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Abstract: In this study, we investigated the directional heating of graphene oxide (GO) dispersion
to generate a temperature gradient and form a simulated “ocean current” inside the dispersion so
that GO sheets could be aligned in a directional manner and then reduced and self-assembled into
anisotropic reduced graphene oxide (rGO) gel. After freeze-drying and varying degrees of vacuum
microwave treatment, anisotropic chemically derived graphene aerogels (AGAs) were obtained.
Through performance detection and the analysis of the results, it was verified that the AGAs with
certain characteristics of “ocean current” were prepared in this experiment, and its axial direction has
obvious directional arrangement. After being treated by vacuum microwave for a short time (1 min.),
the axial thermal conductivity of the composite materials (AGA-adsorbed paraffin) was observed
to be 1.074 W/mK, and the thermal conductivity enhancement efficiency was 995%; as compared
with similar thermal conductivity enhancement composites that were found in previous studies,
the proposed method in this paper has the advantages of simple processing, high efficiency, and
energy conservation.
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1. Introduction

One application of graphene is to assemble two-dimensional (2D) graphene sheets into
three-dimensional (3D) graphene aerogels (GAs). These GAs have ultra-high porosity and large
specific surface area. When combined with the excellent properties of graphene itself, it has broad
prospects in many applications, such as chemical adsorption [1,2], energy storage [3–5], batteries [6,7],
and sensors [8,9]. Many studies have reported the use of GAs for energy storage. Yang et al. prepared
GA phase-change energy storage materials with stable shape [10]. Zhong et al. studied the excellent
performance of GAs in energy management [11]. Dong [12], Yang [13], Xu [14], and Wang [15] et al.
studied the application of GAs in thermal energy storage and energy management through different
preparation and research methods. These researchers all took advantage of GA’s high porosity,
ultra-high specific surface area, and the super-hydrophobicity and ultra-high thermal conductivity of
graphene itself to solve the problems of leakage, unstable circulation, supercooling, and low thermal
conductivity in the phase-change energy storage process.
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GAs is generally prepared by the hydrothermal method [16] or organic sol-gel method [17], in
which reduced graphene oxide (rGO) hydrogels are first prepared, and then GAs are obtained by
freeze drying or supercritical drying. The GAs that were prepared with these methods are isotropic;
the internal rGO sheet unit combination is desultorily, heat conduction pathways become disordered,
phonon scattering is significant, and the contact thermal resistance increases, which thereby affects the
heat transfer of the GAs. Therefore, some researchers have proposed anisotropic GAs, which have a
relatively regular arrangement of graphene sheets, which greatly improves their thermal conductivity
in one direction. At the same time, in a regular direction, GAs exhibit a high compression ratio, and
the rebound rate can reach almost 100%. Therefore, they have great application advantages in heat
management and high-compression materials. Peng et al. prepared directional GAs by the ice crystal
template method, which greatly enhanced the longitudinal heat conduction [18]. Li et al. prepared
anisotropic GAs by the directional freezing of liquid nitrogen and studying the effect of directional
freezing with liquid nitrogen on the formation and thermal conductivity of GAs in detail [19]. The
results showed that the thermal conductivity in the vertical direction was approximately six times
that in the transverse direction after it was composited with epoxy resin, and the maximum thermal
conductivity enhancement efficiency was as high as 5890%.

However, in these studies, the authors prepared the anisotropic GAs by the directional freezing
(ice crystal template) method, that is, by applying a cold source to the prepared wet gel in a certain face
to make the ice crystal grow in a certain direction and then extrude the graphene sheet to arrange along
the crystal surface. The process of directional freezing is complicated, and the degree of reduction,
speed, and size of crystal growth must be controlled. Sometimes, pre-reduction is required, followed
by directional freezing, thawing, and thorough reduction. Otherwise, the binding of graphene sheets
will be stronger after a high degree of reduction; this is not conducive to directional freezing, which
leads to poor regularity of pores and poor control of pore size. While using 3D printing technology,
Zhang et al. prepared graphene aerogels with controllable pores and macro directions. However, the
aerogel features only macroscopic anisotropy, while microscopic isotropy, and the graphene sheets
inside are still in disordered arrangement, not being conducive to heat transfer [20].

Ocean currents inspired this study, that is, liquid flowing from high-temperature areas to
low-temperature areas, prompting the formation of “line flow” inside the liquid. In a graphene oxide
(GO) dispersion, the two-dimensional structure of GO sheets, will lead them parallel to the direction
of the line flow inside the dispersion (as the vertical direction resistance is too large, GO sheet will
automatically rotate to the parallel direction). Therefore, after being reduced, the rGO sheets in the
self-assembled rGO gel will be parallel to the direction of line flow or at an acute angle. This heat flow
method is easy to operate and the reduction and orientation can be completed in one step.

2. Materials and Methods

2.1. Preparation of Anisotropic Chemically Derived Graphene Aerogels (AGAs)

GO was prepared by the improved Hummer’s [21] method. Firstly, 5 g of expanded graphite was
added to a triangle flask containing 450 mL concentrated sulfuric acid and 50 mL phosphoric acid.
After 30 min. of mechanical stirring at room temperature, 30 g of potassium permanganate was added
slowly, followed by stirring for another 30 min.; the dispersion was then slowly heated to 50 ◦C for
a constant-temperature reaction for 3 h. The reaction liquid was then cooled to room temperature,
and then cooled below 5 ◦C in an ice bath. Subsequently, 600 mL of ice water was slowly added; the
dispersion temperature was maintained below 5 ◦C during the adding process. Finally, 30 mL of 30%
hydrogen peroxide was added. The GO samples were obtained after centrifugal washing and drying.

Next, 0.1 g of GO was added into a glass bottle, and 50 ml of 30% ethanol solution was added
to obtain the GO dispersion with a concentration of 2 mg/ml. After the dispersion was placed in an
ultrasonic bath for 1 h, 500 µL of concentrated ammonia water was added and stirred evenly; then,
the glass bottle was placed into the hydrothermal reduction device. In the device, the temperature
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was programmed to rise from 30 ◦C to 130 ◦C within 8 h, and then kept at that temperature for 1 h to
obtain wet gel. Next, it was soaked in deionized water for 48 h, during which the water was changed
six times. After that, it was frozen at −45 ◦C for 3 h, and then freeze-dried for 48 h. Finally, it was
microwaved under vacuum to obtain AGA.

Figure 1 shows the preparation process and device. In this experiment, samples with different
concentration and microwave treatment time were prepared and labeled CxWy (shown in Table 1),
where x is the GO concentration (mg/mL) and y is the microwave treatment time (min.).
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Figure 1. Schematic diagram of Anisotropic Chemically Derived Graphene Aerogels (AGAs) preparation
steps. A digital image of the AGA’s longitudinal section (a) and a digital image of the AGA’s cross
section (b); a digital image of the AGA before and after microwave treatment (c).

Table 1. Sample Numbers for different graphene oxide (GO) concentrations and microwave
treatment times.

Sample Number GO Concentration (mg/mL) Microwave Processing Time (min)

C2W0 2 0
C2W1 2 1
C4W1 4 1
C8W0 8 0
C8W1 8 1
C8W5 8 5

C8W20 8 20

Some AGA samples were immersed into heated and melted paraffin wax (Guangzhou Reagent,
#52), absorbed by vacuum for 30 min., and then taken out and naturally cooled to obtain AGA/paraffin
composite material, denoted as PCxWy.

2.2. Performance and Structure Characterization

Thermogravimetric analysis (TGA) of the AGA samples was performed while using a synchronous
thermal analyzer (Mettler Toledo TGA 2). Approximately 5 mg of sample was put into an alumina
crucible, and then heated from 50 ◦C to 300 ◦C or 1080 ◦C at a rate of 10 ◦C/min. under a nitrogen rate
of 50 mL/min.

Thermal performance analysis of samples were measured by a Differential scanning calorimeter
(DSC, TA Q2000) at a scanning rate of 10 ◦C min−1.

An ESCALAB 250Xi (Thermo Fisher Scientific) was used for X-ray electron spectroscopy (XPS)
detection, with the following parameters: Monochrome Al Ka (hv = 1486.6 eV), power 150 W, 500 µm
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beam speckle. The binding energy was calibrated at C1s 284.8. Xpspeak41 software was used for peak
fitting, with 20% Gaussian and 80% Lorentzian fixed and Shirley background mode being adopted.

The microstructures of the AGA samples were analyzed by scanning electron microscopy (SEM)
with a Carl Zeiss EVO18 microscope (Carl Zeiss, Jena, Germany). The sample was placed on conductive
adhesive for observation without gold spraying.

Raman spectroscopy was carried out by a microscope confocal Raman spectrometer (Horiba Jobin
Yvon LabRAM HR800) with a wavelength of 633 nm. The in-plane crystal size of the sample was
calculated by the following formula [22]

La(nm) = 2.4 × 10−10
× λlaser

4 (ID/IG)−1 (1)

where λ is the Raman detection wavelength.
X-ray diffraction (XRD) testing was performed by a Brucker D8 Advance (Germany), with the

following conditions: Voltage 40 kV, current 40 mA, step length 0.02◦, test speed 0.1 s/step, copper
target, and ray wavelength 0.15418 nm.

The average crystal size of the samples was calculated by the Scherrer formula [23]:

Lc = 0.89λ/(B1/2(2θ) × cos(θ)) (2)

where λ and B1/2(2θ) are the X-ray diffraction wavelength and the full width at half maximum in radian
units, respectively.

The thermal conductivity of AGA and paraffin composite materials was measured while using
the transient hot wire method on a thermal conductivity meter (XIATECH TC3100, China).

The enhancement efficiency in thermal conductivity of the paraffin composites can be calculated by

η = (K − Km) / (100 × V × Km) × 100% (3)

where η is the thermal conductivity enhancement efficiency; Km and K are the thermal conductivities
of paraffin and its composite, respectively; and, V is the volume content of AGA in the composite.

3. Results and Discussion

In this study, directional AGA samples were prepared by the heat flow method, their physical and
chemical properties were tested, and the thermal conductivity enhancement of the composites was
studied after the adsorption of paraffin. Figure 1 illustrates the preparation steps of the AGA samples.
A glass bottle containing GO dispersion was supported by a stainless steel cylinder in a reactor, which
was placed in an oven for hydrothermal reduction. As shown in Figure 1a, the internal structure of the
AGA adopts the shape of ocean currents and, in Figure 1b, an inner ring is observed. This inner loop
occurs because the rGO sheets are parallel to the bottom at the point where the heat flow rotates (i.e.,
the interface where the heat flow changes from rising to falling). After vacuum microwave treatment,
AGA shows a noticeable metallic luster, as shown in Figure 1c (left). A directional AGA was found in
the SEM image in Figure 2, similar to the heat flow direction. It is obvious that the heat flow direction
is highly similar to the direction of AGA formation. From the side view of the aerogel (Figure 3a,b), it
can be observed that the AGA has a lamellar structure, which confirms that the rGO sheet is parallel to
the direction of heat flow. rGO is laminated and aggregated on the isofluidics and crosslinked between
non-isofluidics to form gels. As seen in Figure 3c,d, there is indeed a large number of rGO sheets
crosslinked between the two layers, which result in a bridge structure, which makes the connections
between the layers close and forms a relatively dense network structure.
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the top views of the AGA

TGA testing was carried out to further reveal the thermal stability of the aerogel; the results
in Figure 4 show that GO experienced two significant mass loss conditions. The first occurred near
100 ◦C, which was the mass loss of adsorbed water, and the second occurred near 200 ◦C, which was
the dissociation of oxygen-containing groups; this was the major mass loss condition of GO. After
hydrothermal reduction, most of the oxygen-containing groups have been reduced and eliminated,
and no obvious weight loss can be seen near 200 ◦C. The weight loss of the samples that were treated
by microwave at 100 ◦C is less than that of the samples not treated by microwave, which indicates
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that the absorbed water content is reduced and the hydrophilic groups (such as oxygen-containing
groups and nitrogen-containing groups) are reduced. In addition, from 200 ◦C to 600 ◦C, the samples
that were treated by microwave have little or no weight loss, which further indicates the decrease of
hydrophilic groups. This implies that the oxygen-containing or nitrogen-containing groups that fail
to be eliminated after hydrothermal reduction lose some weight after microwave treatment, which
was also verified in the subsequent XPS analysis. After 1 min. of microwave treatment, the mass
loss of the high-concentration samples at 100 ◦C is less than that of the low-concentration samples,
possibly because the pore wall of the high-concentration samples is thicker and the specific surface
area is smaller than that of the low-concentration samples (it is difficult for moisture to enter adjacent
layers and the adsorbed moisture is mainly concentrated in the pore surface or capillary of the aerogel).
Therefore, the area of adsorbed water is smaller than that of the low-concentration samples, which
results in less weight loss of water. However, as the temperature increases, the microwave-treated
samples begin to lose weight again near 600 ◦C, which due to the decomposition of the remaining
oxygen-containing and nitrogen-containing groups after hydrothermal reduction and microwave
treatment (it was verified in the subsequent XPS analysis, that is, after 20 min. of microwave treatment,
AGA still contained 7. 5 wt% O and 8.5 wt% N).

 6 of 15 

 

groups and nitrogen-containing groups) are reduced. In addition, from 200 °C to 600 °C, the samples 

that were treated by microwave have little or no weight loss, which further indicates the decrease of 

hydrophilic groups. This implies that the oxygen-containing or nitrogen-containing groups that fail 

to be eliminated after hydrothermal reduction lose some weight after microwave treatment, which 

was also verified in the subsequent XPS analysis. After 1 min. of microwave treatment, the mass loss 

of the high-concentration samples at 100 °C is less than that of the low-concentration samples, 

possibly because the pore wall of the high-concentration samples is thicker and the specific surface 

area is smaller than that of the low-concentration samples (it is difficult for moisture to enter adjacent 

layers and the adsorbed moisture is mainly concentrated in the pore surface or capillary of the 

aerogel). Therefore, the area of adsorbed water is smaller than that of the low-concentration samples, 

which results in less weight loss of water. However, as the temperature increases, the microwave-

treated samples begin to lose weight again near 600 °C, which due to the decomposition of the 

remaining oxygen-containing and nitrogen-containing groups after hydrothermal reduction and 

microwave treatment (it was verified in the subsequent XPS analysis, that is, after 20 min. of 

microwave treatment, AGA still contained 7. 5 wt% O and 8.5 wt% N).  

 

Figure 4. Thermogravimetric analysis (TGA) curves of different samples. 

The dissociation and content of oxygen-containing groups in the AGA samples were further 

studied through XPS detection and analysis. Table 2 shows the energy spectrum peaks of C1s, O1s, 

and N1s in different groups reported in the literature. As can be seen from the C1s fitting curve in 

Figure 5, after hydrothermal reduction and microwave treatment, sp2 carbon (C=C) content 

increased, C=O significantly decreased, and almost all COOR was reduced, leaving only a small 

amount of C=O and C-O (C-N). After microwave treatment, the peak position shifted to the right, 

which indicated that C=O and C-O were decomposed, while C=O conj and C-N were not 

decomposed. This result is verified with Figures 6 and 7. After microwave treatment for 20 min., C=O 

was significantly reduced, but C=O conj bond increased, with an O content of 7.6% and an N content 

of 8.5%. This is corroborated by the O1s fitting curve in Figure 6, except that the content of C=O conj 

bond increases in the sample after reduction (consistent with the research results in the literature [24], 

which is attributed to the C=O bond and C=C conjugate); other oxygen-containing groups all 

significantly decrease to different degrees. However, the moisture content of the samples without 

microwave treatment and treatment for a short time (1 min.) is still high, which verifies the mass loss 

near 100 °C observed in the TGA results.  

Figure 4. Thermogravimetric analysis (TGA) curves of different samples.

The dissociation and content of oxygen-containing groups in the AGA samples were further
studied through XPS detection and analysis. Table 2 shows the energy spectrum peaks of C1s, O1s,
and N1s in different groups reported in the literature. As can be seen from the C1s fitting curve in
Figure 5, after hydrothermal reduction and microwave treatment, sp2 carbon (C=C) content increased,
C=O significantly decreased, and almost all COOR was reduced, leaving only a small amount of C=O
and C-O (C-N). After microwave treatment, the peak position shifted to the right, which indicated
that C=O and C-O were decomposed, while C=O conj and C-N were not decomposed. This result is
verified with Figures 6 and 7. After microwave treatment for 20 min., C=O was significantly reduced,
but C=O conj bond increased, with an O content of 7.6% and an N content of 8.5%. This is corroborated
by the O1s fitting curve in Figure 6, except that the content of C=O conj bond increases in the sample
after reduction (consistent with the research results in the literature [24], which is attributed to the
C=O bond and C=C conjugate); other oxygen-containing groups all significantly decrease to different
degrees. However, the moisture content of the samples without microwave treatment and treatment for
a short time (1 min.) is still high, which verifies the mass loss near 100 ◦C observed in the TGA results.
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Table 2. Assignments of the O1s, C1s, and N1s peaks according to the literatures [25–27].

C1s O1s N1s
Species Range(eV) Species Range(eV) Species Range(eV)

C=C 284.6 C=O,conj [28] 530.7 N-Pyr. 398.5
C-O,C-N 286.3 C=O 531.5 -NH2 400.0

C=O 287.2 C-O-C 532.6 N-Quat. 401.2
COOR 288.9 C-O 533.5 N-Pyr. Ox. 402.5

H2O 534.0
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Figure 7 shows the fitting curve of N1s. It can be seen from the figure that the content of N can be
reduced to some extent by microwave treatment. From the peak shape change, this is mainly due to
the dissociation of -NH2. The difference in N content without microwave treatment and after 1 min. of
treatment might be caused by the difference in local areas of XPS scanning.

The physical properties of the AGA samples were characterized by XRD. From the XRD curves
shown in Figure 8, it can be seen that the GO characteristic diffraction angle appears at 9.7◦. This is
due to oxidation-intercalation, and the adsorption of water, which expands the layer spacing, which
shifts the diffraction angle to the left. After hydrothermal reduction, the peak moves to the right
and then appears near 24.4 ◦, and the peak at 9.7◦ almost disappears [29]. XPS analyses shown that
there was still approximately 14.4 wt% (C8W0) oxygen content after hydrothermal reduction. These
oxygen atoms form covalent bonds with carbon atoms, which increase the graphite lattice along the
c-axis, and reduce the diffraction angle of the reduced graphite. However, after microwave treatment,
oxygen-containing groups further decompose and leave [30], which makes the lamination between
layers more compact; its diffraction angle of 26.1◦ is quite close to that of natural graphite (26.5◦).

Figure 9 shows the normalized Raman curves for different samples. As shown in the figure, the
disordered vibration peak of graphene, the D peak, appeared near 1330 cm−1; it was caused by the
lattice vibration leaving the center of Brillouin region and it is used to characterize the structural defects
of the graphene samples. The vibration peak of sp2 in-plane, the G peak, appeared near 1600 cm−1,
which represents a large deviation from 1580 cm−1 of graphene. As can be seen from Figure 9b, with
the increase in microwave processing time, the intensity of the G peak does not significantly increase,
and ID/IG does not show a significant decreasing trend. Although a longer microwave treatment
time causes a higher reduction degree (lower oxygen content), at the same time more fragments are
generated, which leads to an increase in the boundary effect and an increase in the intensity of the D
peak [31,32]. In-plane crystal size La [33] and average crystal size Lc (Table 3) also decrease with the
extension of microwave processing time, which also confirms that a longer microwave processing time
causes a higher reduction degree and it generates more fragments at the same time.
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Table 3. Lc and La of AGAs with different microwave treatment durations.

Samples Lc (nm) La (nm)

C8W1 4.0 31.0
C8W5 2.4 30.4
C8W20 1.4 30.0
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The thermal properties of AGA adsorbed paraffin were studied by DSC and thermal conductivity
testing. According to the DSC curve in Figure 10, the addition of AGA changes the phase transition
temperature of paraffin. The addition of AGA reduces the supercooling of paraffin by 1.9 ◦C at most,
as shown by the changes in the subcooling degree of AGA/paraffin composite materials in Table 4.
AGA after microwave treatment can better reduce the subcooling degree of paraffin, but a longer
treatment time does not improve the effect of reducing the subcooling degree. This is because the
thermal conductivity of graphene has a close relationship with the in-plane crystal size La. A smaller
La results in a smaller thermal conductivity, and a higher ID/IG value indicates that the high boundary
effect and defects lead to high phonon scattering and high thermal resistance, which thus reduces
the thermal conductivity of AGA. The results and analysis of Raman spectra and XRD indicate that
the extension of microwave treatment time does not significantly reduce the ID/IG value, but it does
decrease the crystal size La. As a result, the supercooling degree of PC8W1 is relatively low, but there
is no significant difference between PC8W5 and PC8W20. Usually, a longer microwave processing time
is associated with higher temperature and the annealing effect, and the AGA graphite structure can be
better restored, but perhaps in this experiment, the laboratory-made vacuum microwave processing
equipment caused microwave energy losses, which resulted in insufficiently high temperatures (in the
experiments, only a flash was observed, rather than a red-hot phenomenon), and the vacancies and
defects of the rGO could not be repaired. Li et al. found that the oxygen-containing groups could be
completely removed only after annealing above 1500 ◦C, upon which the repairs to vacancies and
defects could be observed. It may also be that the reduction at a lower temperature, which has the
positive effect on thermal conductivity enhancement of sp2 domain (generated by rGO), is weaker
than the negative effect of phonon scattering that is caused by boundaries or stacks. Fan et al. also
found that the thermal conductivity of high-density AGAs after annealing at 450 ◦C is lower than that
without annealing [34].
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Table 4. Subcooling degree of AGA/paraffin composite materials.

Samples Paraffin PC8W0 PC8W1 PC8W5 PC8W20

Supercooling degree (◦C) 6.1 5.5 4.2 4.8 4.5

Reduce degree (◦C) - 0.6 1.9 1.3 1.6

As can be seen from the axial-direction temperature-change curves over time in Figure 11a,c–f,
the AGA/paraffin composite materials reach the equilibrium temperature in a relatively short time,
especially when treated by microwave. This indicates that AGAs accelerate the diffusion of heat, and
the thermal conductivity is improved. Figure 11b shows the axial and radial thermal conductivity and
thermal conductivity enhancement efficiency of different samples. Among them, PC8W0’s thermal
conductivity enhancement effect is not obvious, because a considerable part of oxygen-containing
groups (oxygen content up to 14.4 wt%) and nitrogen-containing groups remain, although most
oxygen-containing groups can be removed by a hydrothermal reduction reaction. The presence of
these groups will seriously affect the integrity of the graphite structure, thereby affecting the thermal
conductivity effect [30,35,36]. For the AGAs that were treated by microwave, the contents of both
oxygen and nitrogen-containing groups were significantly reduced. Moreover, Raman and XRD
analysis showed that the integrity of the AGA graphite structure was improved, so the thermal
conductivity significantly increased. The maximum axial thermal conductivity was 1.074 W/mK
(0.32 vol %), and the thermal conductivity enhancement efficiency was 995%. However, the extension
of microwave treatment time causes an improvement in the reduction degree, which leads to an
increase in rGO fragments and interfacial thermal resistance. Therefore, the improvement of thermal
conductivity is not obvious with the extension of microwave treatment time. It can be seen from
Figure 11b that the anisotropic AGA/paraffin composites that were prepared by the heat flow method
have significant differences in thermal conductivity between the axial and radial directions. This is
because the directionally arranged rGO sheets in the axial direction have a large contact area, which
can reduce the contact thermal resistance and form a more perfect thermal conduction path. However,
the radial contact points and areas are smaller than those in the axial direction, which leads to a loose
interconnection network and increases the contact thermal resistance [37].

Many studies have reported that graphene enhances thermal conductivity, and many factors that
affect the thermal conductivity of graphene composites have also been reported. In addition to the
influence of the quality of the graphene itself (such as size [38], thickness, defects, and shape [39])
and the macroscopic structure of graphene (such as the presence of a 3D network structure, density,
and pore characteristics), it is also related to the composite materials. Different levels of compatibility
between different composites (e.g., paraffin, resin, and silicone) and graphene interfaces also lead to
different thermal resistance at the graphene-composite interface, which thus leads to different degrees
of enhanced thermal conductivity. From the results of references [40] and [11], as shown in Table 5, one
is adsorbent paraffin, and the other is adsorbent octadecanoic acid; the GAs preparation and treatment
methods are the same, but the thermal conductivity enhancement efficiency is quite different (the
former is 1144%, and the latter is 66.7%). Of course, there are other reasons mentioned previously.
Table 5 compares the results of several recent studies on the thermal conductivity enhancement of
graphene paraffin composites. It is clear that the thermal conductivity enhancement efficiency of AGAs
that were prepared by the heat flow method in this study is quite good, but the effect is not as good as
that of reference [40], which was possibly because the latter is well repaired after annealing. The axial
thermal conductivity enhancement efficiency of reference [19] is as high as 5890%. The main reason is
that the defects and vacancies of graphene can be well repaired by annealing at a high temperature
for a long time to obtain a high-quality graphene. Moreover, an anisotropic GA can be obtained after
directional freezing, to reduce the thermal resistance in the axial direction.
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Table 5. Comparison of graphene-enhanced heat conduction reported in the literature with that of
this study.

Samples Loading k, W/(mK) Preparation Methods η,year

Graphene/Paraffin 3 wt% 0.274 rGO 27% [41]
GAs/Paraffin 2 wt% 2.111 rGO + Annealing (1000 ◦C, Ar,30 min.) 1144% [40]

Graphene foam /Paraffin 2.54 vol% 1.82 rGO + CVD 226% [42]
Graphene/Paraffin 0.4 vol% 0.418 rGO 586% [43]
Graphene/Paraffin 8 wt% 1.73 - a 162% [44]
GO/CNTs/Paraffin 1.314 wt% 0.813 rGO + CNT 605% [45]

AGAs/Paraffin 0.32 vol% 1.074 rGO + Wave(800 W,vacuum,1 min.),
Anisotropy 995%, this work

GAs/Epoxy resin 0.75 vol% 6.57 rGO + Annealing (2800 ◦C, Ar, 2 h),
Anisotropy 5890% [19]

GAs/Octadecanoic acid 20 vol% 2.635 rGO + Annealing (1000 ◦C, Ar, 30 min.) 66.7% [11]

Note: a, the author didn’t provide the preparation method of graphene.

As shown in Table 5, the preparation of graphene composites with high thermal conductivity
enhancement efficiency can be considered from the following aspects: 1. It is necessary to have a
good 3D thermal conductivity network (such as aerogel), or to increase the content, so that graphene
fillers can connect with each other to conduct heat. 2. High-quality graphene is required, such as
that processed by high-temperature annealing, mechanical exfoliation, or chemical vapor deposition
(CVD) preparation. 3. Anisotropic GAs should be prepared to form a regular arrangement in a certain
direction and reduce the thermal resistance of contact between graphene sheets. Obviously, preparing
AGAs by the heat flow method that was proposed in this paper is a simple process that does not
require additional directional freezing. Furthermore, instead of high-temperature annealing, with
a simple microwave treatment, efficient and energy-conserving, it can also obtain AGAs with high
thermal conductivity enhancement efficiency.
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4. Conclusions

Higher-quality anisotropic AGAs were prepared by the heat flow method with vacuum microwave
treatment to significantly reduce the oxygen content and nitrogen content. After the vacuum microwave
treatment of AGA for a short time (1 min.), the axial thermal conductivity of AGA/paraffin composite
material reached 1.074 W/mK and the thermal conductivity enhancement efficiency reached 995%
when the content was 0.32 vol%. However, XRD and Raman analysis show that the apparent quality
of the rGO does not significantly improve with the extension of microwave time. The average in-plane
crystal size La decreases, and the decrease in ID/IG is not obvious. This may attribute to the vacuum
microwave device, attenuating the microwave to a certain extent, and lowering the sample temperature,
which results in an unsatisfactory repair effect of rGO vacancies and defects. Therefore, the method of
preparing AGAs by the heat flow method that is proposed in this paper has the advantages of simple
processing, high efficiency, and energy conservation. The high thermal conductivity enhancement
efficiency of the AGAs lends them to a high application value in phase-change energy storage, thermal
energy management, and other fields.
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