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In solid tumors and hematological malignancies, including acute myeloid leukemia,

some chemotherapeutic agents, such as anthracyclines, have proven to activate an

immune response via dendritic cell-based cross-priming of anti-tumor T lymphocytes.

This process, known as immunogenic cell death, is characterized by a variety of tumor

cell modifications, i.e., cell surface translocation of calreticulin, extracellular release of

adenosine triphosphate and pro-inflammatory factors, such as high mobility group box 1

proteins. However, in addition to with immunogenic cell death, chemotherapy is known

to induce inflammatory modifications within the tumor microenvironment, which may

also elicit immunosuppressive pathways. In particular, DCs may be driven to acquire

tolerogenic features, such as the overexpression of indoleamine 2,3-dioxygensase 1,

which may ultimately hamper anti-tumor T-cells via the induction of T regulatory cells.

The aim of this review is to summarize the current knowledge about the mechanisms and

effects by which chemotherapy results in both activation and suppression of anti-tumor

immune response. Indeed, a better understanding of the whole process underlying

chemotherapy-induced alterations of the immunological tumor microenvironment has

important clinical implications to fully exploit the immunogenic potential of anti-leukemia

agents and tune their application.

Keywords: acute myeloid leukemia, immunogenic cell death, dendritic cells, T regulatory cells,

immunosuppression

ACUTE MYELOID LEUKEMIA

Acute myeloid leukemia (AML) is a clonal disorder sprouting from a rare population of leukemic
stem cells with impaired differentiation capacity into fully mature myelocytic cells. Although
new and potent drugs have recently entered the clinical stage, the induction therapy of AML
is still principally based on cytotoxic drugs which are able to achieve complete remission (CR)
in up to 70% of adult patients (1, 2). However, the probability of relapse remains elevated, in
particular in elderly or prognostically “high risk” patients, unless transplantation of autologous
or, more importantly, allogeneic hematopoietic stem cells is performed as post-CR consolidation
strategy (3).
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In the last few years, cancer immunotherapy, which is based
on the ability of the immune system to recognize tumor-
associated antigens (TAAs) andmediate a highly specific cytolytic
response against tumor cells, is gaining much interest due to its
unique characteristics, such as the absence of conventional drug
resistance mechanisms and low grade of toxicity. In AML, the
immunotherapy field is evolving and expanding. In this scenario,
recent promising clinical results support the full development of
immune-based strategies for the management of AML patients.

IMMUNOGENICITY OF AML AND
IMMUNOTHERAPY

The data demonstrating increased incidence of solid tumors
in immune-compromised patients, spontaneous immune-
based regression of some tumors and favorable prognostic
impact of tumor-infiltrating cytotoxic T lymphocytes (CTLs)
or serum tumor-specific antibodies support the hypothesis
that the immune system plays a very important role in
tumor development, growth, and progression (4). The most
clear demonstration of tumor eradication by the immune
system comes from the setting of hematopoietic stem cell
transplantation (SCT), where the existence of the Graft vs.
Leukemia effect accounts for the prominent therapeutic activity
of transplantation (5).

AML is a neoplasm with characteristics which make it suitable
to elicit effective specific immune responses. Indeed, 50–90% of
cases reveal chromosomal anomalies, above all translocations,
which give rise to rejected tumor antigens, namely neo-antigens,
not expressed by normal cells. Moreover, leukemia cells express
elevated levels of TAAs, which can be recognized by the immune
system and can induce a T cell-targeted response. These TAAs
are proteinase 3, the receptor for hyaluronan mediated motility
and Wilms tumor protein (6). Moreover, various cell types such
as αβ and γδ T cells, and NKT and NK cells have proven to be
functional against AML cells together with a series of effector
molecules such as perforin and tumor necrosis factor-related
apoptosis-inducing ligand, but also IFN-γ, IFN type I, and IL-
12 (7–9). Based on these premises, since the immune system
is activated against leukemia cells, the possibility to harness
immunity against AML to obtain a durable leukemia-specific
immune response should not be underestimated in the clinical
management of AML patients.

IMMUNOGENIC CANCER CELL DEATH

In recent years, the concept of two principal forms of cell death
which can promote tolerance (e.g., apoptosis) or immunity
(e.g., necrosis) was first challenged and then surpassed, and a
number of factors determining whether a death is tolerogenic or
immunogenic was identified (10). An example is represented by
the type of cell death, induced by therapeutics such as ionizing
radiations or cytotoxic chemotherapy. Selected antineoplastic
agents, in particular ionizing irradiation, anthracyclines,
oxaliplatin, cyclophosphamide, mitoxantrone, and others (11–
13), are able to induce a type of cell death which is apoptotic

in morphology, but caspase-dependent and highly efficient in
immune response induction without any adjuvant (14, 15).
Such a death process, called immunogenic cell death (ICD), was
introduced for the first time 10 years ago (16–20). During this
process, the TAAs are released from dying tumor cells together
with some factors, known as damage-associated molecular
pattern molecules (DAMPs), generated in cell-stress conditions,
hypoxia or nutrient depletion, which bind receptors expressed
on immune cell surfaces, thus stimulating innate immune
responses. In this context, specialized antigen-presenting cells,
i.e., dendritic cells (DCs), play a crucial role in efficiently priming
TAA-specific T cells (21). Subsequent studies have identified
various mechanisms of the ICD process, and also highlighted
the importance of the host capacity to detect the ICD events and
induce a therapeutically relevant immune response against dying
cells (16, 17, 20, 22, 23).

ICD EVENTS AND IMMUNE SYSTEM
ACTIVATION

ICD biology has been actively studied over the last 10 years. Very
schematically, ICD is represented by the coordinated emission
of a series of DAMPs (24–29), including the translocation of
the endoplasmic reticulum (ER) chaperones such as calreticulin
(CRT) and heat shock proteins 70 and 90 (HSP70 and 90) on cell
surface, the adenosine triphosphate (ATP) active secretion, the
non-histone chromatin-binding protein high mobility group box
1 (HMGB1) release from nucleus in extracellular milieu (30–37)
and finally, the release of immunostimulatory cytokines, such as
type I IFN (38).

In the early phase, CRT translocates from the ER to the outer
leaflet of the plasma membrane, thus initiating the apoptotic
caspase-dependent process. Simultaneously, the HSP70 and
HSP90 bind TAAs and contribute to stimulate DC maturation.
During the tardive post-apoptotic phase, pro-inflammatory
factor HMGB1, which binds toll-like receptor 4 (TLR 4) on DCs,
is released from the nucleus in the extracellular space. Finally,
autophagy-dependent active secretion of ATP, which binds
purinergic receptors (P2Rs) on DCs, promotes DC recruitment,
survival and differentiation (39, 40).

When emitted in the correct spatiotemporal context, these
DAMPs recruit DCs in the proximity of ICD and activate
them to engulf TAAs. As a consequence, DCs become fully
matured and competent in skewing cytokine production toward
immunostimulatory cytokines, like IL-1β, IL-12p70, and IL-6, in
spite of immunosuppressive cytokines, such as IL-10 (30, 34, 36),
this process being strictly required for the adequate polarization
of IFN-γ producing CD8+ T cells. The activation of APCs
generally proceeds in two sequential phases, i.e., recruitment of T
cells followed by their activation into IL-17- secreting γδ T cells,
αβ Th1T cells (IFN-γ secreting CD4+ T cells), and αβ cytotoxic
T cells (IFN-γ secreting CD8+ T cells) (27, 31, 34). The latter
are not only capable of mediating direct anti-tumor effects, but
also underlie the establishment of host-protective immunological
memory. Importantly, CRT exposure, HMGB1 release, and ATP
secretion are indispensable for ICD. Indeed, the absence of just
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one of these ICD hallmarks cancels out the efficacy of ICD in
mouse model (41).

Early ICD Events
CRT Translocation

CRT can be localized in the cytoplasm, on the cell membrane
or in the extracellular matrix, operating in both extra and
intracellular space. Inside the ER, CRT plays an essential
role in the regulation of intracellular Ca2+ homeostasis and
storage, thus participating in a large variety of Ca2+-dependent
signal transduction mechanisms. Moreover, CRT is involved in
CRT/calnexin cycles where, interacting with calnexin and 57-
kDa protein ER (ERp57), it ensures the correct folding of newly
synthesized proteins and glycoproteins. In this context, CRT
is fundamental also for assembly of major histocompatibility
complex (MHC) molecules, which are essential for class I
antigens presentation (42). Exposure to ICD inducers like
anthracyclines, oxaliplatin, or ionizing radiation is able to
induce translocation of CRT/ERp57 complex to the cell surface.
Although the whole process underlying CRT protein exposure
is far from being fully elucidated, three steps have been clearly
identified: ER stress induction, apoptosis and translocation.
Initially, stress response induction causes activation of reticulum
PERK serin/treonin kinase which phosphorylates the eukaryotic
translation initiation factor 2α (eIF2α) following the partial
caspase-8 activation, the caspase-8-mediated cleavage of BAP31
and structural activation of pro-apoptotic proteins BAX and
BAK. Finally, the translocation process predicts exocytosis
through a SNARE-dependent mechanism in which CRT and
ERp57 are transported inside vesicles to the outer plasma
membrane leaflet of Golgi apparatus (43, 44).

CRT exposure represents an “eat me signal” for DCs,
the crucial component of immune system activation by
chemotherapy (45). CRT initiates phagocytosis of apoptotic
cells binding to the CD91 receptor (known as LDL-correlate
receptor protein; LRP) on phagocytic cells. The presence
of a CRT specific receptor on DCs and its activation are
essential for immunogenicity of tumor cell death. Interestingly,
CRT translocation also occurs in viable malignant cells (46),
suggesting that apoptosis may not be necessarily required for
CRT translocation, and that “ER stress” induction can be
sufficient to promote its cell surface expression (47).

HSP Exposure

HSPs play an important role as chaperones ensuring the correct
folding of newly synthesized proteins or damaged proteins as a
consequence of cellular stress and preventing their aggregation.
However, HSPs can have a double role based on cellular
localization. In the case of HSP 90, the intracellular localization
determines a cytoprotective function responsible for addressing
of damaged proteins toward proteasome degradation, thus
maintaining protein homeostasis (48). On the contrary, when
located inside the cells, HSP70 interacts with various components
of apoptotic machinery at both pre- and post-mitochondrial
level, thus preventing an inappropriate ICD induction caused
by stress-induced cell damage. Importantly, the HSPs can
translocate to the outer plasmamembrane leaflet (HSP 70) or can

be released into the extracellular space (HSPs 70 and 90). HSP
exposure/release from cells that underwent ER stress represents
one of the distinctive factors of chemotherapy-induced ICD (48).

HSPs can potentiate immunogenicity in different ways. On
one hand, when present on the cell surface of tumor cells they
can improve the recognition and up-take of dying cells by
DCs. On the other hand, TAAs derived from dying tumor cells
can bind HSPs, thus enhancing efficient antigen presentation.
HSP-antigen complex recognition is mediated by TLR4, which
facilities intracellular processing and presentation of TAAs (48).

Collectively, these findings indicate that the presence of HSPs
on dying tumor cells is critical for tumor cell recognition by
DCs, full DC maturation and, thus, for the induction of a tumor-
specific immune response.

Late ICD Events
Release of HMGB1 From the Nucleus

HMGB1 is a nuclear protein, which participates in the folding of
DNA in the chromatin structure, thus influencing transcription
and other nuclear functions. In contrast to histones, which are
part of nucleosomes, the interaction of HMGB1 with chromatin
is rather loose, which means that HMGB1 can exit from the
nucleus to the cytoplasm. Importantly, HMGB1 also acts as an
extracellular signal molecule, DAMP, and can be released from
cells by non-canonical secretion pathways or passively released
through the permeabilized plasma membrane of dead cells (49).
Indeed, after cellular stress, HMGB1 translocates to cytosol and is
then released to the extracellular space. When it binds to specific
receptors, together with other cytokines, HMGB1 can induce
myeloidDCmaturation by CD40, CD54, CD80, CD83, andMHC
II upregulation (20).

Under certain circumstances, cells dying by apoptosis or
autophagy can release HMGB1, as observed in the case of
DNA damage induced by UV radiation or platinization, where
HMGB1 is sequestrated in the nucleus and the ICD inducers,
such as anthracyclines, and stimulate HMGB1 release in the late
phase of apoptosis (20). HMGB1 released in the extracellular
space binds mainly the TLR4 present on DCs, thus facilitating
TAA processing and presentation through the inhibition of
phagosome and lysosome fusion, and the prevention of early
degradation and by allowing their transport to effector immune
cells (48). Moreover, it has been demonstrated that HMGB1
released during tumor cell necrosis induces not only DC
maturation, but also secretion of IL-12 by DCs and IFN-γ by
T cells acting as a potent stimulus for polarization of Th1
response (20).

ATP Extracellular Release

One of the most distinctive features of ICD is represented by
the active extracellular release of ATP from dying cells during
the tardive phase of apoptosis. Normally located inside the cells,
ATP is considered the most important factor for bioenergetics,
connecting anabolism and catabolism, with a well-established
crucial role in some important processes, such as cellularmotility,
phosphorylation, and active transport. By specifically testing
which of the P2Rs is involved, as well as the type or the optimal
concentration of released nucleotides within the extracellular
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environment, various and seminal studies demonstrated the role
of extracellular nucleotides in the regulation of cell proliferation,
migration, and death (50, 51).

While different mechanisms of ATP release are known, the
elevated release of ATP during ICD induced by chemotherapy
principally depends on the induction of the autophagy
process. Autophagy is a multistep process that involves
cytoplasmic material sequestration within double-membraned
organelles, autophagosomes, and their fusion with lysosomes
(52). Importantly, besides its role as a DAMP molecule,
extracellular ATP represents a strong “find me” signal which
facilitates DC recruitment in sites of massive apoptosis (53).
DC recruitment in tumor sites is mediated by P2Y2 receptors
(54), whereas activation of P2Y11 receptors on monocytes
and DCs induces their maturation (55). Once recruited,
naive immune cells need activation signals to increase their
anti-tumoral activity. It has recently been demonstrated that
P2XRs are essential for the immune response induced by
chemotherapy. ATP released from dying cells binds to the
P2X7 receptor present on DCs, thus determining assembly
and activation of inflammasome NOD-like Receptor protein 3
(NLRP3)/ASC/caspasi-1 driving the IL-1β secretion. The IL-1β
is fundamental for adequate recruitment of γδ T lymphocytes
secreting IL-17 and cytotoxic CD8+IFN-γ+ tumor-specific T
lymphocyte generation (56, 57).

ICD IN SOLID TUMORS AND LEUKEMIAS

Recent data support the role of chemotherapy in activating
the immune response both in solid tumors (9, 11, 12, 44, 58)
and, recently, in leukemias (34, 47, 59–62), with important
therapeutical implications.

For a long time, the immune system was considered
as a passive bystander of cancers, until the antineoplastic
potential of new drugs in immunodeficient murine models
was tested. Accumulating preclinical evidence has indicated
that murine tumors respond more efficiently to therapies
in immunocompetent individuals than in immunodeficient
hosts (63, 64), suggesting an important role of the immune
system mediating the chemotherapy effects. Several anticancer
agents, for example anthracyclines in colorectal cancer (9),
fibrosarcomas (57), and methylcholanthrene-induced tumors
(65), cyclophosphamide in mesotheliomas (66), oxaliplatin in
colorectal carcinomas and fibrosarcomas (12, 31), and cisplatin
in combination with digoxin in fibrosarcomas (67) were tested
and proven to activate the immune system, which ultimately
and crucially contributes to the clinical response of cancers to
chemotherapy treatment.

Regarding chemotherapeutic drugs, it is very important
to differentiate between the direct immunogenic effects that
such therapeutic regimens exert on tumor cells, and the
capacity of chemotherapy-treated tumor cells to interact with
the host immune system, resulting in reactivation of immune
effectors, or in relief of immune-suppressive mechanisms. Three
principal ways in which antineoplastic agents may stimulate
the immune system were defined by Zitvogel et al.: increasing

the antigenicity of cancer cells (increased TAA expression
or presentation) (i); increasing the immunogenicity of cancer
cells (DAMP production and release) (ii) and increasing the
susceptibility of cancer cells (better recognition and killing
of cancer cells by immune effectors) (iii) (68). As for the
enhancement of antigenicity, cyclophosphamide, oxaliplatin and
γ irradiation have been shown to increase MHC I molecule
expression by cancer cells (69, 70), whereas γ irradiation, 5-
fluorouracil or vemurafenib increased TAA expression (69,
71, 72). Regarding immunogenicity, anthracyclines, oxaliplatin,
mafosfamide, bortezomib, and some other types of chemotherapy
agents are effective in inducing CRT and HSP exposure
(11, 12, 32, 47, 59, 61), as well as ATP secretion (31, 52,
55) and HMGB1 release (12, 73) from various tumor cells
including leukemias. Finally, to increase the susceptibility of
cancer cells, different anticancer agents including anthracyclines
have been shown to sensitize murine tumor cells to the
cytotoxic function of CTLs (74). Moreover, other pieces of
evidence indicate that chemotherapy favors breast cancer
cell infiltration by myeloid and granzyme B-expressing cells,
while increasing the intra-tumoral CD8+ and CD4+ T cell
ratio (75). Taken together, accumulating evidence suggests
that, in some settings, tumor-specific immune responses
induced during chemotherapy drive the destiny of cancer
patients (76, 77).

For hematological malignancies, recent studies have
demonstrated that anthracyclines trigger ICD in vitro and
in murine models (78) including AML (34, 47). In particular,
in AML patients, following anthracycline administration, CRT
translocates from the nucleus to the leukemia cell surface. Indeed,
Fredly et al. has demonstrated that CRT is exposed by apoptotic
primary human AML cells in 65% of tested patients and that,
in vitro, cultured AML cells showed spontaneous release of
HSP70 and 90 (62). Of note, similarly to solid tumors, including
neuroblastoma, non-small cell lung carcinoma, ovarian cancer,
and colorectal carcinoma, where CRT exposure has been shown
to be an important prognostic factor (79–81), CRT exposure
by AML cells has been recently correlated by Fucikova et al.
with a strong anticancer immune response, improving the
clinical outcome of AML patients (59, 60). Surprisingly, these
authors have found that DAMP emission from AML may also be
chemotherapy-independent. In particular, 82% of AML patients
exhibited positivity for CRT expression prior to treatment and a
similar pattern was observed also for HSP exposure and HMGB1
release, thus suggesting that DAMP production may represent
an intrinsic feature of some types of AML, which make them
more prone to interact with the immune system. Indeed, CRT
exposure was associated with enhanced anti-leukemia immune
response and better prognosis. Transcriptional and phenotyping
signature analysis in patients with AML has revealed robust
vs. weak CRT exposure on blasts. Moreover, AML patients are
prognostically divided into two groups based on the median
percentage of circulating ecto-CRT, HSP70, or HSP90 positive
cells, thus revealing that ICD-associated DAMPs correlate with
improved disease outcome (60). CRT exposure on malignant
blasts predicts a cellular anticancer immune response in patients
with AML (61).
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TABLE 1 | Inhibitory pathways in AML.

Inhibitory

pathway/check

point

Physiological role Role in AML Clinical trials in AML

PD-1/PD-L1 axes PD-1—receptor of negative co-stimulation.

Ligands: PD-L1 and PD-L2.

PD-1/PD-L1 axes—control of normal immune

responses, involved in periphery tolerance,

autoimmunity regulation, allergy, infections, and

antitumor immunity (87).

PD-1/PD-L signaling—dampening of

anti-leukemic immunity in AML.

PD-L1 and PD-L2 expression on human AML

cells at diagnosis and relapse (88).

Blocking of PD-1/PD-L1 axis—increase of

anti-leukemia immune response and prevention of

AML progression in murine model (83, 84, 89).

1. Anti-PD-1

Nivolumab: NCT02275533,

NCT02397720,

NCT02532231, NCT03092674,

NCT02464657,

NCT02275533, NCT03066648

Pembrolizumab: NCT02708641,

NCT02845297, NCT02996474,

NCT02771197, NCT02768792

Avelumab:

NCT02953561

2. Anti-PD-L1

Durvalumab:

NCT02775903

Atezolizumab:

NCT02892318, NCT03154827

CTLA-4 CTLA-4—receptor of negative co-stimulation.

Ligands: CD80 and CD86.

CTLA-4/CD80/CD86 pathway—regulation of T

cell response (83).

CTLA-4/CD80/CD86—hampering T cell immunity

against hematological malignancies (83) and

modulating immune responses in AML (90).

Blocking of CTLA-4 pathway—increase of

anti-leukemia T-cell immune response translated in

prolonged tumor regression (91, 92).

1. Anti-CTLA-4

Ipilimumab:

NCT00039091,

NCT02890329, NCT02397720

CD200R/CD200 CD200R—inhibitory receptor.

Ligand: CD200.

CD200-CD200R signaling—down-regulation of

immune responses preventing inflammation and

immune pathology (83).

CD200R/CD200—immunosuppressive signal

transmission, macrophages inhibition, Tregs

induction and tumor-specific T cells inhibition (93).

Expression of CD200 on human AML cells

(94)—worse overall survival of some AML

subsets (83).

Blocking of CD200—enhanced cytotoxicity of NK

cells, restored proliferative capacity of T cells,

dampens tumor-reactive immune responses (95),

but also favors tumor progression due to enhanced

pro-tumorigenic inflammation (96).

1. Anti-CD200

Samalizumab:

NCT03013998

Lag-3 Lag-3 receptor of negative co-stimulation.

Ligand: MHC II.

Lag-3/MHCII signaling - tolerance maintenance

(83, 97).

Lag-3 signaling-suppression of CTL activity in

tumors (97, 98).

Blocking of PD-L1, CTLA-4 and

Lag-3—effective and enduring immunotherapy for

disseminated leukemia in murine model (98).

To date—no clinical trials available

Tim-3 Tim-3—receptor of negative co-stimulation.

Ligands: gal-9/HMGB1/phosphatidyl serin.

Tim-3/gal-9 signaling—regulation of T-cell

tolerance (83).

Tim-3 released by AML—reduce ability of T cells

to secrete IL-2 required for NK and CTLs

activation (99).

TIM-3 and PD-1 co-expression on T cells was

associated with AML progression in mouse and

human (7) and with relapse in AML patients after

allo-SCT (100).

TIM-3—overexpression on AML (stem) cells (101)

and T cells of newly diagnosed AML -(102).

Blocking of TIM-3 and PD-1—reduced tumor

burden and improved survival in AML murine

model (7).

1. AntiPD-1 + TIM-3

PDR001+MBG453+ Decitabine:

NCT03066648

IDO and Tregs IDO –immunosuppressive and tolerogenic

enzyme responsible for tryptophan degradation in

kynurenines with subsequent T cell inhibition and

Tregs expansion.

Tregs—role in maternal tolerance, autoimmune

disease regulation, suppression of transplant

rejection (85).

IDO signaling—Tregs induced by IDO-expressing

leukemic DCs impair leukemia-specific CTL (103).

Increased IDO activity—lower CR rates and

shorter OS in AML (103–105).

Blocking of IDO—effective immune response in

AML in vitro (103–106).

1. Anti-IDO

Epacadostat:

NCT03444649

Different inhibitory pathways and their role in both physiological and AML contexts are correlated with clinical trials ongoing for specific pathways.
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FIGURE 1 | Balance between immune activation and tolerance during ICD in AML. Immunogenic chemotherapy causes the release of DAMPs (CRT, HSPs, ATP, and

HMGB1) which bind to receptors on DCs as CD91, TLR4, and P2X7. DCs up-regulate maturation markers (CD80, CD86, and CD83) and produce IL-1β resulting in

activation of T cells producing IFN-γ At the same time, DCs up-regulate IDO1 which is responsible for the production of kynurenines which in turn stimulate induction

of Tregs producing IL-10 and inhibit effector T cells. IDO1 is expressed also on AML cells and Treg cells, thus participating to the suppressive local milleu. Immune

check points receptors (ICRs) as PD-1, Tim-3, Lag-3, CD200R, and CTLA-4 can contribute to the cell composition of tumor microenvironment. In this context, IDO1

seems to play a key role in the balance between immune system activation and tolerance in AML during ICD.

MECHANISMS OF IMMUNOLOGIC
TOLERANCE IN AML

Along with the well-known cell-intrinsic mechanisms by
which leukemic cells can develop drug resistance, which
leads to enhanced proliferation and survival, the role of cell-
extrinsic factors, partly derived from AML bone marrow,
the immunosuppressive microenvironment has recently been
investigated (82). It is known that both the innate and adaptive
immune systems are deeply affected and profoundly deregulated

by the interaction with leukemia cells. This happens as a

result of several different immunosuppressive mechanisms,
which, in turn, may lead to the escape of leukemia cells
from the natural immunological control (82). Many of these
regulatory mechanisms seem to be shared by solid tumors and
hematology neoplasms including over-expression of inhibitory
check-point receptors on T cells and their ligands on AML
cells or DCs such as PD-1/PD-L1, CTLA-4/CD80/CD86, Tim-
3/galectine-9 (gal-9), and Lag-3/MHCII, enzymes as IDO and

induction of immunoregulatory populations expansion as Tregs
(83–85). The most known suppressive mechanism in AML
is the up-regulation of IDO1 expression on leukemia cells.
IDO1 is responsible for catalyzing the initial rate-limiting step
of tryptophan degradation resulting in increased final product
kynurenines. The kynurenines have suppressive properties and
increase the conversion of CD4+25− T cells into Tregs. In
addition, their suppressive effect relies on the fact that they can
reduce the activity of NK cells, DCs or proliferating T cells, in
response to inflammation or infection (85, 86). The most known
inhibitory pathways in AML are reported in Table 1.

TOLEROGENIC MECHANISMS DURING
ICD

In the ICD scenario, some recent reports indicate that, along with
the activation of the immune system, a wide variety of tolerogenic
mechanisms is also induced, mostly resulting in Tregs induction
(53, 107, 108). In particular, Tregs induction after immunogenic
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chemotherapy was observed in some solid tumors. Bugaut
et al. demonstrated that bleomycin, an anti-tumor antibiotic
glycopeptide produced by bacterium Streptomyces and used for
the treatment of cancer testis and Hodgkin disease, induces both
ICD resulting in anti-tumor CD8+ T cell response and Tregs
accumulation in vivo. Specifically, bleomycin induces expansion
of Foxp3+ Tregs via its capacity to induce transforming growth
factor beta (TGF-β) secretion by tumor cells. Accordingly, Tregs
or TGF-β depletion dramatically potentiates the antitumor effect
of bleomycin. Based on these premises, it is conceivable that
in order to fully exploit the activatory capacity of immune
response by immunogenic chemotherapy, it may be fundamental
to concomitantly block chemotherapy-driven Tregs induction.

Similarly to solid tumors, also in AML it is well-known
that inducing a suppressive microenvironment by expanding
Tregs may hamper the anti-leukemia immune response (103,
109). Interestingly, early lymphocyte recovery in 20 patients
undergoing induction chemotherapy for newly diagnosed AML
indicated that recovering T cells were predominantly activated
Tregs with suppressive activity. Despite an initial burst of
thymopoiesis, most recovering Tregs were of peripheral origin
and showed marked oligoclonal skewing, suggesting that their
peripheral expansion was antigen-driven (108). Wang et al. too
demonstrated a rapid turnover of Tregs in AML patients after
chemotherapy compared to healthy controls (110). Together,
these findings suggest an important role of Tregs induction after
chemotherapy in AML.

We recently investigated the mechanisms underlying the
effects of chemotherapy on Tregs induction. In particular, we
focused on the tolerogenic role of leukemia-infiltrating DCs after
chemotherapy. Our in vitro and in vivo data demonstrate that
during ICD a population of DCs expressing IDO1 is responsible
for the induction of Tregs (106). In particular, we demonstrated
that ATP released from chemotherapy-treated AML cells is
responsible for IDO1 up-regulation on DCs through the P2X7
receptor and consequent Tregs enrichment, resulting in the
establishment of an immune suppressive microenvironment.
Moreover, the analysis of the T-cell composition emerging
in AML patients after induction chemotherapy revealed an
enrichment and activation of the most suppressive Tregs-
subpopulation expressing FOXP-3, CTLA-4, CD39, PD-1, and
Ki-67 (106). These results demonstrated that ATP released from
chemotherapy-treated dying leukemic cells during ICD has a role
in the induction of the immune suppressive microenvironment,
which comprises Tregs and IDO1-expressing DCs (106).

Taken together, these findings suggest that IDO and related
downstream pathways resulting in Tregs induction may play
an important regulatory role in the choice between tolerance
or immunity in response to dying tumor cells (Figure 1) and
are in line with other recent studies which use preclinical

models of self-tolerance and autoimmunity (85). In this scenario,
chemotherapy-induced ICD can prompt both immune tolerance
and activation through the same mechanisms, and the balance
between these phenomena can be fundamental for the final
immune system response.

CONCLUDING REMARKS

Some antineoplastic agents are capable of activating the immune
system through the release of inflammatory signals from
dying tumor cells. However, recent evidence indicates that
chemotherapy may also provide the tumor microenvironment
with a number of tolerogenic signals, mainly resulting in
Tregs induction, which negatively influence immune response
activation. Interestingly, the same mechanisms leading to
immune activation are suggested to be also responsible for
tolerance induction. Then, to fully exploit the immunogenic
potential of chemotherapy, it is necessary to concomitantly
act by inhibiting tolerance induction. Indeed, early clinical
studies are testing the safety and early efficacy of new
immunological agents contrasting tolerogenic mechanisms, such
as IDO1 and immune checkpoint inhibitors, in combination with
immunogenic chemotherapy.

Although this dual process is relevant in many tumors,
it is particularly important in the setting of AML, where
chemotherapy still constitutes the most powerful and curative
therapeutical tool for most patients. For these reasons, in the
AML field these studies will help in better understanding the
biology of ICD, including the critical balance between activation
and tolerance, thus providing the rationale for moving another
step forward for an integrated immunological approach to
AML therapy.
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