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Abstract Linear regression models based on finite Gaussian mixtures rep-
resent a flexible tool for the analysis of linear dependencies in multivariate
data. They are suitable for dealing with correlated response variables when
data come from a heterogeneous population composed of two or more sub-
populations, each of which is characterised by a different linear regression
model. Several types of finite mixtures of linear regression models have been
specified by changing the assumptions on the parameters that differentiate the
sub-populations and/or the vectors of regressors that affect the response vari-
ables. They are made more flexible in the class of models defined by mixtures of
seemingly unrelated Gaussian linear regressions illustrated in this paper. With
these models, the researcher is enabled to use a different vector of regressors
for each dependent variable. The proposed class includes parsimonious models
obtained by imposing suitable constraints on the variances and covariances of
the response variables in the sub-populations. Details about the model identi-
fication and maximum likelihood estimation are given. The usefulness of these
models is shown through the analysis of a real dataset. Regularity conditions
for the model class are illustrated and a proof is provided that, when these con-
ditions are met, the consistency of the maximum likelihood estimator under
the examined models is ensured. In addition, the behaviour of this estimator
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in the presence of finite samples is numerically evaluated through the analysis
of simulated datasets.

Keywords EM algorithm · Envelope function · Identifiability · Linear
model · Regularity conditions

Mathematics Subject Classification (2010) 62J05 · 62H12 · 62F12

1 Introduction

Finite mixtures of Gaussian linear regression models allow to perform linear
regression analysis in the presence of a finite number of heterogeneous popu-
lations, each of which is characterised by a Gaussian linear regression model
whose parameters are different from the ones of the other populations (see,
e.g., Quandt and Ramsey, 1978; De Sarbo and Cron, 1988; De Veaux, 1989).
Examples of fields in which they have been successfully employed are agri-
culture, education, quantitative finance, social sciences and transport systems
(see, e.g., Turner, 2000; Ding, 2006; Tashman and Frey, 2009; Dyer et al., 2012;
Van Horn et al., 2015; McDonald et al., 2016; Elhenawy et al., 2017). These
models naturally arise when relevant categorical predictors are omitted from
a regression model (see, e.g., Hosmer, 1974). They can also be used in out-
lier detection or robust regression estimation (see, e.g., Aitkin and Tunnicliffe
Wilson, 1980). In the multivariate scenario, this approach to linear regression
analysis makes it possible to take into account the correlation among the de-
pendent variables that typically occur in longitudinal data, time-series data or
repeated measures (Jones and McLachlan, 1992). In most of the multivariate
models developed so far the same vector of regressors has to be used for all de-
pendent variables. This restriction does not affect the class of linear regression
models based on a finite Gaussian mixture recently proposed in Galimberti et
al. (2016). However, in this class, the effect of the regressors on the responses
is assumed to be the same for all populations.

This paper introduces a more flexible class of finite mixtures of multivari-
ate Gaussian linear regression models in which a different vector of regressors
can be used for each dependent variable, as in the seemingly unrelated regres-
sion context (see, e.g., Srivastava and Giles, 1987). Such an approach can be
particularly useful in the modelling of multivariate economic data, where dif-
ferent economic variables may be expected to be relevant in the prediction of
different aspects of economic behaviour. A classical example is given by Zell-
ner (1962), who applied such an approach to explain investment on the part
of two large corporations; his application is based on an investment equation
in which a firm’s current gross investment is assumed to depend on the firm’s
beginning-of-year capital stock and the value of its outstanding shares at the
beginning of the year. Other classical applications dealing with the explana-
tion of a certain economic activity in different geographical locations are due
to Giles and Hampton (1984), who considered Cobb-Douglas production func-
tions for five regions of New Zealand in the period 1935-1948, Donnelly (1982),
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who analyzed the regional demand for petrol in six different Australian states,
and White and Hewings (1982) who estimated emolyment equations for five
multi-county regions for each of several industrial categories within the State
of Illinois. Other fields in which the seemingly unrelated approach to multivari-
ate regression can be successfully employed are medicine (see, e.g., Keshavarzi
et al., 2012) and food quality (see, e.g., Cadavez and Henningsen, 2012). In
addition, in the models proposed in this paper the effect of the regressors on
the responses changes with the populations, thus leading to finite mixtures of
seemingly unrelated Gaussian linear regression models. For these new models,
the paper addresses the model identification and maximum likelihood (ML)
estimation. Parsimonious models are included into the proposed class, where
parsimony is attained by constraining the covariance matrices of the responses
for the different populations using a parameterisation for such matrices which
is based on their spectral decomposition (see, e.g., Celeux and Govaert, 1995).
The usefulness of the new methods proposed in this paper is shown through
the analysis of a real dataset in which the goal is the evaluation of the effect
of prices and promotional activities on sales of canned tuna. In addition, the
paper provides simple assumptions ensuring some regularity conditions that
make it possible to prove the consistency of the ML estimator under the ex-
amined models. In order to provide some insight into the behaviour of the
ML estimator also with finite samples, an extensive Monte Carlo study has
been carried out, based on datasets generated from models belonging to the
proposed model class. In particular, this study has focused on evaluating the
effects of the sample size and the level of overlap among the linear regressions
in the mixture on the behaviour of the ML estimator.

The key contributions of this paper are:

– the introduction of methods for multivariate linear regression analysis based
on seemingly unrelated Gaussian regression mixtures that let the researcher
free to use a different vector of regressors for each dependent variable;

– a proof of the consistency of the ML estimator under the proposed class of
models;

– a numerical study of the behaviour of the ML estimator under correctly
specified models with varying sample sizes and varying overlap levels among
population regression models.

The paper is organised as follows. Section 2.1 defines the proposed class
of linear regression models. Section 2.2 shows how the models belonging to
this class relate to some existing models. Details about the ML estimation are
described in Section 2.3. Parsimonious models are introduced in Section 2.4.
Methods to perform model selection are reported in Section 2.5. Results of
the analysis of the real dataset are summarised in Section 2.7. A theorem
providing conditions for the model identifiability is given in Section 3.1. The
simple assumptions on the elements and parameters of the model class are
detailed in Section 3.2. Theorems and lemmas used to prove the consistency
of the ML estimator are reported in Section 3.3. The main results of the Monte
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Carlo study are summarised in Section 3.4. Section 4 provides some concluding
remarks. The proofs of two theorems can be found in the Online Resource.

2 Regression models based on finite Gaussian mixtures

2.1 Seemingly unrelated Gaussian clusterwise linear regression models

A convenient way of introducing the class of models examined in this pa-
per is to exploit the structure that typically characterises seemingly unre-
lated linear regression models (see, e.g., Srivastava and Giles, 1987). Let Yi =
(Yi1, . . . , Yid, . . . , YiD)′ be the vector of the D dependent variables for the ith
observation, i = 1, . . . , I, and let Xi be the vector of G regressors employed
for the overall prediction of Yi. Furthermore, suppose that only Pd regressors
(Pd ≤ G) are relevant for the prediction of the dth dependent variable, and
this assumption holds true for each dependent variable. Thus, let xid be the
Pd × 1 vector composed of the observed values of Xid, which is the subvector
of Xi with the Pd regressors for the ith observation to be used in the equation
for the dth dependent variable, d = 1, . . . , D. A seemingly unrelated linear re-
gression model for the conditional distributions of Yid|Xid = xid, d = 1, . . . , D,
can be defined through the following system of equations:































Yi1 = λ1 + x′

i1β1 + ǫi1,
...
Yid = λd + x′

idβd + ǫid,
...
YiD = λD + x′

iDβD + ǫiD,

i = 1, . . . , I, (1)

where λd, βd and ǫid are the intercept, the regression coefficient vector and
the error term for the ith observation in the equation for the dth dependent
variable, respectively. Namely, the vector βd contains the Pd regression co-
efficients that express the joint linear effect of the Pd regressors on Yd. A
classical assumption for this model is that the D−dimensional error vectors
ǫi = (ǫi1, . . . , ǫid, . . . , ǫiD)′ for the I sample observations are independent and
identically distributed (i.i.d.), and that ǫi ∼ ND(0,Σ); ND(µ,Σ) denotes the
D−dimensional normal distribution with D × 1 mean vector µ and D × D
covariance matrix Σ; φ (·;µ,Σ) is the corresponding probability density func-
tion (p.d.f.). Equations in (1) can be written in compact form as follows:

Yi = λ+ X̃′

iβ + ǫi, i = 1, . . . , I,

where λ = (λ1, . . . , λd, . . . , λD)′, β =
(

β′

1, . . . ,β
′

d, . . . ,β
′

D

)′

and X̃i is the
following P ×D partitioned matrix:

X̃i =











xi1 0P1
· · · 0P1

0P2
xi2 · · · 0P2

...
...

...
0PD

0PD
· · · xiD











,
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with 0Pd
denoting the Pd-dimensional null vector and P =

∑D
d=1 Pd. β is a

P × 1 vector containing all the regression coefficients. This model is useful
whenever the error terms in the D equations of the system (1) are correlated
(i.e.: Σ is not a diagonal matrix) and, thus, those equations have to be jointly
considered. It differs from the classical multivariate linear regression model
because it allows to use a specific vector of regressors for each dependent
variable.

Mixtures of K Gaussian seemingly unrelated linear regression models can
be introduced as follows:

Yi =



































λ1 + X̃′

iβ1 + ǫi, ǫi ∼ ND(0,Σ1), with probability π1,
...

λk + X̃′

iβk + ǫi, ǫi ∼ ND(0,Σk), with probability πk,
...

λK + X̃′

iβK + ǫi, ǫi ∼ ND(0,ΣK), with probability πK ,

(2)

where the probabilities π1, . . . , πK are assumed to be positive and summing to
one. λk and βk are vectors composed of D intercepts and P regression coef-
ficients, respectively, for k = 1, . . . ,K; namely, λk = (λk1, . . . , λkd, . . . , λkD)

′
;

βk =
(

β′

k1, . . . ,β
′

kd, . . . ,β
′

kD

)′

. The covariance matrix Σk is D ×D ∀k. If all
these K matrices are positive definite, it is possible to write the conditional
p.d.f. of Yi|Xi = xi as a weighted average of K Gaussian seemingly unrelated
linear regression models with weights πk, k = 1, . . . ,K. Namely:

f(yi|xi; θ) =

K
∑

k=1

πkφ (yi;µik,Σk) , yi ∈ R
D, (3)

where
µik = λk + X̃′

iβk, (4)

θ = (π′, θ′1, . . . , θ
′

k, . . . , θ
′

K)′ ∈ Θ, π = (π1, . . . , πK−1)
′
such that πk > 0 ∀k,

∑K
k=1 πk = 1, θk =

(

λ′

k,β
′

k, (v (Σk))
′
)′

. The definition of θk involves the v(.)
operator. Namely, v(B) denotes the column vector obtained by eliminating all
supradiagonal elements of a symmetric matrix B (thus, v(B) contains only the
distinct elements of B) (see, e.g., Magnus and Neudecker, 1988). Note that the
dependence of the p.d.f. f(yi|xi; θ) on xi in equation (3) is due to the linear
term X̃′

iβk that affects µik in equation (4).

2.2 Comparisons with other linear regression mixtures

When specific conditions are met, some special linear regression models can
be obtained from equation (3).

– If D = 1 (only one dependent variable is considered), equation (3) reduces
to a mixture of univariate Gaussian linear regression models (see, e.g.,
Quandt and Ramsey, 1978; De Sarbo and Cron, 1988; De Veaux, 1989).
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– If D = 1 and βk = β ∀k (only one dependent variable is considered and the
regression coefficients are constrained to be equal among all components),
the resulting model coincides with a univariate linear regression model with
error terms distributed according to a mixture of K univariate Gaussian
distributions (Bartolucci and Scaccia, 2005).

– If D > 1 and Xid = Xi ∀d, the following equality holds:

X̃i = ID ⊗ xi,

where ID is the identity matrix of order D and ⊗ denotes the Kronecker
product operator (see, e.g., Magnus and Neudecker, 1988). Equation (4)
can be rewritten as

µik = λk + (ID ⊗ xi)
′
βk = λk +B′

kxi, k = 1, . . . ,K,

where Bk = [βk1 · · ·βkd · · ·βkD], thus leading to a finite mixture of Gaus-
sian linear regression models with the same vector of predictors for all the
dependent variables (see, e.g., Jones and McLachlan, 1992).

– If D > 1, Xid = Xi ∀d and βk = β ∀k, multivariate linear regression
models with a multivariate Gaussian mixture for the distribution of the
error terms are obtained (Soffritti and Galimberti, 2011).

– If D > 1 and βk = β ∀k, the resulting model coincides with a multivariate
seemingly unrelated linear regression model whose error terms are assumed
to follow a multivariate Gaussian mixture model (Galimberti et al., 2016).

Thus, the models proposed in this paper encompass all the linear regression
mixture models just mentioned. It is also worth noting that seemingly unre-
lated regression models can be considered as multivariate regression models
in which prior information about the absence of certain regressors from cer-
tain regression equations is explicitly taken into consideration (Srivastava and
Giles, 1987). Thus, equation (3) can also be seen as a constrained multivariate
mixture of K Gaussian linear regression models with Xid = Xi as regressors
in all the equations of the system (1) but with some regression coefficients
constrained to be a priori equal to zero.

2.3 ML estimation

Similarly to any other finite mixture model, the ML estimation is carried out
for a fixed value of K. Let Z = {(x1,y1), . . . , (xI ,yI)} be a sample of I
observations. The log-likelihood of model (3) is equal to

lI(θ) =

I
∑

i=1

ln

(

K
∑

k=1

πkφ
(

yi;λk + X̃′

iβk,Σk

)

)

. (5)

The ML estimate θ̂I can be computed using an EM algorithm (Dempster et
al., 1977). Let uik be a binary variable equal to 1 when the ith observation has
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been generated from the kth component φ
(

yi;λk + X̃′

iβk,Σk

)

of the mix-

ture (3), and 0 otherwise, for k = 1, . . . ,K. Thus,
∑K

k=1 uik = 1. Furthermore,
let ui+ be the K-dimensional vector whose kth element is uik. Since vectors
ui+’s are generally unknown, the observed data Z can be considered incom-
plete, and equation (5) is the incomplete-data log-likelihood. If we knew both
the observed data and the component-label vectors ui+’s, we could obtain
the so-called complete log-likelihood. By assuming that the component label
vectors u1+, . . . ,uI+ are I i.i.d. random vectors whose unconditional distribu-
tion is multinomial consisting of one draw on K categories with probabilities
π1, . . . , πK , the complete log-likelihood is equal to

lIc(θ) =
I
∑

i=1

K
∑

k=1

uik[lnπk + lnφ(yi;µik,Σk)].

Since the uik’s are missing, in the EM algorithm they are substituted with their
conditional expected values. More specifically, the EM algorithm consists of
iterating the following two steps until convergence:

E step: on the basis of the current estimate θ̂
(r)

of the model parameters
θ, the expected value of the complete log-likelihood given the observed data,
E [lIc(θ)|Z], is computed. In practice, this consists in substituting any uik with
its conditional expected value E [uik|Z], which is equal to

p
(r)
ik =

π̂
(r)
k φ

(

yi; µ̂
(r)
ik , Σ̂

(r)

k

)

∑K
h=1 π̂

(r)
h φ

(

yi; µ̂
(r)
ih , Σ̂

(r)

h

) .

M step: θ̂
(r)

is updated by maximising E [lIc(θ)|Z] with respect to θ. This
leads to the following solutions for the prior probabilities:

π̂
(r+1)
k =

1

I

I
∑

i=1

p
(r)
ik , k = 1, . . . ,K.

As far as the solutions for λ̂
(r+1)

k , β̂
(r+1)

k and Σ̂
(r+1)

k are concerned, they
depend on each other; thus, in order to obtain such solutions an iterative

updating scheme is needed within each M step. Let λ̃
(0)

k = λ̂
(r)

k , β̃
(0)

k = β̂
(r)

k

and Σ̃
(0)

k = Σ̂
(r)

k be the starting values within the (r + 1)th M step; the
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(j + 1)th updates are given by:

λ̃
(j+1)

k =

∑I
i=1 p

(r)
ik

(

yi − X̃′

iβ̃
(j)

k

)

∑I
i=1 p

(r)
ik

,

β̃
(j+1)

k =

(

I
∑

i=1

p
(r)
ik X̃i

(

Σ̃
(j)

k

)−1

X̃′

i

)−1 I
∑

i=1

p
(r)
ik X̃i

(

Σ̃
(j)

k

)−1 (

yi − λ̃
(j+1)

k

)

,

Σ̃
(j+1)

k =

∑I
i=1 p

(r)
ik

(

yi − λ̃
(j+1)

k − X̃′

iβ̃
(j+1)

k

)(

yi − λ̃
(j+1)

k − X̃′

iβ̃
(j+1)

k

)′

∑I
i=1 p

(r)
ik

,

for k = 1, . . . ,K. It is worth mentioning that these solutions for the M step
admit as special cases the ones already derived for mixtures of univariate
and multivariate Gaussian linear regression models (see, e.g., De Veaux, 1989;
Jones and McLachlan, 1992).

Similarly to Gaussian mixture models (see, e.g. Kiefer and Wolfowitz, 1956;
Day, 1969), the maximisation of lI(θ) might be affected by problems arising
from its unboundedness on Θ and by the presence of local spurious modes.
A way to deal with these problems is to introduce suitable constraints on
the parameter space θ and to perform the estimation under a constrained
θ. Methods developed for Gaussian mixtures (see, e.g. Ingrassia and Rocci,
2011; Rocci et al., 2018) could be exploited also for the models defined by
equations (3) and (4). An approach based on the maximisation of the posterior
distribution of the model parameters within a Bayesian framework could also
be employed (see, e.g., Frühwirth-Schnatter, 2006, chapter 3).

2.4 Parsimonious models

The number of free parameters for models described in Section 2.1 is given

by npar = K − 1 + K · (P +D) + K
D(D + 1)

2
. It is evident that this num-

ber incresases quadratically with the number of dependent variables. In order
to overcome this issue, parsimonious models can be obtained by introducing
constraints on the component covariance matrices Σk (k = 1, . . . ,K). In par-
ticular, denoting the determinant of Σk as |Σk| and following the approach
described in Celeux and Govaert (1995), these constraints can be introduced
on the eigenstructure Σk = αkDkAkD

′

k, where αk = |Σk|
1/D, Ak is the diag-

onal matrix containing the eigenvalues of Σk (normalised in such a way that
|Ak| = 1) and Dk is the matrix of eigenvectors of Σk. These three parame-
ters determine the geometrical features of Σk in terms of volume, shape and
orientation (see Celeux and Govaert, 1995, for more details). A family of 14
parameterisations can be obtained by constraining one or more of the three ele-
ments of the eigenstructure to be equal among components. Some details about
these parameterisations can be found in Table 1. Once a parameterisation is
selected, the EM algorithm described in Section 2.3 must be modified in order
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Table 1 Parsimonious parameterisations for the covariance matrices Σk

Acronym Model Distribution Volume Shape Orientation
EEE αDAD′ Ellipsoidal Equal Equal Equal
VVV αkDkAkD

′

k
Ellipsoidal Variable Variable Variable

EII αID Spherical Equal Equal −

VII αkID Spherical Variable Equal −

EEI αA Diagonal Equal Equal −

VEI αkA Diagonal Variable Equal −

EVI αAk Diagonal Equal Variable −

VVI αkAk Diagonal Variable Variable −

EEV αDkAD′

k
Ellipsoidal Equal Equal Variable

VEV αkDkAD′

k
Ellipsoidal Variable Equal Variable

EVE αDAkD
′ Ellipsoidal Equal Variable Equal

VVE αkDAkD
′ Ellipsoidal Variable Variable Equal

VEE αkDAD′ Ellipsoidal Variable Equal Equal
EVV αDkAkD

′

k
Ellipsoidal Equal Variable Variable

to obtain the corresponding parameter estimates. Namely, this modification

involves only the M step updates Σ̂
(r+1)

k . Depending on the parameterisation,
these updates can be computed in closed form or using iterative procedures
(see Celeux and Govaert, 1995, for more details).

2.5 Model selection

The EM algorithm described in Section 2.3 requires to specify in advance a
value for K. In most practical applications, however, the number of compo-
nents is not known and must be determined from the data. A common solu-
tion to this task is obtained by exploiting model selection techniques (see, e.g.,
McLachlan and Peel, 2000, chapter 6). In particular, the Bayesian Information
Criterion (Schwarz, 1978), defined as

BICM = 2lM (θ̂)− nparM ln I, (6)

is a model selection criterion that has been used extensively in the context of
Gaussian mixture models and of mixtures of Gaussian regression models (see,
e.g., Fraley and Raftery, 2002; Soffritti and Galimberti, 2011; Dang and McNi-
cholas, 2015). This criterion allows to trade-off the fit (measured by lM (θ̂), the
maximum of the incomplete loglikelihood of model M) and complexity (given
by nparM , the number of free parameters in model M): the larger the BIC,
the better the model. The BIC can be used not only to select the optimal num-
ber of components, but also to choose the optimal parameterisation (among
those described in Section 2.4). Furthermore, in Section 2.7 this criterion is
exploited to perform variable selection.
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2.6 initialisation and convergence of the EM algorithm

A specific function implementing the ML estimation of the parameters of the
model defined in equations (3) and (4) through the EM algorithm described
in Section 2.3 has been developed in the R environment (R Core Team, 2019).
This function also allows the estimation of the parsimonious models illustrated

in Section 2.4. The starting estimates θ̂
(0)

of the model parameters in the
analyses reported in Section 2.7 have been obtained through the following
two-step strategy.

Step 1 Use the sample Z to estimate the seemingly unrelated linear regres-
sion model defined in equation (1) and consider the I sample residuals
E = (ǫ̂1, · · · , ǫ̂I) of this model. Then, fit a Gaussian mixture model with
K components and the desired parameterisation to the residuals E . The

estimated weights and covariance matrices of this mixture model are π̂
(0)
k

and Σ̂
(0)

k , k = 1, . . . ,K.
Step 2 Consider the partition P = {Z1, . . . ,ZK} of the sample Z obtained

from the highest estimated component posterior probabilities of the mix-
ture model fitted to E at Step 1. Estimate K different seemingly unrelated
linear regression models, one for each of the K elements of P . The esti-
mated intercepts and regression coefficients of these regression models are

λ̂
(0)

k and β̂
(0)

k , k = 1, . . . ,K.

In the implementation of this initialisation strategy the R packages mclust
(Scrucca et al., 2017) and systemfit (Henningsen and Hamann, 2007) have
been exploited. It is worth noting that all the elements of the partition P
examined at Step 2 have to be nonempty in order for this initialisation strategy
to work properly. If this does not happen, an approach based on multiple
random initialisations and multiple executions of the EM algorithm could be
adopted. Furthermore, the R function implementing the EM algorithm has
been devised to manage situations in which the mixture model to be fitted at
Step 1 is affected by estimating problems. In those situations, mixture models

with K components were fitted for all possible parameterisations, and π̂
(0)
k and

Σ̂
(0)

k were obtained by picking the weights and covariance matrices from the
fitted model with the larger value of BIC.

As far as the convergence of the EM algorithm is concerned, the follow-
ing criteria have been implemented. The EM algorithm is stopped when the

number of iterations reaches 500 or |l
(r+1)
∞ − l(r)| < 10−8, where l(r) is the log-

likelihood value from iteration r, and l
(r+1)
∞ is the asymptotic estimate of the

log-likelihood at iteration r + 1 (Dang and McNicholas, 2015). The stopping
rules for the iterative scheme within the M step are either when the mean
Euclidean distance between two consecutive estimated vectors of the model
parameters is lower than 10−8 or when the number of iterations reaches the
maximum of 500.

In order to avoid difficulties arising when matrices Σ̂
(r)

k are singular or
nearly singular, the R function implementing the EM algorithm embeds suit-
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able constraints on the eigenvalues of Σ̂
(r)

k for k = 1, . . . ,K. Namely, all esti-
mated covariance matrices have been required to have eigenvalues greater than
10−20; furthermore, the ratio between the smallest and the largest eigenvalues
of such matrices is required to be not lower than 10−10.

2.7 Analysis of canned tuna sales

In order to show the usefulness of the proposed methodology in comparison
with other existing methods, data taken from Chevalier et al. (2003) and
available within the R package bayesm (Rossi, 2012) have been employed. This
dataset contains the volume of weekly sales for seven of the top 10 U.S. brands
in the canned tuna product category for I = 338 weeks between September
1989 and May 1997, together with a measure of the display activity and the log
price of each brand. Analyses have been focused on D = 2 products: Bumble
Bee Solid 6.12 oz. (BBS) and Bumble Bee Chunk 6.12 oz. (BBC). The goal
is to study the effect of prices and promotional activities on sales for these
two products. Thus, the following variables have been examined: the log unit
sale (Yi1), the measure of the display activity (xi1) and the log price (xi2)
registered in week i for BBS; Yi2, xi3 and xi4 denote the same information
for BBC. Results from analyses of other brands can be found, for example, in
Rossi et al. (2005) and Galimberti et al. (2016).

A first analysis has been performed by assuming that prices and promo-
tional activities for each of the two examined products can only affect sales of
the same product. Thus, x′

i1 = (xi1, xi2) and x′

i2 = (xi3, xi4) are the vectors
with the regressors that have been used in the equations for Yi1 and Yi2, re-
spectively, in all the models fitted to the data in this analysis. The R function
illustrated in Section 2.6 has been used to estimate models defined in equa-
tions (3) and (4) with a value of K from 1 to 4. For each K > 1, fourteen
different parsimonious models have been fitted to the dataset, one for each
of the possible structures of the covariance matrices (see Section 2.4). When
K = 1,Σ1 can only be fully unconstrained, diagonal with D unequal variances
or diagonal with equal variances; thus, only three models with K = 1 have
been fitted. Models have been estimated for the values K = 2, 3, 4 also under
the constraint βk = β ∀k, thus leading to the models proposed by Galim-
berti et al. (2016). Table 2 provides some model fitting results within the four
subclasses of models identified by the examined values of K for each of the
two sets of unconstrained and constrained models just mentioned. According
to the BIC, the best model for studying the effect of prices and promotional
activities on sales for BBS and BBC canned tuna is obtained with a mixture of
K = 3 unconstrained seemingly unrelated linear regression models. Parameter
estimates of this model are reported in the upper part of Table 3. By focusing
the attention on the estimated regression coefficients, there is a clear evidence
of differential effects of the log prices on the log unit sales for both products
when we compare the three clusters of weeks detected by the model. As far as
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Table 2 Maximised log-likelihood and BIC value for the best models fitted to the tuna
dataset in the first analysis within subclasses of models defined by the examined values of
K

.

Unconstrained models

K Acronym lM (θ̂) nparM BICM

1 EEI −673.03 8 −1392.63
2 VVV −300.43 19 −711.51
3 VVE −251.72 27 −660.66
4 VEI −265.70 32 −717.74

Constrained models

K Acronym lM (θ̂) nparM BICM

2 VEV −323.75 14 −728.97
3 VVE −287.21 19 −685.05
4 VVV −260.99 27 −679.21

promotional activities are concerned, their effects on the log unit sales seem
to be slightly positive only in the smallest cluster of weeks.

In order to discover whether taking account of the correlation between the
errors in the bivariate regression model for the log unit sales of BBC and BBS
really allows to obtain a better model for this dataset, also mixtures of K
linear regression models composed of two separate univariate regression equa-
tions have been examined, in which (conditional) independence between the
log unit sales of BBC and BBS is assumed. Such mixtures have been estimated
for K ∈ 1, 2, 3, 4, both with and without the constraint βk = β ∀k. For each
K > 1, two parameterisations have been considered: equal or unequal variances
among components. A model with K = 2 components, unconstrained regres-
sion coefficients and unequal variances has been selected for both BBS and
BBC, with BIC values equal to −165.56 and −510.14, respectively. The over-
all BIC value under the independence assumption is thus given by −675.70.
Note that this BIC value is smaller than the one obtained using mixtures of
seemingly unrelated regression models. This seems to suggest that the condi-
tional distributions of Yi1 and Yi2 should not be modelled separately and that
the seemingly unrelated regression setting actually leads to a better model for
the data in this analysis.

Since BBS and BBC products are produced by the same brand, prices and
promotional activities for one product could have an impact on the sales of the
other product. Thus, additional models should be examined, in which each of
the G = 4 regressors xi1, xi2, xi3, xi4 can enter into either of the two regres-
sion equations for Yi1 and Yi2. For these reasons, for each K (K = 1, 2, 3, 4)
and each dependent variable, an exhaustive search for the relevant regressors
has been performed. For each value of K and each possible structure of the
component-covariance matrices, 2G·D = 256 different bivariate regressionmod-
els can be specified. In this second analysis, the overall number of estimated
models, as defined in equations (3) and (4), is 11520 (256 ·3+256 ·14 ·3). This
same set of models for K = 2, 3, 4 has been estimated also under the constraint
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Table 3 Parameter estimates of the overall best models fitted to the tuna dataset in the
first and second analyses.

First analysis
k = 1 k = 2 k = 3

π̂k 0.068 0.307 0.628

λ̂
′

k (9.85, 7.49) (11.82, 8.12) (9.54, 7.85)

β̂
′

k (3.57,−9.45, 1.51,−9.00) (−0.14,−6.96, 0.15,−5.26) (0.11,−3.25, 0.01,−3.46)

Σ̂k

(

1.521 0.039
0.039 0.032

) (

0.018 −0.004
−0.004 0.174

) (

0.049 −0.001
−0.001 0.094

)

Second analysis
k = 1 k = 2 k = 3

π̂k 0.058 0.322 0.620

λ̂
′

k (26.74, 6.94) (11.16, 8.09) (9.95, 7.85)

β̂
′

k (−39.54,−13.99) (−5.85,−5.53) (−3.93,−3.46)

Σ̂k

(

1.815 −0.060
−0.060 0.048

) (

0.022 0.007
0.007 0.216

) (

0.052 0.001
0.001 0.095

)

Table 4 Maximised log-likelihood and BIC value for the best models fitted to the tuna
dataset in the second analysis within subclasses of models defined by the examined values
of K

.

Unconstrained models

K Regressors for Yi1 Regressors for Yi2 Acronym lM (θ̂) nparM BICM

1 xi2, xi4 xi4 EEI −671.95 7 −1384.66
2 xi1, xi2, xi4 xi4 VEV −300.65 18 −706.11
3 xi2 xi4 EVV −265.12 21 −652.53
4 xi2, xi3 xi4 VEV −239.22 32 −664.77

Constrained models

K Regressors for Yi1 Regressors for Yi2 Acronym lM (θ̂) nparM BICM

2 xi1, xi2 xi4 VEV −323.88 13 −723.48
3 xi1, xi2 xi4 VEV −289.82 18 −684.45
4 xi1, xi2, xi4 xi4 VVE −267.21 24 −674.18

βk = β ∀k. In this situation, the BIC defined in Section 2.5 can be employed
to choose not only the best model but also the best subset of regressors for
each dependent variable. Table 4 provides some model fitting results for the
two sets of models just illustrated. According to the BIC, the best model for
studying the effect of prices and promotional activities on sales for BBS and
BBC canned tuna is still obtained with a mixture of K = 3 unconstrained
linear seemingly unrelated regression models. In this model, the log unit sales
of BBS canned tuna are simply regressed on the log prices of BBS canned
tuna; thus, xi1 = (xi2). As far as the regressors for the BBC log unit sales
are concerned, only the log price of BBC canned tuna has been selected, that
is xi2 = (xi4). From the parameter estimates (see the lower part of Table 3)
it emerges that the effects of log prices on the log unit sales for both prod-
ucts are negative within each cluster detected by this model. However, these
effects are stronger in the first cluster of weeks (especially for BBS canned
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tuna) and weaker in the third cluster. This seems to suggest that the effect of
log price on log unit sales is not homogeneous during the examined period of
time for both dependent variables. Heterogeneity over time appears to emerge
also in the correlations between log sales of BBS and BBC products: they
are almost zero within the second and third cluster, while in the first clus-
ter these variables show a mild negative correlation. According to the highest
estimated posterior probabilities, 19, 94 and 225 weeks are assigned to these
three clusters, respectively. An interesting feature of this partition is that 17
out of the 19 weeks in the first cluster are consecutive from week 58 to week
74, which correspond to the period from mid-October 1990 to mid-February
1991 (see the additional information about the canned tuna dataset available
at the University of Chicago website http://research.chicagobooth.edu/kilts/
marketing-databases/dominicks/). That period was characterised by a world-
wide boycott campaign (promoted by the U.S. nongovernmental organisation
Earth Island Institute) encouraging consumers not to buy Bumble Bee tuna
because Bumble Bee was found to be buying yellow-fin tuna caught by dolphin-
unsafe techniques (Baird and Quastel, 2011). The selected model seems to
suggest that such events may be one of the sources of the unobserved hetero-
geneity that affected both the correlation between log sales of BBS and BBC
and the effects of log price on log unit sales.

3 Consistency of the ML estimator

Although in a regression context the primary interest is on the conditional
p.d.f. of Yi|Xi = xi, the regularity conditions ensuring the consistency of the
ML estimator of θ developed in this paper concern the joint distribution of
the regressors and dependent variables. Let Zi = (X′

i,Y
′

i)
′. The density of Zi

is supposed to have the form

h(zi;ψ) = q(xi;ϑ)f(yi|xi; θ), zi = (x′

i,y
′

i)
′ ∈ R

G+D, (7)

for some ψ = (ϑ′, θ′)′ ∈ Ψ = Υ ×Θ. The function q(x;ϑ) = dQ (x;ϑ) /dµ
is the Radon-Nikodym density of Q (x;ϑ), the joint distribution of X, with
Q (x;ϑ) ∈ B = {Q (x;ϑ) ;ϑ ∈ Υ }. The conditional p.d.f. of Y|X = x is
given in equation (3). It is also assumed that the marginal density of the
predictors q(x;ϑ) is a parametric function whose parameters ϑ do not involve
the parameters θ that characterise the conditional density function of Y|X =
x. Hereafter the class of finite mixtures of Gaussian linear regression models
with random predictors just defined is denoted as FK = {h(z;ψ),ψ ∈ Ψ},
where K is the order of the mixture model (3).

This section provides a study of the behaviour of the ML estimator for the
model class FK as the sample size increases. Properties of the ML estimator
have been analytically investigated with I → ∞. A numerical evaluation has
been carried out with increasing finite sample sizes. Section 3.1 provides con-
ditions for model identifiability, that represents a preliminary requirement to
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study consistency. Section 3.2 contains simple assumptions ensuring the consis-
tency of the ML estimator. The proof of the consistency reported in Section 3.3
is based on a general consistency theorem that holds true for the extremum
estimators of parametric models in the presence of i.i.d. random variables (see
Newey and McFadden, 1994, Theorem 2.1). The assumptions on the elements
and parameters of FK are defined so as to ensure that the conditions required
by that theorem are fulfilled and, thus, the theorem can be applied to the ML
estimator of the models examined in Section 2.1. As suggested by Newey and
McFadden (1994, p. 2122), the assumptions are formulated to be explicit and
primitive in the sense that they are easy to interpret.

3.1 Identifiability

Consider the class of models F = {FK ,K = 1, . . . ,Kmax}, whereKmax denotes
the maximum order specified by the researcher for the mixture in equation (3).
This class is said to be identifiable if, for any two models M , M∗ ∈ F with
parameters ψ = (ϑ′, θ′)′ and ψ∗ = (ϑ′∗, θ′∗)′, respectively,

q(x;ϑ)

K
∑

k=1

πkφ (y;µk,Σk) = q(x;ϑ∗)

K∗

∑

k=1

π∗

kφ (y;µ∗

k,Σ
∗

k)∀(x,y) ∈ R
G+D

implies that ϑ = ϑ∗, K = K∗ and θ = θ∗.
Several types of non-identifiability can affect the model class F. A first

type is due to invariance to relabeling the components (also known as label-
switching). Furthermore, non-identifiability is caused by potential overfitting
associated with empty components or equal components. These types of non-
identifiability are common to any finite mixture model (see, e.g., Frühwirth-
Schnatter, 2006, p. 15). For mixtures of univariate and multivariate Gaus-
sian linear regression models with random regressors, another type of non-
identifiability arises when the marginal density q(x;ϑ) assigns positive prob-
ability on a (G − 1)-dimensional hyperplane (Hennig, 2000). A similar issue
can occur also for the model class F.

Under mild conditions, the identifiability of the model class F is ensured
by the following theorem (see Section A of the Online Resource for a proof).

Theorem 1

(I1) Let B̄ = {Q (x;ϑ) ;ϑ ∈ Ῡ } be a class of identifiable models composed of
parametric joint distributions for X, such that the marginal distributions of
Xd do not give positive probability to any (Pd − 1)-dimensional hyperplane
of RPd , for d = 1, . . . , D. Let q(x;ϑ) = dQ (x;ϑ) /dµ be the corresponding
Radon-Nikodym density.

Furthermore, let Ψ = Ῡ×Θ be a parameter space associated with the model
class F whose elements ψ = (ϑ′, θ′)′ fulfil the following conditions:

πk > 0 ∀k; (8)

λk 6= λk′ ∨ βk 6= βk′ ∨Σk 6= Σk′ ∀ k 6= k′. (9)
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Let M ∈ FK and M∗ ∈ FK∗ be two finite mixtures of Gaussian linear re-
gression models with orders K and K∗, respectively. If ψM = (ϑ′

M , θ′M )′ ∈
ΨM and ψ∗

M∗ = (ϑ′∗

M∗ , θ′∗M∗)′ ∈ ΨM∗ exist such that q(x;ϑM )f(y|x; θM ) =
q(x;ϑ∗

M∗)f(y|x; θ∗M∗) with ϑM ,ϑ∗

M∗ ∈ Ῡ ∀(x′,y′)′ ∈ R
G+D, then K = K∗

and ψM = ψ∗

M∗ .

The condition πk > 0, k = 1, . . . ,K in equation (8) allows to avoid non-
identifiability due to empty components. The constraints on Θ defined by the
equation (9) make it possible to avoid non-identifiability caused by equal com-
ponents. Furthermore, equation (9) implies that any two parameter vectors θk
and θk′ differ in at least one element which need not be the same for all com-
ponents. As noted by Frühwirth-Schnatter (2006, p. 20), constraints defined
by equation (9) force a unique labeling of the components, thus preventing
label switching. In particular, if all K vectors θ1, . . . , θk, . . . , θK differ in the
same qth element θk,q, then a unique labeling can be obtained by considering
a strict order constraint on that element:

θ1,q < θ2,q < . . . < θK,q. (10)

This strict order constraint imposes K−1 strict inequalities between pairs θk,q
and θk+1,q for all k = 1, . . . ,K − 1. When such an element does not exist, it is
possible to replace some of these strict inequalities by constraints on different
elements of θk (for further details, see Frühwirth-Schnatter, 2006, pp. 19-20).
Conditions (I1) on the marginal distributions of Xd generalise the identifiabil-
ity conditions introduced by Hennig (2000) for mixtures of univariate Gaussian
linear regression models with random covariates. It is worth noting that these
latter conditions may be violated in applications with dummy or categorical
regressors and, more generally, with regressors taking a small number of values.

3.2 Assumptions

Let the true density function of Z be denoted as g(z). The conditions required
in this paper for the consistency of the ML estimator can be partitioned into
two classes: i) conditions on the parameters θ that characterise the conditional
p.d.f. of Y|X = x; ii) conditions concerning the predictors X.

Consider the model class FK = {h(z;ψ),ψ ∈ Ψ̄}, with Ψ̄ = Ῡ×Θ̄ denoting
a compact metric subspace of Ψ whose elements fulfil the following conditions:

(C1) Σk ∈ D ∀k, where D denotes the set of the D × D positive definite
matrices with eigenvalues in [a, b], with 0 < a < b < ∞;

(C2) βk ∈ B(η, P ) ∀k, where B(η, r) = {a ∈ R
r : ‖a‖ ≤ η}, η > 0;

(C3) λk ∈ B(η,D) ∀k,

where ‖.‖ denotes the Euclidean norm. From equation (7) it is possible to
write

ln[h(z;ψ)] = ln[q(x;ϑ)] + ln[f(y|x; θ)]. (11)
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For the function ln[q(x;ϑ)] in equation (11) it is supposed that

h0 + h1‖x‖
2 ≤ ln[q(x;ϑ)] ≤ h2 + h3‖x‖

2 ∀x ∈ R
G, ∀ϑ ∈ Ῡ , (12)

where h0, h1, h2 and h3 are real constants, and

ln[q(x;ϑ)] is continuous at each ϑ ∈ Ῡ with probability one. (13)

It is also assumed that g(x), the true density function of x, fulfils the
following condition:

∫

‖x‖2g(x)dx < ∞. (14)

Finally, it is required that

(C4) a unique model M0 ∈ FK0 exists such that g(z) = h(z; ψ̆M0) for some
parameter value ψ̆M0 ∈ Ψ̄ , where the order K0 of model M0 is known.

Conditions (C1)-(C3) and assumption (12) are required to ensure a bound-
edness inequality for the function ln[h(z;ψ)]. The constraints on the component-
covariance matrices illustrated in the condition (C1) can also avoid degenera-
cies and spurious local solutions in the maximisation of the log-likelihood func-
tion. Condition (C4) and assumption (14) are necessary for the second part
of the proof of Theorem 2 (see Section B in the Online Resource). In particu-
lar, condition (C4) states that the model class FK is correctly specified. It is
worth mentioning that conditions (C1)-(C4) are similar to the ones described
in Maugis et al. (2009).

3.3 Derivation of the consistency result

For the proof of the consistency of the ML estimator ψ̂I , some preliminary the-
orems and lemmas are needed. Namely, Theorem 2 states that, under some of
the just introduced assumptions, it is possible to obtain an envelope function
e(z) for the model class FK and that this function is g-integrable (see Section
B of the Online Resource for a proof). Lemmas 1 and 2 ensure some conditions
that are required from the general consistency theorem in Newey and McFad-
den (1994). Namely, under the conditions stated in Lemma 1, E (ln[h(Z;ψ)])
has a unique maximum at ψ0, where ψ0 denotes the true value of the model
parameter; furthermore, if the conditions required by Lemma 2 are fulfilled,
E (ln[h(Z;ψ)]) is continuous and 1

I

∑I
i=1 ln[h(zi;ψ)] uniformly converges in

probability to E (ln [h(Z;ψ)]).

Theorem 2 Given the conditions (C1)-(C4) and assumptions (12) and (14)
there exists a function e(z), z ∈ R

G+D, such that

| ln[h(z;ψ)]| ≤ e(z) ∀ψ ∈ Ψ̄ , ∀z ∈ R
G+D, (15)

∫

e(z)g(z)dz < ∞. (16)
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Lemma 1 Given the conditions (I1), (C1)-(C4), (8), (9) and assumptions (12)
and (14) and if ψ0 ∈ Ψ̄ , then E (ln[h(Z;ψ)]) has a unique maximum at ψ0.

Proof Conditions (I1), (8) and (9) ensure that ψ0 is identified. Under the
conditions (C1)-(C4) and assumptions (12) and (14), from Theorem 2 it follows
that

E (| ln[h(Z;ψ)]|) ≤ E (e(Z)) ∀ψ ∈ Ψ̄ .

Finally, Lemma 2.2 of Newey and McFadden (1994) leads to the result
given in Lemma 1.

Lemma 2 If z1, . . . , zI are i.i.d. sample observations of Z, Ψ̄ is compact and
the conditions (C1)-(C4) and assumptions (12) and (14) are fulfilled, then
E (ln[h(Z;ψ)]) is continuous and

sup
ψ∈Ψ̄

∣

∣

∣

∣

∣

1

I

I
∑

i=1

ln[h(zi;ψ)]− E (ln [h(Z;ψ)])

∣

∣

∣

∣

∣

p
−→ 0. (17)

Proof The results given in Lemma 2 follow immediately from Theorem 2 and
Lemma 2.4 of Newey and McFadden (1994).

Corollary 1 Given the conditions (I1), (C1)-(C4), (8), (9) and assumptions (12)-
(13) and if Ψ̆ is compact, then the following convergence in probability holds
true:

ψ̂I
p
−→ ψ0. (18)

Proof The result (18) follows immediately from Theorem 2 and Theorem 2.1,
Lemmas 2.2 and 2.4 of Newey and McFadden (1994).

3.4 Results from the analysis of finite samples

Given an i.i.d. random sample Z = {(x1,y1), . . . , (xI ,yI)} of (X,Y), the log-
likelihood of a model from the class FK is equal to lI(ψ) = lI(ϑ) + lI(θ),

where lI(ϑ) =
∑I

i=1 ln q(xi;ϑ) and lI(θ) is given in equation (5). Thus,

ψ̂I = (ϑ̂
′

I , θ̂
′

I)
′, the ML estimator of ψ based on I sample observations, can

be obtained by a separate maximisation of lI(ϑ) and lI(θ). As far as ϑ is
concerned, its estimator will depend on the probability distribution specified
for the predictors. In this Section, the attention is focused on the behaviour
of θ̂I under correctly specified models for f(yi|xi; θ).

In this study, two experimental factors have been examined: the sample size
(I) and the level of overlap among the linear regressions in the model. This
latter factor has been measured as the classification error rate (ER) associated
with the model used to generate the datasets. The considered factors’ levels
are 1000, 2000, 3000, 4000, 5000 and 6000 for the sample size, and 1%, 5% and
10% for the error rate, thus leading to 18 different experimental situations.

Datasets have been simulated under some models from the class defined
by equations (2)-(4) according to three different scenarios. In the first scenario
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the models used to generate datasets are mixtures of two (K = 2) bivariate
(D = 2) seemingly unrelated linear regression models with X1, X2 and X3

as regressors for Y1, X1, X4 and X5 as regressors for Y2. The specific values
of the model parameters θ = (π′, θ′1, θ

′

2)
′ employed in this first scenario are:

π1 = 0.4, π2 = 0.6, β1 = (1, 2, 3, 4, 5, 6)′,

λ1 =

(

2
2

)

,Σ1 =

(

1 0
0 1.5

)

, Σ2 =

(

1.2 0
0 1.8

)

.

As far as λ2 and β2 are concerned, their values have been computed as λ2 =
λ1+ζ2 and β2 = β1+ζ6, respectively, where ζj denotes a vector of j indepen-
dent realizations of the uniform random variable in the interval (a, a+1) of the
real line, a > 0. Clearly, the larger the value of a is, the lower the ER associated
with the model is. Three different values of a > 0 have been employed in the
first scenario; they are a1 = 1, a2 = 2 and a3 = 5.5. Such values have been se-
lected so as to obtain models whose classification error rates are approximately
equal to 10%, 5% and 1%, respectively. The specific realizations of vectors ζ2
and ζ6 used to compute λ2 and β2 with a1 are ζ2 = (1.9387, 1.6060)′ and
ζ6 = (1.4187, 1.6560, 1.9459, 1.1949, 1.7602, 1.0397)′. Each element of these
latter vectors has been translated by aj − a1 in order to obtain the specific
realizations to be used with the values aj , j = 2, 3.

In the second scenario the datasets are generated from mixtures of three
(K = 3) bivariate (D = 2) seemingly unrelated linear regression models, where
π1 = 0.15, π2 = 0.35, π3 = 0.5, (X1, X2, X3) and (X1, X4, X5) are the vectors
of the regressors for Y1 and Y2, respectively. As far as model parameters β1,
λ1, Σ1 and Σ2 are concerned, they are set equal to the same values employed
in the first scenario. The remaining parameters have been obtained as follows:
λ2 = λ1 + ζ2, β2 = β1 + ζ6, λ3 = λ2 + ζ2, β3 = β2 + ζ6,

Σ3 =

(

1.8 0
0 1.2

)

.

The realizations of ζj have been obtained using the same strategy employed
in the first scenario. The values of a leading to model classification error rates
ER approximately equal to 10%, 5% and 1% are a1 = 1.3125, a2 = 2.3125
and a3 = 6.3125, respectively. The specific realizations of vectors ζ2 and ζ6
generated from a uniform random variable in the interval (a1, a1+1) are ζ2 =
(2.2512, 1.9185)′ and ζ6 = (1.7312, 1.9684, 2.2584, 1.5074, 2.0727, 1.3522)′.

The setting of the third scenario coincides with the one of the first scenario
except for a different choice of the weights; here, weights are set as follows: π1 =
π2 = 0.5. In order to obtain models with an approximated ER of 10%, λ2 and
β2 have been computed as follows: λ2 = λ1+ζ2, where ζ2 = (2.0012, 1.6685)′,
and β2 = β1 + ζ6, where ζ6 = (1.4812, 1.7184, 2.0084, 1.2574, 1.8227, 1.1022)′.
These specific realizations of ζ2 and ζ6 have been obtained using a1 = 1.0625.
As far as the choice of the parameters in association with ER = 5% and ER =
1% are concerned, the values a2 = 1.9375 and a3 = 5.4375 have been employed.
In all scenarios, the realizations of each regressor have been generated by the
standard normal distribution.
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For each scenario and each combination of factors’ levels,R = 1000 datasets
have been generated. Then, each dataset has been used to compute θ̂, the ML
estimate of the data-generating model. Since the main goal of these analyses is
to study the behaviour of the ML estimator under correctly specified models,
for each simulated dataset only the ML estimate of the true generating model
parameters has been computed. This task has been carried out through the
package FlexMix (Grün and Leisch, 2008) for the R software environment (R
Core Team, 2019), that allows to fit not only mixtures of univariate Gaussian
regression models but also mixtures of multivariate and seemingly unrelated
Gaussian regression models with diagonal component covariance matrices. In
particular, function initFlexmix has been used for the initialisation of the
model parameters. To this end, 10, 60 and 30 random initialisations have been
employed for each dataset in the first, second and third scenarios, respectively.

In order to study the behaviour of the ML estimator, the following measure
has been examined: dr = ‖θ̂r −θ‖, where θ̂r is the ML estimate of θ obtained
from the r−th simulated dataset. This measure has been chosen because of
the equivalence between the convergence in probability of each component
of θ̂ to the corresponding element of θ and the convergence in probability
of the vector θ̂ to the vector θ based on ‖θ̂ − θ‖ < δ, ∀δ > 0 (see, e.g.,
Lehmann, 1999, p. 278). Thus, for each scenario and each combination of
factors’ levels, an estimate of the sample distribution of the Euclidean distance
between θ̂ and θ has been obtained, based on R = 1000 samples. In order to
avoid problems associated with the labeling of the K regression models in
the mixture, the Euclidean distances dr have been computed after relabeling
the K estimated regression models. In the first two scenarios, this task has
been carried out according to the estimated prior probabilities taken in non-
decreasing order. As far as the third scenario is concerned, the K estimated
regression models have been labeled in order of the estimated intercepts in
the regression models for the first dependent variable (i.e., the first elements
of λ1, . . . ,λK). No problem while labeling the K regressions in the mixture
based on such criteria have emerged from any scenario. Labelling methods
incorporating the information about the true labels u1+, . . . ,uI+ in simulation
studies have been recently proposed (see, e. g., Yao, 2015). With such methods,
the researcher avoids putting order constraints on a specific model parameter,
which will lead to undesirable results when the chosen parameter does not
contain enough information about the true labels of the sample observations.

In the first scenario, the estimated sample distributions of the Euclidean
distance between θ̂ and θ tend towards zero as the sample size increases for
each examined classification error rate (see Figure 1, upper part). A similar
behaviour emerges also in the second and third scenarios (see Figure 1, central
and lower parts). By focusing the attention on the median, the 95% and 99%
percentiles of the drs (Table 5), it emerges that, for each scenario and each
sample size, such distances are slightly closer to zero when the classification
error rate is lower. In addition, the percentiles obtained when the datasets
are generated from models with three components are higher than the ones
obtained using models with two components for every sample size and every
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Table 5 50%, 95% and 99% percentiles of the sample Euclidean distances dr in the three
scenarios, for the 18 examined experimental situations.

ER = 1% ER = 5% ER = 10%
Scenario I 50% 95% 99% 50% 95% 99% 50% 95% 99%

1st 1000 0.272 0.371 0.423 0.285 0.393 0.430 0.303 0.413 0.468
2000 0.193 0.258 0.298 0.201 0.270 0.308 0.213 0.291 0.328
3000 0.157 0.210 0.240 0.164 0.224 0.250 0.174 0.233 0.269
4000 0.137 0.184 0.206 0.143 0.192 0.213 0.153 0.200 0.226
5000 0.123 0.167 0.191 0.129 0.174 0.195 0.137 0.184 0.206
6000 0.112 0.151 0.174 0.116 0.159 0.183 0.122 0.166 0.196

2nd 1000 0.460 0.594 0.652 0.484 0.618 0.686 0.515 0.678 0.757
2000 0.323 0.421 0.470 0.342 0.441 0.480 0.362 0.465 0.526
3000 0.261 0.344 0.385 0.275 0.361 0.409 0.295 0.389 0.446
4000 0.230 0.292 0.330 0.240 0.311 0.345 0.257 0.331 0.372
5000 0.205 0.269 0.291 0.214 0.279 0.316 0.229 0.299 0.345
6000 0.186 0.245 0.272 0.196 0.260 0.284 0.209 0.273 0.300

3rd 1000 0.271 0.367 0.415 0.282 0.383 0.429 0.299 0.405 0.471
2000 0.191 0.262 0.296 0.197 0.277 0.311 0.208 0.288 0.326
3000 0.156 0.213 0.240 0.162 0.224 0.252 0.170 0.233 0.271
4000 0.136 0.183 0.208 0.141 0.193 0.215 0.148 0.200 0.224
5000 0.121 0.166 0.184 0.128 0.171 0.190 0.134 0.177 0.199
6000 0.110 0.150 0.169 0.114 0.155 0.181 0.120 0.164 0.195

error rate. Furthermore, the impact of using equal weights on the results of
the first scenario appears to be negligible.

In order to gain a deeper understanding of the effects of the sample size
and the classification error rate on ‖θ̂ − θ‖, three regression analyses have
been performed. For each scenario, the Euclidean distances dr obtained on
the R∗ = 18 · R simulated samples have been regressed on the sample size
and the classification error rate. Preliminary results (not shown here) have
revealed that dr is characterised by conditional heteroscedasticity, given the
values of the two regressors, and that the natural logarithm proves to be a
suitable variance-stabilising transformation in all scenarios. For these reasons,
the following regression model has been specified:

ln dr = δ0 + δ1zr1 + δ2zr2 + δ3zr3 + δ4zr4 + δ5zr5 + εr, r = 1, . . . , R∗, (19)

where zr1 = ln Ir − ln 3500, Ir is the sample size of the dataset employed
to compute dr, zr1 and zr2 are two dummy variables used to numerically
code the error rate (with ER = 0.01 as reference category) and zr4 = zr1zr2
and zr5 = zr1zr3 allow for possible interaction between sample size and er-
ror rate. Note that ln Ir − ln 3500 is considered instead of Ir in order to
reduce collinearity with the interaction terms. As far as the errors are con-
cerned, it is assumed that they have Gaussian distributions with expected
value equal to zero and their variances may vary with the overlap level:
Var [εr] = σ2 [1 + (ω1 − 1) zr2 + (ω2 − 1) zr3]. Thus, σ

2 is the error variance
when ER = 1%, and ω1, ω2 are scale factors for σ2 when ER = 5% and
ER = 10%, respectively. It is worth mentioning that assuming a conditional
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Fig. 1 Boxplots of the Euclidean distances dr for the six sample sizes within the three error
rates in the first (upper part), second (central part) and third (lower part) scenarios.

Gaussian distribution for ln dr is equivalent to assume a conditional lognormal
distribution for dr. Thus, a Gaussian linear model for ln dr implies a lognor-
mal regression model for dr. Furthermore, given the properties of lognormal
distributions, E[dr] ≤ med[dr] = exp {med[ln dr]} = exp {E[ln dr]} (see, e. g.,
Aitkin et al., 2009, p. 125). Thus, model (19) implies the following multiplica-
tive model for the median Euclidean distances:

med [dr] =

(

Ir
3500

)(δ1+δ4zr2+δ5zr3)

e(δ0+δ2zr2+δ3zr3), r = 1, . . . , R∗. (20)

Parameters of model (19) have been estimated by exploiting generalised least
squares and using the R package nlme (Pinheiro et al., 2017). The obtained
results for the three scenarios are reported in Tables 6-8. For the regression
coefficients δh, h = 1, . . . , 5, these tables also contain the estimated standard
errors, the t-test statistics (for the null hypothesis H0 : δh = 0, h = 1, . . . , 5)
and the corresponding p-values. According to these results, it appears that
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Table 6 Estimated parameters for the regression model (19) in the first scenario. Additional
parameter estimates are σ̂ = 0.187, ω̂1 = 1.011, ω̂2 = 1.014.

Value Std. Error t-value p-value
δ0 -1.926 0.002 -771.899 0.000
δ1 -0.497 0.004 -124.347 0.000
δ2 0.041 0.004 11.554 0.000
δ3 0.099 0.004 27.849 0.000
δ4 -0.003 0.006 -0.491 0.623
δ5 -0.006 0.006 -1.119 0.263

Table 7 Estimated parameters for the regression model (19) in the second scenario. Addi-
tional parameter estimates are σ̂ = 0.63, ω̂1 = 1.000, ω̂2 = 1.016.

Value Std. Error t-value p-value
δ0 -1.411 0.002 -648.766 0.000
δ1 -0.502 0.003 -144.226 0.000
δ2 0.050 0.003 16.185 0.000
δ3 0.113 0.003 36.577 0.000
δ4 0.001 0.005 0.149 0.882
δ5 -0.002 0.005 -0.427 0.670

Table 8 Estimated parameters for the regression model (19) in the third scenario. Addi-
tional parameter estimates are σ̂ = 0.189, ω̂1 = 1.015, ω̂2 = 1.013.

Value Std. Error t-value p-value
δ0 -1.934 0.003 -766.853 0.000
δ1 -0.500 0.004 -123.767 0.000
δ2 0.040 0.004 11.027 0.000
δ3 0.087 0.004 24.281 0.000
δ4 -0.002 0.006 -0.324 0.746
δ5 -0.005 0.006 -0.875 0.382

not only the sample size but also the error rate has a significant effect on
ln ‖θ̂ − θ‖. Namely, on average ln ‖θ̂ − θ‖ tends to be larger as the error rate
increases. The boxplots of the standardised residuals versus the fitted values
for the two regression models are represented in Figure 2. In particular, each
figure contains 18 boxplots (one for each possible combination of the factors’
levels). As shown by these boxplots, in each scenario the distributions of the
standardised residuals are approximately symmetric around zero and show a
fairly similar variability. This behaviour suggests that the regression models
can be considered adequately specified.

By focusing the attention on the interaction between I and ER, the p-
values for the Wald statistic to test the null hypothesis H0 : δ4 = δ5 = 0
in the three scenarios (see the last column in Table 9) suggest that there is
not a significant interaction between sample size and error rate in any of the
considered scenarios. As far as the two estimated main effects of the sample
size are concerned (see the column δ̂1 in Table 9), it emerges that they are
approximately equal. In addition, all 95% confidence intervals for δ1 contain
the value -0.5. Thus, in each examined scenario, the median Euclidean distance
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Fig. 2 Boxplots of the standardised residuals versus fitted values for the regression
model (19) in the first (left part), second (central part) and third (right part) scenarios.

Table 9 Estimated effects of the sample size from model (19) in the three scenarios and
p-values for the Wald statistic to test for the absence of interaction between sample size and
classification error rate (H0 : δ4 = δ5 = 0)

.

Scenario δ̂1 95% confidence interval for δ1 p-value
1st −0.497 (−0.504,−0.489) 0.534
2nd −0.502 (−0.509,−0.495) 0.838
3rd −0.500 (−0.508,−0.492) 0.677

between θ̂ and θ tends to decrease approximately at the same rate as I−0.5,
regardless of the overlap level.

4 Conclusions

The paper has introduced a flexible and rich class of models for multivari-
ate linear regression analysis based on finite mixtures of seemingly unrelated
Gaussian linear regression models. These models are able to deal with corre-
lated response variables in the presence of data coming from heterogeneous
populations. In addition, with these models it is possible to specify a different
vector of regressors for each dependent variable. This class encompasses sev-
eral other types of Gaussian mixture-based linear regression models previously
proposed in the literature. The paper has addressed both the model identi-
fication and ML estimation; this latter task is accomplished by means of an
EM algorithm. Similarly to any other regression analysis based on Gaussian
finite mixtures, also the proposed models and methods are affected by some
practical issues, such as the choice of a proper value for K and the unbound-
edness of the mixture likelihood. This latter problem could be dealt with by
constrained ML estimation. As far as the choice of K is concerned, several
model selection techniques could be employed also in the framework proposed
in this paper. A comparison among different linear regression models has been
carried out in a study of the effects of prices and promotional activities on sales
between September 1989 and May 1997 for two top U.S. brands in the canned
tuna product category; the obtained results have demonstrated the practical
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usefulness of the proposed models in highlighting the presence of unobserved
heterogeneity.

Furthermore, the paper has provided a range of specific conditions and
assumptions for the model identifiability and regularity. Such regularity con-
ditions and assumptions are easy to interpret, do not involve any derivatives of
the model p.d.f. and ensure the consistency of the ML estimator given i.i.d. ob-
servations. As far as model identification and consistency of the ML estimator
are concerned, it is important to note that there can be problems in applica-
tions where the regressors can only take a small number of values. The proof
of the consistency property exploits general asymptotic results that hold true
for extremum estimators of parametric models given i.i.d. observations (Newey
and McFadden, 1994). In particular, a theorem providing a weak consistency
result has been used. In order to ensure the strong consistency of the ML es-
timator it is necessary to replace the result about the uniform convergence in
probability given in equation (17) with a similar result concerning the almost
sure uniform convergence. In addition, the behaviour of the ML estimator in
the presence of finite samples has been evaluated through an estimate of the
sample distribution of the Euclidean distance between θ̂ and θ, based on 1000
simulated datasets. This evaluation has been carried out for three types of
models belonging to the proposed model class and for varying values of both
the sample size and the classification error rate associated with the examined
models. The obtained results have shown that such distance decreases with
the sample size for each examined classification error rate. In addition, the
interaction between the sample size and error rate on the logarithm of the
Euclidean distance between θ̂ and θ has resulted to be not significant. Finally,
the median value of this distance decreases with the sample size at the same
rate (I−0.5) for every examined classification error rate; these results hold true
for each of the three types of models considered in the Monte Carlo study.
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