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The modeling description of basic transport phenomena of

either liquid, gas or vapor molecules in dense polymeric

membranes is of tremendous impact for the separation

industry, which relies on solid models for the design of optimal

process conditions, for the selection of the most suitable

membrane materials as well as for the development of novel

ones. Such models need to deal with several physical aspects

and phenomena, spanning over broad time and length scales,

thus requiring multiple approaches. The solid frameworks now

available mainly rely on the solution–diffusion theory, in which

equation of state models and free volume theories are applied

for the description of thermodynamic and kinetic properties, to

be coupled in appropriate transport schemes.
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Introduction
Membrane processes have become a real alternative to

conventional separation methods in various sectors of

industrial relevance, in view of their lightweight, compact

and modular design, the ability to overcome some intrin-

sic thermodynamic limitations (e.g. azeotropes), moder-

ate energy requirements and limited footprint. The avail-

able processes now are not only for water purification and

desalination, but membrane separation is also suitable to

gas separation (GS) [1] (e.g. hydrogen purifications, bio-

gas or natural gas upgrading/sweetening, or carbon cap-

ture related applications), and to hydro-alcoholic or

organic solvent mixtures separation, by pervaporation

(PV) [2] and organic solvent nanofiltration (OSN) [3],

respectively.
www.sciencedirect.com 
Polymeric membranes provide the best compromise

between separation performances, resistance and ease

of manufacturing, thus representing the state of the art

system for these applications [4], using continuous and

dense thin selective layers, in which the mechanism of

dissolution and molecular transport provide the desired

extent of separation, according to the well know solution–

diffusion scheme [5].

Model description
The model description of membrane performance is

important not only for appropriate separation engineering

and the best design of operative conditions, but also to

develop novel materials for targeted applications. There-

fore, the attainment of the full physical picture of the

transport process and the deep understanding of the

mechanism requires a dedicated analysis, spanning from

the polymer material properties, including the interac-

tions with relevant penetrants, to the description of the

transport rates across the membranes, with attention to

the influence of the environment that can lead to possible

detrimental effects over time (e.g. plasticization, aging, or

fouling issues). Relevantly, these features are associated

to different properties that may vary over a broad range of

characteristic length and time scales, so that a sole

approach can be hardly used for an accurate and appro-

priate model analysis, and there is a clear need of a

multiscale method, for a proper and comprehensive

understanding.

Purely molecular simulations may result inappropriate to

describe the whole mechanism of penetrant transport in

polymer membranes, particularly in the case of glassy

polymers, being rather time consuming, with results that

cannot be easily extended to different systems or condi-

tions. For these reasons, only few examples are available

in the literature [6–8]. The obtained accuracy may also be

limited for practical uses, so that more accurate modeling

is obtained by direct use of selected experimental data.

Furthermore, some of the mechanisms, for example,

those involving macromolecular rearrangements that take

place over an extended period of time (e.g. aging or

plasticization phenomena), are definitely out of reach.

In view of these limitations, relevant not only to mem-

brane separation processes, integrated multiscale models

[9] or coarse grained approaches [10] have been devel-

oped and proposed for the analysis and the prediction of

polymer properties. The case of transport in dense poly-

meric membranes, in particular, may be conveniently
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described by macroscopic approaches, which rely on

separate models for penetrant sorption and diffusion.

Macroscale models
The description of fluid solubility, either of gases, vapors or

liquids, in polymers is often obtained by activity coeffi-

cients methods, such as Flory Huggins [11], or by equation

of state (EoS) models, as Lattice Fluid [12] or Statistical

AssociatingFluidTheory (SAFT)[13] approaches, suitable

to describe equilibrium rubbery systems. An appropriate

extension (Flory–Rehner) is also available to account for

the presence of crosslinks [14,15]. Glassy systems require a

different thermodynamic treatment due to their peculiar

non-equilibrium nature, for which the Non Equilibrium

Thermodynamics for Glassy Polymers (NET-GP) model is

available [16,17��]. Other approaches involving partial or

full adsorption contributions are limited to specific

behaviors, with no predictive ability, and are characterized

by serious phisical inconsistencies [11,18]. Therefore, they

will not be considered here.

The main framework for the description of penetrant

diffusion coefficient in polymeric materials is given by

the free volume theory [19], endowed by different approx-

imation levels, and applicable to all kinds of penetrant

molecules. The concept relies on considering the presence

of low-density regions at the nanoscale available for solute

diffusion, which might dynamically evolve within the

polymer matrix, and on the energy required by the pene-

trant to jump into that hole [20]. Simplified approaches

provide penetrant diffusivities in the limit of infinite
Figure 1
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dilution (e.g. light gases at moderate pressures) [21], in

which the polymer structure is basically unaltered by the

presence of the penetrant. Conversely, more elaborated

formulations, accompanied to a larger number of parame-

ters, are requiredtoaccount for soluteconcentrationdepen-

dence [22]. Relevantly, the free volume theory is readily

available to evaluate the effect of a second component on

the value of diffusion coefficient, that is, to predict the

diffusivity of penetrant mixtures [23,24].

It is noteworthy that the actual driving force of the

diffusion process, according to thermodynamic argu-

ments, is given by the chemical potential gradient, which

depends on solute concentration, pressure and tempera-

ture, and it is thus appropriate for the representation of

transport phenomena.

Modeling multicomponent transport in polymer systems,

however, is a delicate task, not all possible expressions are

feasible for the diffusion coefficients, and a more thorough

analysis of the mutual interaction of the diffusion coeffi-

cients of the different species is required. Thermodynamic

limitations, indeed, have to be carefully considered in order

to ensure the consistency and the robustness of the model-

ing approach, which has clearly to fulfill all thermodynamic

constraints (in terms of Gibbs–Duhem relationship) and

possibly symmetry requirements (Onsager criterion in lin-

ear relationships) [25,26]. For these reasons, dedicated

transport procedures are available for modeling multicom-

ponent transport, appropriately accounting for the effect of

mutual interactions.Thetwo(alternative)mainapproaches
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are derived according to generalized Fickian or Maxwell–

Stephan schemes [27,28], which have to be complemented

by an appropriate solubility and diffusivity model.

Figure 1 illustrates the working flow chart for modeling

the multicomponent transport properties in a nonporous

polymeric membrane.

The required input parameters for these macroscopic

models are represented by bulk properties of pure fluids

and polymers, typically obtained from experimental

data. This is the case for both equations of state and

free volume models for solubility and diffusivity,

respectively, which make use of volumetric (for EoS

and diffusion coefficient) and rheological properties (for

diffusion only) of the polymers and a few characteristics

for the penetrants. Such data are often already available

in the literature for several (conventional) polymers or
Figure 2
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experimentally accessible for most of polymers through

independent measurements. However, this route may

not be feasible, or simple, for some innovative or

peculiar polymer species. Molecular models can be

conveniently used to overcome such limitations, thus

elaborating a multiscale strategy for penetrant trans-

port. For instance, molecular dynamics has been used to

retrieve of EoS parameters by direct determination [29]

or from the in-silico simulation of the volumetric prop-

erties [30,31�]. The packing structure of the macromo-

lecules can also be evaluated by molecular modeling, to

identify the fractional free volume and time average of

the cavity size distribution [32,33], useful for the dif-

fusivity description of penetrants of different sizes and

shapes.

Molecular models can be used not only for the determi-

nation of the properties of pure substances, but also for
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/CH4) at 35�C. (a) NET-GP thermodynamic model for the description

50/50 mixture calculated by NET-GP model [52�]; (c) gas permeability

f the two components in a 50/50 mixture, at different transmembrane
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selected binary polymer/penetrant properties, which are

required for the description of both solubility and trans-

port. For instance, molecular dynamics have been

employed for the direct simulation of diffusion coefficient

of relevant penetrants [34�,35], for the evaluation of

swelling and plasticization effects [36,37,38], or even to

estimate multi-component transport properties [39].

Relevant modeling approaches have been also applied to

predict membrane properties based on few characteristics

of the polymer and penetrant species, mainly based on

macroscopic approaches and relying on semiempirical

correlations. Among the others, interesting analyses have

been provided to interpret the upper-bound in the corre-

lation between gas permeability and selectivity [40] for

gas separation membranes [41,42].
Figure 3
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Relevant modeling examples
The three membrane processes considered above, gas

separation, pervaporation and organic solvent nanofiltra-

tion, have been analyzed thoroughly by different model-

ing approaches. Some relevant examples can be found in

the literature in which all the different aspects described

are carefully considered, for the case of gas separation

[43,44�,45], pervaporation [46��,47,48�], and organic sol-

vent nanofiltration [49,50,51��].

In particular, Figure 2 reports the case of the transport of a

CO2/CH4 binary mixture (at fixed gas concentration) in

glassy polyarylate membrane for gas separation [52�].

The NET-GP model, first applied to the analysis of pure

gas sorption, describes well theexperimental solubility data
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tion for the separation of aromatic/aliphatic organic compounds, and

xture at different concentrations by UNIQUAC model [55]; (b) diffusion

e Maxwell–Stefan framework [55]; (c) resulting fluxes of the two
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accounting for the associated penetrant-induced swelling;

mixed gassolubility canthen be obtainedpredictively, with

the identification of competitive sorption effects. Gas

transport is described by considering a simple dependence

of gas diffusivity on its concentration in the polymer, and

the negative chemical potential gradient as the driving

force for the diffusion process: the transport parameters

are retrieved from pure gas permeability. The approach for

multicomponent transport is developed in a simple

Fickian scheme able to account for the mutual interaction

of the diffusion coefficients, and it allows then the predic-

tion of mixed gas permeability at various pressures, based

on the assumption of rather dilute polymer/penetrants

mixtures due to the limited solubility of gaseous solutes.

Alternative approaches (Flory–Huggins and PC-SAFT

with a Maxwell–Stefan scheme) have been employed to
Figure 4
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describe the behavior of crosslinked membranes for the

separation of CO2/hydrocarbons or CH4/hydrocarbons mix-

tures [43,53], relevant for industrial processes for the puri-

fication of natural gas. More general mixtures would require

to consider the presence of a number of different

components, some of them present even in trace

amounts. A very limited number of studies, however, has

been devoted to this aim, mainly by means of phenomeno-

logical approaches [54].

Figure 3 reports the description of the separation of

aromatic and aliphatic mixtures in a pervaporation opera-

tion using a dense polyurethane membrane [55].

The penetrant solubility is treated as liquid–liquid equi-

librium (LLE) between the organic solvent mixture and
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the polymer phase, and the UNIQUAC (or, alternatively,

the Flory–Huggins) model is considered to describe

phase equilibrium. The effect of plasticization on the

penetrant diffusion coefficient is described by a simple

correlation with the solutes concentration that accounts

for penetrant size, modifying an early approach by Vignes.

These properties are coupled in a Maxwell–Stefan frame-

work, which allows the calculation of the transmembrane

fluxes of the two components (benzene and hexane) of a

binary mixture at different concentrations. The extension

to a real mixture of several compounds (aromatic and

aliphatic) is then straightforward.

Figure 4 shows the modeling description of transport

properties in a polyimide-based membrane for organic

solvent nanofiltration applied to the separation of ethyl

acetate and propanol [56].

The model relies on a PC-SAFT thermodynamic

approach, suitable to describe the solubility of the two

pure liquids in the polymer membrane at different tem-

peratures. The transport model considers pure substances

diffusion, coupled with a mechanical equation (a simple

Maxwell element) to account for swelling effects given by

the viscoelastic response of the polymer below Tg. The

transport model is developed in the Maxwell–Stefan

framework, which provides the description of the trans-

membrane flux of the pure solvents as function of the

applied pressure, and, ultimately, the prediction of the

membrane performances with binary mixtures at differ-

ent feed concentrations.

Conclusion and perspectives
The development and the use of macroscopic models for

sorption and transport of low molecular weight species in

nonporous polymers are of tremendous impact for mem-

brane application, and it is thus a very popular topic in

large expansion. In spite of the number of papers pub-

lished, there is still the need to improve the model

approaches developed so far, aiming to enhance the

accuracy and the reliability of the phenomena description

and of the predictive ability.

As a future outlook, a key aspect is related to the devel-

opment of integrated and more general models able to

describe, with the same approach, a broad spectrum of

cases, ranging from glassy to rubbery polymers of differ-

ent nature, with gas, vapors or liquid penetrants of various

physicochemical properties.

The improved reliability of these models should allow

their final implementation in the usual process simulation

softwares, thus enabling the full design of a membrane

process, in a similar fashion to conventional unit opera-

tions available in traditional chemical engineering.

Moreover, the fundamental understanding of the material
Current Opinion in Chemical Engineering 2020, 28:43–50 
properties and the physics of penetrant transport will be a

precious knowledge for the design of novel separation

membranes, looking for appropriate physically-sound

correlations of membrane performances (including the

upper-bound for gas separation) with relevant polymer

material properties.

Finally, the assessment of the impact of polymer swelling

or plasticization on membrane performances caused by

separating gases or contaminants is of great relevance for

the membrane community, together with the description

of time deterioration of the membrane materials, as a

consequence of physical aging effect. Both phenomena

would require a comprehensive modeling approach, look-

ing at multiple time and length scales, but their under-

standing and prediction represent a significant step for-

ward for the operation of membrane systems for industrial

separation and production.
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