interesting since Zernike polynomials were originally introduced
to describe the effects of certain optical elements such as lenses or
reflecting surfaces in optical imaging (Zernike 1934). This suggests
that a decomposition of mass maps into a function set that has a
well-defined physical meaning does indeed lead to a good general
representation of our data. In addition, all those features are derived
from transformations of the raw mass map, which shows the power
of filtering the input data as, e.g. shown by Peel et al. (2018a).
The ranking of the standard features shown in Table 2 is less
dominated by a single class, although the power spectrum and peak
counts seem most relevant. The good results with a neural network
as classifier show that the optimal combination of such classical
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Figure 5. Prediction statistics for the CNN at source redshift zs = 1. The
structure of the figure is the same as in Fig. 3. The CNN discriminates more
clearly between the models since both f4 realisations, f5 and �CDM are
now clearly distinguished. Problems remain for the different neutrino mass
realizations within f6 and f5 gravity. f 0.06

6 is incorrectly classified as f 0.1
6 .

Figure 6. Prediction statistics for the CNN and a source redshift of zs =
0.5. Compared to Fig. 5, the separation between the models becomes washed
out. Two misclassifications occur: f6 is incorrectly classified as f 0.06

6 and
f 0.06

6 is misclassified as f 0.1
6 . Also, the f 0.1

5 samples cannot be distinguished
as an ensemble from the f 0.15

5 ones since their prediction medians overlap
within the error bars.

features leads to a good classification even without the need for
additional descriptors.

CNNs often deliver superior results compared to other methods
for certain tasks, but it is often believed that they are harder to
understand and interpret. We are attempting to counteract this trend
by applying visualization techniques for the different filters linked
together in a deep neural network (Girshick et al. 2013; Szegedy
et al. 2013; Zeiler & Fergus 2013; Springenberg et al. 2014) and
in order to reveal the inner workings of the complex model. We
follow the approach of Simonyan, Vedaldi & Zisserman (2013) to
extract our filter responses.12 Starting from an image of random
numbers with the same shape as our mass maps, we retrieve the
output of every convolutional layer in the network and perform a
gradient ascent in order to maximize the response of those layers.

12Also see https://github.com/keras-team/keras/blob/master/examples/con
v filter visualization.py.

Figure 7. Prediction statistics for the CNN and a source redshift of zs = 2.
Only the f 0.1

6 model remains degenerate given the error bar on the median
of its sample predictions. In fact, it is misclassified as f 0.06

6 by the CNN.

While this is of course not a unique solution, the result of the final
iteration of the ascent represents an example that triggered a strong
response at a particular depth in the network. In Fig. 9, we show
a few examples. The top row shows the four channels that had the
strongest loss compared to the initial random image in CNN layer
one, that is the 3 × 3 convolution marked with index 2 in Table 6.
The second row shows the top four channel responses of the 3 × 3
convolution with stride two just above the input layer in Fig. B1. The
row marked with InceptionA shows the most responsive channels
among all four convolutions just below the concatenation layer in
Fig. B1 and equivalently for the figure rows marked InceptionB and
C. As is typical for CNNs (Zeiler & Fergus 2013), the very first
level extracts very regular horizontal and vertical stripe patterns
from the image. The stripes turn into a grid pattern deeper into the
network and once arriving at the end of the InceptionA layer we
can identify patterns of peaks and troughs that are either grouped
regularly or along larger structures. It is not surprising that the
earlier layers of the network, up to InceptionA, perform a global
filtering of the map that highlights structure as long as the image still
consists of a relatively large number of pixels. It is just from the finer
InceptionB layers onwards that more specific structures, like objects
that look like individual clusters or voids, are picked up. Such
detailed analyses of the inner structure of trained CNNs will lead
to a deeper understanding why those networks work so well. This
can potentially lead to the development of more specific algorithms
at lower numerical cost but with similar or better classification
performance.

5 C O N C L U S I O N S

We studied the ability of different kinds of machine learning
techniques to discriminate between highly degenerate cosmolog-
ical models, which combine the effects of MG and massive
neutrinos on structure formation. For this purpose, we used a
subset of the DUSTGRAIN-pathfinder simulation suite that consists
of �CDM and eight f(R) models of gravity in the range of
−1 × 10−4 ≤ fR0 ≤ −1 × 10−6. The neutrino masses in the
simulations span 0 eV ≤ mν ≤ 0.3 eV. Lensing convergence maps
produced from these simulations provided the input for the different
classification methods.

In order to characterize the mass maps, we used three different
approaches to feature extraction. Commonly used statistics in
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Table 8. The classification success matrix for the tomographic analysis using the CNN. The general structure of the table is the same as in Table 5. We see
good classification rates above 79 per cent and typically above 90 per cent for all models but the f6 family. Also, f6 with vanishing neutrino mass is correctly
classified 74 per cent of the time. The remaining degeneracies are limited to f 0.06

6 and f 0.1
6 with 38 and 50 per cent classification accuracy, respectively, but

given the error bars on the prediction mean the degeneracy is not significant for the ensemble of mass maps in the test set.

f4 f 0.3
4 f5 f 0.15

5 f 0.1
5 f6 f 0.06

6 f 0.1
6 �CDM

f4 1618 0 7 0 10 3 0 0 0
99 per cent 0 per cent 0 per cent 0 per cent 1 per cent 0 per cent 0 per cent 0 per cent 0 per cent

0.985 0.0 0.007 0.0 0.006 0.002 0.0 0.0 0.0
±0.002 ±0.0 ±0.002 ±0.0 ±0.001 ±0.001 ±0.0 ±0.0 ±0.0

f 0.3
4 0 1501 0 1 0 0 1 20 115

0 per cent 92 per cent 0 per cent 0 per cent 0 per cent 0 per cent 0 per cent 1 per cent 7 per cent
0.0 0.91 0.0 0.001 0.0 0.0 0.002 0.015 0.072

±0.0 ±0.006 ±0.0 ±0.0 ±0.0 ±0.0 ±0.001 ±0.002 ±0.005

f5 3 0 1257 2 375 1 0 0 0
0 per cent 0 per cent 77 per cent 0 per cent 23 per cent 0 per cent 0 per cent 0 per cent 0 per cent

0.001 0.0 0.748 0.002 0.247 0.001 0.0 0.0 0.0
±0.001 ±0.0 ±0.008 ±0.001 ±0.008 ±0.001 ±0.0 ±0.0 ±0.0

f 0.15
5 0 0 1 1470 96 22 7 2 40

0 per cent 0 per cent 0 per cent 90 per cent 6 per cent 1 per cent 0 per cent 0 per cent 2 per cent
0.0 0.0 0.001 0.873 0.071 0.015 0.009 0.004 0.027

±0.0 ±0.0 ±0.001 ±0.007 ±0.005 ±0.002 ±0.001 ±0.001 ±0.003

f 0.1
5 0 0 130 207 1289 12 0 0 0

0 per cent 0 per cent 8 per cent 13 per cent 79 per cent 1 per cent 0 per cent 0 per cent 0 per cent
0.001 0.0 0.104 0.148 0.74 0.008 0.0 0.0 0.0
±0.0 ±0.0 ±0.005 ±0.007 ±0.008 ±0.002 ±0.0 ±0.0 ±0.0

f6 0 0 0 15 1 1206 275 30 111
0 per cent 0 per cent 0 per cent 1 per cent 0 per cent 74 per cent 17 per cent 2 per cent 7 per cent

0.0 0.0 0.0 0.01 0.001 0.676 0.194 0.046 0.073
±0.0 ±0.0 ±0.0 ±0.002 ±0.0 ±0.008 ±0.005 ±0.003 ±0.005

f 0.06
6 0 0 0 7 0 363 627 319 322

0 per cent 0 per cent 0 per cent 0 per cent 0 per cent 22 per cent 38 per cent 19 per cent 20 per cent
0.0 0.0 0.0 0.005 0.0 0.226 0.344 0.233 0.191

±0.0 ±0.0 ±0.0 ±0.001 ±0.0 ±0.007 ±0.005 ±0.006 ±0.007

f 0.1
6 0 3 0 3 0 77 385 827 343

0 per cent 0 per cent 0 per cent 0 per cent 0 per cent 5 per cent 24 per cent 50 per cent 21 per cent
0.0 0.002 0.0 0.002 0.0 0.064 0.272 0.455 0.204

±0.0 ±0.001 ±0.0 ±0.001 ±0.0 ±0.004 ±0.005 ±0.008 ±0.008

�CDM 0 1 0 6 0 57 69 37 1468
0 per cent 0 per cent 0 per cent 0 per cent 0 per cent 3 per cent 4 per cent 2 per cent 90 per cent

0.0 0.001 0.0 0.006 0.0 0.039 0.059 0.044 0.85
±0.0 ±0.001 ±0.0 ±0.001 ±0.0 ±0.003 ±0.003 ±0.003 ±0.007

astrophysics such as, and among others, the power spectrum, peak
counts, and Minkowski functionals were combined into a single
feature vector. In order to probe features that are more common to
the field of computer vision and digital image processing, we used
the publicly available wnd-charm algorithm that produces a large
feature vector that combines a variety of common and more exotic
descriptors and statistics. As the most flexible method of feature
extraction, we used a CNN. For classification, we tested a nearest-
neighbour method in feature space and a fully connected neural
network.

We provide an overview of the classification results from Sec-
tion 4 in Table 9 and our results can be summarized as follows:

(i) Nearest-neighbour classifiers based on distances in feature
space are not delivering robust results. No matter if a small classical
feature vector is used or a longer version based on computer vision,

the total classification accuracy stays below 25 per cent. Eight, out
of the nine tested models, remain observationally degenerate.13

(ii) With the same classical or computer vision feature vectors, a
neural network delivers a much more robust classification than the
nearest-neighbour method. The total success rate for the classical
feature vector is 39 per cent and the number of degenerate models
reduces to three.

(iii) The longer feature vector containing 2919 features inspired
by computer vision delivers a slightly worse classification of
our models than the shorter vector with 99 classical descrip-
tors. The total classification success rate is 3 per cent lower and
the method produces one additional degenerate model. Some

13We declare a model as degenerate if the median and its error for the
predictions of a true test set class overlap with the median and its error of
the predictions for any other class.
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Figure 8. Prediction statistics on the tomographic analysis with the CNN.
For many classes, the classification is so good that the prediction samples
cluster around the optimal value of 1. All models are correctly classified
and within the error bars of the prediction medians, no model remains
observationally degenerate. Only small similarities remain between the three
f6 models of varying neutrino mass.

of the computer vision feature may very well be useful, but
currently we see no advantage of using features inspired by
digital image processing compared to features well-established in
cosmology.

(iv) A CNN delivers the best classification results with 52 per cent
correct classifications at source redshift zs = 1.0. The number of
degenerate models reduces to two, both of which are part of the
same f6 model of gravity.

(v) Classification success is clearly a function of mass map
source redshift. While going from zs = 1 to 0.5 the success rate
of the CNN decreases by 8 per cent and the number of degenerate
models increases by one. When going from zs = 1 to 2 the accuracy
increases by 7 per cent and the number of degenerate models reduces
by one. This increase of success rate with increasing redshift is not
surprising since more information relevant to structure formation
can be picked up along a deeper line of sight.

(vi) When using a CNN in a tomographic analysis of four
different mass map source redshifts along the same line of sight, all
observational degeneracies are fully broken. The total classification
success rate increases to 76 per cent.

Figure 9. Visualizations of the convolutional filters applied by the CNN at
different depths of the network.

A number of improvements to our methodology come to mind
and we reserve them for future work. First, the flexible features
derived by a CNN can be combined with fixed features that are
known to contribute to a successful classification of degenerate
models. Secondly, instead of working on the raw image data, a
clever transformation can be applied to the input data to enhance
features that allow for the desired discrimination. We attempt such
an approach in the context of machine learning in Peel et al. (2018b,
PRL submitted). In fact, the CNN used in this work applies such
transformations as we discussed in Section 4.5. A careful analysis of
the filtering process of a CNN at the early levels of its filter chain can
provide useful insights into the most powerful image transformation
for a given classification task. Furthermore, the careful analysis of

Table 9. A summary of the performance of the different methods used in this analysis. � indicates the feature extraction function as described in Section 3.2. ζ
is the classification function introduced in Section 3.3 and zs is the convergence map source redshift. ‘Degenerate classes’ represents the number of all models
for which the median and its error for the predictions of the true test set class overlap with the median and its error of the predictions for any other class. The
table also lists the performance for the particularly important �CDM class and shows the classification accuracy of each method for this model as well as
the largest misclassification rate and the associated model. A reference to the detailed results of each model is given in the last column, where the reference
‘repository’ points to the online repository mentioned in Section 3.4.

� ζ zs Total accuracy Degenerate classes �CDM performance Reference

classic nearest neighbour 1.0 22 per cent 8 14 per cent/15 per cent
(
f 0.3

4

)
repository

wnd-charm nearest neighbour 1.0 25 per cent 7 24 per cent/24 per cent
(
f 0.3

4

)
repository

classic neural network 1.0 39 per cent 3 47 per cent/16 per cent
(
f 0.3

4

)
Table 5, Fig. 3

wnd-charm neural network 1.0 36 per cent 4 42 per cent/24 per cent
(
f 0.3

4

)
repository

CNN neural network 0.5 44 per cent 3 52 per cent/15 per cent
(
f 0.3

4

)
Fig. 6

CNN neural network 1.0 52 per cent 2 66 per cent/11 per cent
(
f 0.3

4

)
Table 7, Fig. 5

CNN neural network 2.0 59 per cent 1 53 per cent/12 per cent
(
f 0.3

4

)
Fig. 7

CNN neural network 0.5,1.0,1.5,2.0 76 per cent 0 90 per cent/4 per cent
(
f 0.06

6

)
Table 8, Fig. 8
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the filters at a much deeper level of the network might actually lead
to more insights on structure formation in different models, since
it is at this deeper level where individual structure is characterized
and isolated by the algorithm.

Much work is left to be done before this machine learning
approach to the classification of mass maps in different cosmo-
logical models can be applied to real data. In this work, we limited
ourselves to optimal noise-free maps in order to see how different
methodologies compare under optimal conditions. The influence
of pixel shot noise, observational systematics, and practical issues
like masking and image artefacts needs to be studied in detail.
Furthermore, since the currently most successful methods use a
supervised training process with labelled data based on numerical
simulations, it needs to be carefully investigated how closely those
simulated maps resemble a real observation. Without this important
sanity check, even the best machine learning technique is useless
since it learns the wrong data.

AC K N OW L E D G E M E N T S

We would like to thank Ofer Springer for useful discussions
about deep learning. JM has received funding from the European
Union’s Horizon 2020 research and Innovation programme under
the Marie Skłodowska-Curie grant agreement no. 664931. AP
acknowledges support from an Enhanced Eurotalents Fellowship,
a Marie Skłodowska-Curie Actions Programme co-funded by the
European Commission and Commissariat à l’énergie atomique et
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A P P E N D I X A : W N D - C H A R M F E AT U R E S

The total length of the wnd-charm feature vector entails 2919
descriptors, which can be divided into five families. We provide an
overview of the features and their respective families in Table A1.
The algorithm does not only work on the image itself (raw),
but also on its Fourier (F), Wavelet (W), Chebyshev (C), or
Edge transformation (E) as indicated by the ‘Input’ column of
Table A1. Transformations of transformations are considered by
the bracket notation. While Fourier and Chebyshev transforms are
implemented using common algorithms and methodologies, the
Wavelet transformation is performed with a one-level filter pass with
a fifth-order symlet (Orlov et al. 2008) and the Edge transformation
is carried out using a Prewitt operator (Prewitt 1970) to approximate
the image gradient.

The pixel statistics family is made out of four different subclasses,
with the simplest being the intensity statistics consisting of mean,
median, standard deviation, minimum, and maximum. The multi-
scale histograms are calculated by using three, five, seven, or nine
bins to order the pixel amplitudes. The counts in each of those bins
make up the 24 features in this subclass. The combined moments
are mean, standard deviation, skewness, and kurtosis, which are
calculated in a horizontal stripe through the image centre and with
a width that is half the total image width. The stripe is then rotated
by 45, 90, and 135 deg and the measurement is repeated. Those
16 numbers are sampled into 3 bins each, providing a total of 48
features. The Gini coefficient (Abraham, van den Bergh & Nair
2003) is a measure of how equal the spectrum of pixel intensities is
distributed within the image.
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Table A1. wnd-charm image features used in this analysis.

Family Class Features Input Reference

Pixel Combined moments 48 raw, F, W, C, C(F), W(F) –
statistics F(W), F(C), C(W), E, F(E), W(E)

Gini coefficient 1 raw, F, W, C, C(F), W(F) Abraham et al. (2003)
F(W), F(C), C(W), E, F(E), W(E)

Multiscale histograms 24 raw, F, W, C, C(F), W(F) –
F(W), F(C), C(W), E, F(E), W(E)

Pixel intensity statistics 5 raw, F, W, C, C(F), W(F) –
F(W), F(C), C(W), E, F(E), W(E)

Polynomial Chebyshev coefficients 32 raw, F, W, C, F(W), E, F(E), W(E) –
decomposition Chebyshev–Fourier coefficients 32 raw, F, W, C, F(W), E, F(E), W(E) Orlov et al. (2006)

Radon coefficients 12 raw, F, W, C, C(F), W(F) Radon (1917)
F(W), F(C), C(W), E, F(E), W(E)

Zernike coefficients 72 raw, F, W, C, F(W), E, F(E), W(E) Teague (1980))

Textures Fractal analysis 20 raw, F, W, C, C(F), W(F) Wu et al. (1992)
F(W), F(C), C(W), E, F(E), W(E)

Gabor 7 raw Fogel & Sagi (1989)
Haralick 28 raw, F, W, C, C(F), W(F) Haralick et al. (1973)

F(W), F(C), C(W), E, F(E), W(E)
Tamura 6 raw, F, W, C, C(F), W(F) Tamura et al. (1978)

F(W), F(C), C(W), E, F(E), W(E)
Objects Edge features 28 raw Prewitt (1970)

Otsu object features 34 raw Otsu (1979)
Inverse Otsu object features 34 raw Otsu (1979)

The second feature family is comprised of polynomial decompo-
sitions. The coefficients of an order 20 Chebyshev and an order 23
Chebyshev–Fourier (Orlov et al. 2006) transformation are sorted
into 32 bin histograms. Radon transformations are carried out
along lines with an inclination angle of 0, 45, 90, and 135 deg
with respect to the image horizontal (Radon 1917) and ordered
in 3 bin histograms. The class of Zernike coefficients is derived
from a 2D Zernike decomposition of the image (Teague 1980)
and the first 72 of those coefficients contribute to the feature
vector.

The use of textures is common in image processing and is
a way of describing spatial correlations of intensity values. We
extract seven Gabor filters (e.g. Fogel & Sagi 1989) using Gaussian
harmonic functions and define their image occupation area as a
feature. Tamura textures are described in detail in Tamura, Mori &
Yamawaki (1978) and wnd-charm uses contrast, directionality,
coarseness sum, and coarseness binned into a 3 sample histogram.
The 28 Haralick textures are specific properties of the grey-level
dependence matrix of the image and are described in Haralick,
Shanmugam & Dinstein (1973). The fractal analysis is based on a
Brownian motion model of the image following Wu, Chen & Hsieh
(1992) andwnd-charm uses the first 20 parameters of this analysis
as features.

Object statistics are only derived from the raw image data. The
starting point is an edge transform using a Prewitt filter and mean,
median, variance, and 8 bin histogram of both image gradient and its
directionality add up to 22 features, which are supplemented by the
total number of edge pixels, their genus, and the differences between
the directionality bins. Otsu features and their inverse are calculated
after the application of an Otsu threshold (Otsu 1979). Finally, for
all objects the algorithm calculates minimum, maximum, mean,
median, variance, and 10 bin histogram for area and image-centre
distance of all Otsu objects in the image.

APPENDI X B: DEEP NEURAL NETWORK S

In this appendix, we collect some more detailed information about
deep neural networks. The first section formally defines all network
layers used in this work and the second section deals with activation
functions. The third section provides a thorough description about
the architecture of the CNN that we use in our analyses.

B1 Layers

Given a 2D input vector Iijc with #Iijc = (X, Y , l), a convolution
layer applies the following operation to produce an output Oijc

Conv(n,m, �i,�j, p, C)Ii′j ′c′ = Oijc (B1)

Oijc = Bc +
n∑

i′=1

m∑
j ′=1

l∑
c′=1

Wc
i′j ′c′I(i�i+i′)(j�j+j ′)c′ (B2)

wconv = {
Bc, Wijc

} ∀c (B3)

#Oijc =
(

X

�i
,

Y

�j
, l

)
for p = s (B4)

#Oxyc =
(

X

�i
− n

2
,

Y

�j
− m

2
, C

)
for p = v. (B5)

The stride parameters �i and �j allow one to implement dimen-
sional reduction. The parameter p indicates if the input data are
padded, which means that additional rows and columns are added
in order to produce an output that has exactly the same spatial shape
as the input, at least in the absence of stride. This is known as same
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Figure B1. The internal structure of the stem Inception layer. The layout
is identical to Szegedy et al. (2016), but with the image dimensions of our
mass maps.

padding p = s. Alternatively, the data can stay unaltered, or valid
p = v, which means that the spatial dimensions of the data vector are
slightly reduced, since every convolution must be fully contained
within the 2D image domain.

We use four different kinds of pooling layers. Their main
functionality is either an averaging

AvgPool(n,m, �i, �j, p)Ii′j ′c = Oijc (B6)

Oijc = 1

nm

n∑
i′=1

m∑
j ′=1

I(i�i+i′)(j�j+j ′)c (B7)

#Oijc =
(

X

�i
,

Y

�j
, C

)
for p = s (B8)

#Oijc =
(

X

�i
− n

2
,

Y

�j
− m

2
, l

)
for p = v, (B9)

or a maximum selection operation

MaxPool(n, m)Ii′j ′c = Oijc (B10)

Oijc = max
{
I(i�i+i′)(j�j+j ′)c

}n,m

i′=1,j ′=1
(B11)

#Oijc =
(

X

�i
,

Y

�j
, l

)
for p = s (B12)

#Oijc =
(

X

�i
− n

2
,

Y

�j
− m

2
, l

)
for p = v. (B13)

Both pooling layers exist also as global versions, indicated by
GlobalMaxPool and GlobalAvgPool, where all entries in a channel
are considered for either the maximum or averaging operation. In
this case, the shape of the output reduces to (1, 1, l).

A concatenation layer performs a stacking operation along the
c-axis, which means that the spatial dimensionality of each input
Iijc must be the same (X, Y).

Concatenate(Iijc1 , ..., Iijcn
) = Oijc (B14)

Oijc = Iijc1 ⊕ ... ⊕ Iijcn
(B15)

#Oijc = (X, Y , C1 + ... + Cn) , (B16)

where the ⊕ operator implements the channel stacking. The respec-
tive number of input channels is C1, ..., Cn for a concatenation of n
layers.

Fully connected, sometimes called affine, layers create a linear
mapping between the input and the output

FC(n)Iijc′ = Oijc (B17)

Oijc′ = Bij +
X∑

k=1

Ac′kIijk (B18)

wFC = {
Bij , Ac′k

}
(B19)

#Oij = (1, 1, n). (B20)

Here, we assume that the input layer has a simple 1D shape (1,1,X).

B2 Activation functions

We use three kinds of activation functions. Feature extraction
layers such as convolution and pooling layers are often followed
by ReLUs or its generalization that is commonly called a leaky
ReLU

ReLU(x) = max(0, x) (B21)

leakyReLU(x; α) =
{

x x ≥ 0

αx otherwise.
(B22)

The last fully connected layer in a neural network that is
used for classification is often followed by softmax function
in order to produce predictions in the final output of the

Figure B2. InceptionA layer of our CNN, based on Szegedy et al. (2016).
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Figure B3. ReductionA layer of our CNN, based on Szegedy et al. (2016).

network

Softmax(x)n = exp xn

N∑
j=1

exp xj

for n = 1, ..., N. (B23)

B3 CNN architecture

In Section 4.3, we described the global structure of our CNN,
which is largely based on Szegedy et al. (2016). Here, we describe
in detail the purpose of each of the functional elements that are
shown in Table 6. After three conventional 3 × 3 convolutions for
initial feature extraction and dimensional reduction, we enter the
StemInception layer, which is shown in detail in Fig. B1. In our
CNN, the purpose of the stem layer is twofold. First, it further
reduces the data vector from 125 × 125 pixels down to 29 × 29
pixels, which is a computationally manageable size for applying a
large number of convolution channels. Secondly, it already applies
a more refined combination of 3 × 3, 7 × 7, and 1 × 1 convolutions.
The latter only have the purpose of channel reduction as explained
in Szegedy et al. (2016). The stem layer is followed by the three
main inception layers A, B, and C. The main purpose of those
layers is feature extraction, with a particularly large number of
convolutions of varying kernel size. Between the main feature
extraction layers, we insert reduction layers, breaking up the image
further into smaller postage stamps and allowing the application of
a larger number of convolution channels within acceptable runtimes
and within the memory constraints of the hardware we deploy. The
very last concatenation layer of InceptionC is followed by a global
averaging layer and a single fully connected layer for classification.

The ReductionA layer, shown in Fig. B3, consists of a relatively
simple combination of 3 × 3 convolutions and a MaxPooling
layer. The purpose of this network module is to reduce the spatial
dimension of the images from 29 × 29 pixels down to 14 × 14 in
order to allow for large convolutions in the following InceptionB
layer, which is shown in Fig. B4. This module consists of larger
7 × 7 convolutions, split into perpendicular stripes for runtime

reasons and hence makes an important contribution in the feature
extraction process. Reduction layer B, shown in Fig. B5, reduces the

image dimensionality further from 14 × 14 to 6 × 16 with a rather
complicated combination of convolutions. It is followed by the final
InceptionC layer shown in Fig. B6, which naturally applies only
small convolution but using a particularly large amount of channels.

Figure B4. InceptionB layer of our CNN, based on Szegedy et al. (2016).

Figure B5. ReductionB layer of our CNN, based on Szegedy et al. (2016).

Figure B6. InceptionC layer of our CNN, based on Szegedy et al. (2016).
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