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Abstract: Three-dimensional thermography is a recent technique—with various fields of 

application—that consists of combining thermography with 3D spatial data in order to obtain 3D 

thermograms, high information objects that allow one to overcome some limitations of 2D 

thermograms, to enhance the thermal monitoring and the detection of abnormalities. In this paper 

we present an integration methodology that can be applied to merge data acquired from a generic 

thermal camera and a generic laser scanner, and has the peculiarity of keeping the two devices 

completely decoupled and independent, so that thermal and geometrical data can be acquired at 

different times and no rigid link is needed between the two devices. In this way, the stand-alone 

capability of each device is not affected, and the data fusion is applied only when necessary. In the 

second part, the real effectiveness of our approach is tested on a 3D-printed object properly 

designed. Furthermore, one example of an application of our methodology in the cultural heritage 

field is presented, with an eye to preservation and restoration: the integration is applied to a marble 

statue called Madonna with the Child, a fine work of the Florentine sculptor Agostino di Duccio 

(1418–1481). The results suggest that the method can be successfully applicable to a large set of 

scenarios. However, additional tests are needed to improve the robustness. 

Keywords: 3D thermography; thermal imaging; laser scanning; integration methodology; extrinsic 

calibration; decoupled acquisition; heritage conservation 

 

1. Introduction 

All bodies at temperature above absolute zero (0 K) emit electromagnetic radiation. If the 

temperature of a body has the same magnitude as the ambient temperature, then the emission is 

mainly relegated to the infrared (IR) range of the spectrum and can be sensed and displayed by a 

thermal camera as a false-color image, called a thermogram. In addition, by knowing a series of 

parameters such as the inspected object emissivity and the apparent reflected temperature (i.e., the 

ambient temperature), an approximated temperature map of the object can be computed in output. 

Infrared thermography is a non-invasive (non-contact and non-destructive) imaging method, which 

makes it a widely applicable technique. For example, it has a vast range of applications in research 

and industry, building and infrastructure, electrical installation inspection, microsystems 

engineering, but also in biology, medicine, life sciences and cultural heritage [1,2]. 

Like thermal imaging, 3D reconstruction techniques are nowadays widespread in many 

different fields and are commonly used to acquire the object geometry and to provide easy 3D 
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documentation. They are a powerful tool to improve the identification, monitoring, conservation and 

restoration of objects and structures [3]. 

The utility of the integration is largely due to the fact that the ability to combine both temperature 

and geometric data together can lead to several advantages: it enhances and speeds up the 

interpretation of the results; it offers the possibility to select the region of interest by taking into 

account the geometry; it allows the easy segmentation of the 2D data from the background. One of 

the most important advantages, however, is that it allows one to overcome a significant limitation of 

2D thermograms, namely the systematic error in the measured temperature due to the dependence 

of the emissivity on the viewing angle [4–6]. 

Several works in the literature have shown the strong potential of 3D thermal mapping 

(commonly known in the literature as 3D thermography). The thermal data are obtained with a 

thermal camera, whereas the way in which 3D data are acquired varies: a concise overview can be 

found in the work of G. Chernov et al. [4]. For example, in the medical field some applications of 3D 

thermography are the work of X. Ju et al. [7] and the one of K. Skala et al. [8]. In [7], the process of 3D 

capture relied upon stereo photogrammetry, whereas in [8] the system consisted of a high-resolution 

offline 3D laser scanner and a real-time low-resolution 3D scanner, both paired together with a 

thermal imaging camera, for human body 3D thermal model comparison and analysis. In [9], S. Vidas 

and P. Moghadam presented “HeatWave”, a handheld, low-cost 3D thermography system, which 

allows non-experts to generate detailed 3D surface temperature models for energy auditing. The core 

technology of this device is obtained by combining a thermal camera and an RGB-D sensor (depth 

sensing device coupled with an RGB camera). In several other latest applications, such as [10–12], the 

spatial data were obtained by using a depth camera such as the Microsoft Kinect, which has become 

one of the top choices for 3D thermography, because of its large versatility and the capability to be 

exploited to perform real-time integrations. In [13], the integration was carried out on the data 

acquired by two smartphones arranged in a stereo configuration and a thermal camera. In [14], a fully 

automatic system that generated 3D thermal models of indoor environments was presented; it 

consisted of a mobile platform equipped with a 3D laser scanner, an RGB camera and a thermal 

camera. 

In the cultural heritage field, spatial and multispectral data have usually been fused together for 

documentation reasons, historical studies, restoration plans and visualization purposes; several 

examples can be found in [15–19]. 

One advantage of 3D thermal models is that, for each 3D point, one can compute the so-called 

viewing angle (i.e., the angle between the surface normal vector in that point and the vector joining 

the point and the optical center). This information can be used to correct the error in the temperature 

caused by the dependence of the emissivity on the viewing angle. Indeed, for a given material, the 

emissivity is usually not constant, but depends on several factors, such as the surface condition, the 

wavelength, the temperature, the presence of concavities and the viewing angle (a viewing angle-

dependent emissivity is often called “directional emissivity”). A detailed explanation of how these 

factors affect the emissivity can be found in [1] (pp. 35–45). Whereas the role of many of these factors 

can be in general considered negligible, the dependence on the viewing angle is normally relevant, 

and can bias the results, as outlined, for example, in [20] and [5]. Therefore, by knowing both the 

directional emissivity and viewing angle, it is possible to correct the temperature accordingly. 

Examples can be found in [4,6] and moreover in [21], where the internal reflections due to concave 

surfaces of a complex test setup were also taken into account. 

It is worth noticing that in these publications the different sensors were rigidly linked together 

(mainly for calibration purposes and real-time data integration), and the trend was to strengthen this 

physical union (until obtaining, in the final form, a unique device such as “HeatWave” [9]). However, 

in some cases, it can be more convenient to keep the two devices decoupled and independent. This 

is especially true in outdoor surveys, where there is often the need to perform the thermographic 

analysis at a specific day-time or night-time and/or weather conditions, which requires high 

versatility (e.g., for the assessment of the damages and energy efficiency of the building envelope 

[18]). Laser scanners, on the other hand, can be bulky and heavy; their handling and the regulation 
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of their position and orientation (usually are mounted on a tripod) may be time consuming and 

requires caution. Fixing a thermal camera to this type of scanner would make them even more 

difficult to regulate, and the easiness of handling of the thermal camera would be compromised. 

Furthermore, the two devices may have very different optics, which make the optimal distance of 

acquisition distinct. Conversely, with a decoupled acquisition, the integration can be applied in a 

flexible way, namely only when it is useful, based on previously recorded data, and does not affect 

the stand-alone capability of each device. In the literature, works based on this approach are 

uncommon. One exception is the work of A. G. Krefer et al. [22], which consisted of a method for 

generating 3D thermal models with decoupled acquisition, which relies on structure from motion 

and particle swarm optimization. Our paper focuses as well on a decoupled type of integration, but 

it differs from [22] in several aspects, such as the calibration method, the data fusion technique and 

the management of the superimposition of multiple thermograms. 

This paper is organized as follows: the system architecture is outlined in Section 2, Section 3 and 

Section 4 explain the geometrical calibration and data fusion procedure adopted, respectively, and 

Section 5 presents the results. In the first experimental case of Section 5, the effectiveness of our 

approach is tested on a 3D-printed object properly designed. The second example of application 

belongs to the cultural heritage field. In the last few years, we have carried out a many-sided research 

project aimed at preserving and restoring the ancient sanctuary of Santa Maria delle Grazie, built 

toward the middle of the 15th century, in the place of Fornò near the city of Forlì (Italy). In particular, 

we have applied thermal imaging and laser scanning both to the building at large and to the 

ornamental elements. One example, presented in this paper, is the application to a marble statue 

called Madonna with the Child, an admirable work of the Florentine sculptor Agostino di Duccio 

(1418–1481), made up of four superimposed blocks. Up to the year 2000, this sculpture was in a niche 

on the entrance arch to the prothyrum of the sanctuary. Afterwards, since it showed clear signs of 

deterioration, especially due to rainwater and air pollution, it was carefully restored and then moved 

permanently to a great hall in the Bishop’s palace in Forlì, where our surveys were performed. 

2. System Architecture 

In this section, the system architecture is presented, with the scope to define precisely the system 

components and the followed workflow. 

2.1. System Components 

The experimental set-up consisted of a thermal camera Testo 882 and a triangulation laser 

scanner Konica Minolta Vivid 9i, both shown in Figure 1. The Testo 882 has an FPA detector type 

with 320 × 240 pixel (but image output up to 640 × 480 thanks to the super-resolution feature), a FOV 

of 32° × 23° and a range of detected temperature switchable between −20 °C and +100 °C and 0 °C and 

+350 °C (accuracy ±2% of reading for both). The Konica Minolta specifications are 307,200 pixels, three 

interchangeable lens of focal length 25 mm, 14 mm and 8 mm, and a weight of approximately 15 kg. 

 

Figure 1. (a) Thermal camera Testo 882. (b) Laser scanner Konica Minolta Vivid 9i. 
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2.2. Integration Process Workflow 

The workflow includes the processes for combining spatial data, acquired by the laser scanner 

in the form of a point cloud (spatial coordinates and normal vectors in each point) and the two-

dimensional temperature map provided by the thermal camera, available as a temperature matrix. 

Before proceeding to the actual integration, it was necessary to have a post-processed point cloud, 

i.e., the registration of several range maps (by the well-known ICP algorithm) and all the post-

processing operations have to be done previously. 

There are three main processes characterizing the workflow (see Figure 2): acquisition, 

geometrical calibration (subdivided into intrinsic and extrinsic calibration) and data fusion. The 

emphasis of this work was both on the extrinsic calibration and on the data fusion process, which 

were carried out by Matlab programming. 

. 

Figure 2. High-level workflow of the integration process. 

3. Geometrical Calibration 

When a thermal camera is involved, the term “calibration” could refer to two different types of 

calibration—the geometrical calibration and the radiometric calibration. The latter (which was not 

the object of this work) consists of a procedure that models the relationship between the digital output 

of the camera and the incident radiation. Hereinafter, if the term “calibration” is used, “geometrical 

calibration” is intended. 

The geometrical calibration is a fundamental process used to compute intrinsic and extrinsic 

parameters of the system components. 

Intrinsic parameters model the optic imaging process and are divided into two groups—four 

parameters defining the camera matrix, based on the pinhole camera model, and other parameters 

defining radial and tangential camera distortions caused by the physical properties of lenses [23]. 

There are six extrinsic parameters which describe the relative pose of the sensors, i.e., the 

transformation from world coordinates to camera coordinates. In the vast majority of methods, the 

intrinsic parameters are computed first, and then they are exploited to determine extrinsic ones. 

For the determination of both intrinsic and extrinsic parameters, the best-known techniques 

involve the use of a target with a chessboard pattern, a method first presented by Z. Zang in [24]. 

Note that, in the case of thermal cameras, the pattern has to be detected in the IR spectrum. Several 

solutions have been presented for this purpose, involving, for example, a heated chessboard pattern 
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or marker detectable in IR; a more detailed state of art can be found in [10]. In the last few decades, 

however, some work has been done in order to develop the so-called automatic or targetless extrinsic 

calibration methods, that exploit natural scenes’ features (see [11,25–27]). 

Concerning the intrinsic calibration, we adopted the method developed by S. Vidas et al. in [28], 

which relies on a mask-based approach and does not require specialized equipment. 

Regarding the extrinsic calibration, since our aim was to keep the two devices unlinked, the 

classical approach (consisting of acquiring several frames of the target in a fixed configuration of the 

two sensors) did not appear very suitable. For cases in which the identification of some homologous 

point is easily feasible, the extrinsic parameters are computed by means of a manual selection routine 

of homologous points, and then by exploiting the Matlab function “estimateWordCameraPose”, 

which solves the perspective-n-point (PnP) [29]. However, this method might fail or achieve a very 

low accuracy in scenarios in which homologous points cannot be clearly identified. To address this 

limitation and to be able to consider more various scenarios, we developed an alternative method 

exploiting the detection of the object silhouette in the thermogram. In the literature, some silhouette-

based calibration methods can be found, for instance in [30] and [31]. In [30], the pose of a known 

object is estimated through a hierarchical silhouette matching and unsupervised clustering, whereas 

in [31] the calibration of a stereo camera system was carried out by defining and minimizing a 

function that computes the distance between viewing cones, which are known from the silhouettes. 

The developed method has some similarities with the one presented in [11], in which the extrinsic 

parameters were obtained by minimizing an objective function that measures the alignment between 

edges extracted from RGB-D images (obtained by a depth camera) and the ones extracted from 

thermograms. Like that method, ours is suitable for thermograms in which the object contour can be 

easily identified, and so the object can be extracted from the background, a fairly common situation 

when dealing with thermograms. Differently from [11], however, the object contour detection is only 

needed for the thermogram, and the quantity evaluated is not the alignment between thermal and 

depth edges, but rather the “degree of filling” of the projected 3D points inside the thermal edge, 

which translates to a different definition of the objective function to minimize. Another difference is 

that this method takes as its input the full 3D representation of the object, and not the single view 

representation (often referred to as 2.5D [32]). This method can deal efficaciously with initial 

parameter values significantly different from the ones searched for, which makes it particularly 

suitable for a decoupled type of integration. 

The extrinsic calibration method here developed can be divided into the following principal 

parts: 

1) extraction of the object contour from the thermogram; 

2) creation of a matrix 𝑀̿1 (with dimension equal to the resolution of the thermogram) obtained in 

this way: starting from the contour extracted in 1), a series of internal and external subsequent 

layers are created, and the same numerical value is associated to each pixel of each layer, 

following a specific function fl defined later in this section; 

3) projection of all the 3D points on the image plane with an initial set of extrinsic parameters, and 

the creation of a second matrix 𝑀̿2 composed of binary values, 1 if on that pixel at least one 3D 

point has been projected, 0 otherwise. Furthermore, in order to have a more uniform projection, 

the pixels sufficiently close to each pixel with values 1 are set to 1 if 0 (to avoid non uniform 

situations, especially for sparse point clouds); 

4) minimization of the objective function of Equation (1), with a global minimization technique: 

𝑓𝑜𝑏𝑗 = 𝑓𝑜𝑏𝑗 (𝑅̿, 𝑡̅) = −𝑠𝑢𝑚{𝑀̿1 ∘ 𝑀̿2(𝑅̿, 𝑡̅)} (1) 

where ∘ is the Hadamard product, sum is the operator that sums all the elements in a matrix, 𝑅̿ is 

the rotation matrix (computed as a function of the three Euler angles) and 𝑡̅ is the translation vector. 

The Euler angles and the components of the vector 𝑡̅ that make the function fobj minimum are 

the searched values, namely the extrinsic parameters. It is to be outlined that the matrix 𝑀̿1, once 
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computed, remains fixed in the optimization process described in Equation (1) and so only one 

contour extraction operation is required. 

The point (1) can be done either in an automatic way (exploiting some well-known edge 

detection or background extraction algorithm) or manually. The background extraction also permits 

us to avoid the possible gross error of assigning to the 3D points, if the corresponding pixels are very 

near to the edges, the background temperature. 

For the point (2), the function fl has to be properly chosen, so to assure that the objective function 

minimum corresponds to the desired situation, namely that the 3D projected points completely fill 

up the zone inside the contour without overflowing outside the contour. 

The function fl utilized is of Gaussian type: 

𝑓𝑙(𝑥) = 𝑐1𝑒−𝑐2𝑥2
  if x ≥ 0   (layer x inside the contour or the contour itself if x = 0) 

𝑓𝑙(𝑥) = 𝑐1𝑒−𝑐2𝑥2
 – 𝑐3 if x < 0   (layer x outside the contour) 

(x ϵ Z, c1, c2, c3 positive constants). 

An example of the application of the function fl is shown in Figure 3. 

 

Figure 3. Example of the application of the function fl on the layers map (with c1 = c2 = 1, c3 = e). The 

object contour is outlined in yellow. 

The c3 constant is important, because it permits us to shift the curve of the external layers so that 

the function fl has negative values there. This is necessary to avoid situations in which the minimum 

of the fobj corresponds to the filling of zones incorporating the contour, but it is larger than the contour 

itself (in other words, to avoid that the projected points “overflow” the contour). As can be clearly 

seen in Figure 4, the function increases when approaching the object contour (x = 0) from both 

negative and positive values of x. This is another requirement, that the function fl has to meet to grant 

the proper convergence of the function fobj. Apart from these requirements, one has a certain freedom 

in the choice of the function fl. In fact, the aforementioned Gaussian type function is the result of 

several experimental evaluations of possible functions. However, different choices of fl can be further 

investigated in future works, in order to improve the speed and robustness of this calibration method. 

To minimize the objective function (1), with six independent variables (three Euler angles and three 

components of the translation vector 𝑡̅), the Matlab optimization toolbox is exploited, in particular 

the  function “GlobalSearch”. 
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Figure 4. Graph of the function fl (considering 500 internal and external layers) with the actual 

constant values utilized (c1 = 0.01, c2 = 0.001, c3 = 0.011). 

4. Data Fusion 

In this section, the data fusion process is examined, with particular emphasis on the ray-casting 

technique and the multiple thermograms handling. It is assumed that all the calibration parameters 

have already been computed, following the steps described in the previous sections. 

4.1. Ray-Casting Technique 

Since the complete point cloud of the object may be utilized, it is a common situation that only a 

subset of all the 3D points is seen by the thermal camera when each thermogram is acquired. The 

process of spotting the points seen by the thermal camera is normally fulfilled by a ray-casting 

technique, which allows us, among other things, to handle occlusions. When working with point 

clouds, one common approach is to first convert the original point cloud into a different data type, 

such as voxels or a mesh representation. Then, to perform the visibility check, one can start from each 

pixel of the thermal image and move with discrete steps on a specific line, stopping when the desired 

voxel (or mesh triangle) is reached ([14,33]). 

The approach we propose, however, does not need this kind of type conversion and works with 

data in form of point cloud. Starting from all the 3D points, two types of exclusion are applied in 

order to obtain a subset, representing all and only the 3D points seen by the camera. In the next 

sections, the scheme of these two exclusions will be analyzed, but first it is to be said that there is 

actually another exclusion, which is trivial—that is, the exclusion of all the 3D points projected 

outside the image plane. 

4.2. First Type of Exclusion 

In the first type of exclusion, the image plane is firstly divided into a grid, whose cell dimension 

is defined by the parameter ξ (its measurement unit is pixel, and each cell is composed of ξ x ξ pixels). 

All the 3D points are projected onto the image plane, and then clustered depending on which cell of 

the grid they occupy. For each cluster, the points Pi, such that Equation (2) holds true, are excluded: 

𝑑𝑖 > 𝑑𝑚𝑖𝑛 + 𝜒 (2) 

where di is the distance between the point Pi and the optical center O, dmin the minimum distance 

among the distances di and χ a fixed parameter (in millimeter, as for di and dmin). For higher values of 

ξ, higher values of χ are needed to take into account the fact that the surface region corresponding to 

the points not to be excluded is larger and so the difference in distances can be higher. 

Theoretically, an optimal choice of the parameters ξ and χ would involve a non-trivial 

geometrical analysis, considering both the density in space of the 3D points (in general variable from 
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region to region) and the curvature of the object surface with respect to the viewing angle. In practice, 

they can simply be adjusted by graphically evaluating the results. In our case, in order to obtain 

proper experimental results, they were computed according to the experimental relations Equations 

(3) and (4), suggesting a possible choice of the two parameters: 

𝜉 = ceil(𝑅𝑒𝑠 𝑁⁄ ) + 1          [pixel] (3) 

𝜒 = 5 (1 − 𝜉 20⁄ )⁄        [mm] (4) 

where N is the number of points projected on the image plane and Res the resolution of the image. In 

Equation (3), “ceil” is a function that rounds a number x to the nearest integer ≥x. Since χ is positive, 

according to Equation (4) ξ must be less than 20, a condition always verified for common resolutions 

and points cloud densities. It has to be pointed out that, for the vast majority of object geometries, the 

results are stable with respect to a variation of ξ and χ of some units, and so in any case their resulting 

values are acceptable as long as they fall into a proper range. 

4.3. Second Type of Exclusion 

The second type of exclusion exploits the knowledge of the normal vectors 𝑛̂𝑖 in each 3D point 

Pi and requires that all the points for which Equation (5) holds true are excluded: 

(𝑂 − 𝑃𝑖) · 𝑛̂𝑖 < 0 (5) 

where O is the optical center. 

This condition derives from the fact that, if the dot product in Equation (5) is negative, the angle 

between the vector (O−Pi) and the normal vector 𝑛̂𝑖 is greater than 90 degrees, and so the point is not 

seen by the camera. This condition on its own is theoretically suitable for excluding all the 

inappropriate points in convex surfaces, but it fails when dealing with surfaces that present 

concavities. Conversely, even if the first exclusion appears to be able to handle a generic shape of the 

point cloud, it fails in some particular scenarios in which the point cloud lacks some parts, because 

in these cases some temperatures might be wrongly assigned to the opposite part of the point cloud. 

For these reasons, the two types of exclusion were combined, in accordance with the experimental 

results as well. Figure 5 shows two examples of applications of the two exclusions in succession with 

two different values of ξ, on a region of a hypothetical surface, which is represented in the points 

cloud by 11 points. The zones between each pair of dotted lines (converging to the optical center) 

represent the band corresponding to each pixel. Inside each band, the part at the right of the purple 

segments are excluded according to the first type of exclusion. The points in green are the points to 

be maintained, the points in blue are the points correctly excluded with the first type of exclusion, 

the points in yellow the ones correctly excluded only with the second type of exclusion and the points 

in red the ones not correctly excluded after applying both the exclusions, and to which consequently 

a wrong temperature is assigned. In Figure 5b, better results are obtained if the value of ξ is doubled, 

because in this way all the points belonging to a part of the object surface not seen by the camera are 

correctly excluded. Indeed, the value of the parameter ξ has to be chosen so that in each cell the 

number of reprojected points is higher than one, so that they form an actual cluster to which we can 

properly apply Equation (2). Finally, it is worth noticing that the order of the two exclusions is 

important: in fact, by inverting the exclusions order, it is easy to see that the point P11 is never 

excluded. 
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Figure 5. Application of the exclusion methods on a part of a hypothetical surface represented by 

eleven points, for two values of ξ. The value of ξ in (b) is twice the value of ξ in (a). Green points: to 

be maintained; blue points: excluded with the first exclusion; yellow points: excluded with the second 

exclusion; red points: not correctly excluded with the two exclusions. 

4.4. Temperature Assignment 

Once the subset of the 3D points seen by the thermal camera is defined, the corresponding 

temperature is assigned at each point, by considering in the temperature matrix the value in 

correspondence of the pixel in which the 3D point has been projected. 

In Figure 6 the overall workflow of the data fusion process is outlined. 

 

Figure 6. Overall workflow of the data fusion process. 

4.5. Multiple Thermograms 

In the previous sections, the case of the integration of a single thermogram on a point cloud was 

considered. There might be, however, the need to integrate more than one thermogram on the same 

point cloud, in order to have a larger set of points with an associated temperature. 

Note that this procedure requires in the first place thermograms acquired in a temporal window 

in which no measurable changes in the thermal state occur, so as to guarantee that the integration is 

not carried out on discordant data. Since each thermogram can be individually integrated on the 

point cloud by the methodology described previously, the problem comes down to handling the 

overlapping zones, namely the points to which more than one temperature value is assigned. To give 

these points a single final temperature, the method utilized in [9] was followed. The method relies on 

the fact that the relative orientation between the surface of the inspected object and the camera affects 
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the measurement accuracy, and, more specifically, the lower the viewing angle is, the higher the 

accuracy is. As shown in Equation (6), the temperature Ti assigned to the point Pi is computed as a 

weighted average of the temperatures Tij: 

𝑇𝑖 =
∑ 𝑐𝑖𝑗𝑇𝑖𝑗

𝑁𝑖
𝑗=1

∑ 𝑐𝑖𝑗
𝑁𝑖
𝑗=1

 (6) 

where the weight is the confidence factor cij, the index i refers to the point of the points cloud and 

ranges from 1 to N, whereas the index j refers to the thermograms that overlap in the point i and 

ranges from 1 to Ni. The confidence factor cij is computed as a function of the viewing angle 𝜃𝑖𝑗 as 

shown in Equation (7): 

𝑐𝑖𝑗 = 𝑒−𝜅𝜃𝑖𝑗  (7) 

where the viewing angle 𝜃𝑖𝑗 is the angle from which the thermal camera sees the point Pi, considering 

the thermogram j, and can be computed as shown in Equation (8): 

𝜃𝑖𝑗 = arccos
(𝑂𝑗 − 𝑃𝑖) · 𝑛̂𝑖

‖𝑂𝑗 − 𝑃𝑖‖
 (8) 

with point Oj identifying the optical center for the thermogram j. 

In this way, a greater weight is assigned to the rays with smaller viewing angles, which allows 

more accurate measures. More precisely, the weight decreases with an exponential law, depending 

on a parameter κ, that was set equal to 2 according to experimental evaluations. 

4.6. Visualization 

The mathematical result of the integration is a N-by-4 matrix, where each line contains the 3D 

coordinates of a 3D point plus the associated temperature (or, if no temperature is associated, a NaN 

value). This matrix is visualized in Matlab by assigning to the point subset with an associated 

temperature a particular colormap, whereas a different color is assigned to the points with no 

temperature associated. 

Figure 7 shows an outline of the workflow in the case of the integration of multiple thermograms 

on the same point cloud. 

 

Figure 7. Workflow of the integration of multiple thermograms on the same points cloud. NT is the 

total number of thermograms integrated. 

5. Results 

5.1. Test Object 

The experiments were carried out on a particular object, designed so that the two 

aforementioned extrinsic calibration methods were both equally suitable and easy comparable. In 

addition, the particular design of the object shown in Figure 8 allowed us to evaluate the effectiveness 
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of the ray-casting technique on a geometry with concavities. It has an internal conic hole and three 

different radial parts (shifted by angles of 120 degrees), characterized by many edges. 

 

Figure 8. (a) 3D printed object; (b) Its CAD model. 

The object was designed with CAD, 3D-printed with acrylonitrile butadiene styrene (ABS) 

material and then scanned with the Konica Minolta Vivid 9i laser scanner. The point cloud could be 

obtained directly from the CAD model, but the object was scanned to take into account the acquisition 

bias and test the effectiveness of the method on laser scanner data. 

Here we present a first set of simulations, carried out to assess the effectiveness of the automatic 

extrinsic calibration method. This was made by comparing the extrinsic parameter values obtained 

by means of this automatic procedure with the ones resulting from the method based on the manual 

selection of homologous points. Because of the specially designed geometry features of the printed 

object, it was possible to choose for the first method a set of about 20–30 homologous points for each 

analyzed thermogram, with a mean reprojection error (MRE) of about 1–2 pixels. In this way, the 

proper reliability of the first method parameters was assured, and so it was possible to evaluate the 

ones obtained with the second method. Equation (9) shows the expression for computing the MRE. 

The units of MRE are pixels. 

𝑀𝑅𝐸 =  
∑ ‖𝑃𝑖 − 𝑄𝑖‖

𝑛
𝑖=1

𝑛
 (9) 

In Equation (9), n is the number of homologous points selected, Pi the 2D coordinates of the i-th 

point selected on the thermogram, Qi the 2D coordinates of the reprojection of the i-th homologous 

3D point. 

For each thermogram, the convergence from different initial positions was analyzed, within a 

range of ±25 degrees for the Euler angles and ±20 mm for the translation vector from the parameters 

obtained with the first method. 

In Table 1, some of the results of the first calibration method are shown for four different 

thermograms, whereas Table 2 gives the differences (considering the same thermograms) between 

the extrinsic parameters obtained with the second method and with the first one respectively. 

Figure 9 shows a set of 2D points and the reprojection of 3D homologous points, once the 

extrinsic parameters were computed. 

Table 1. Extrinsic parameters for four different thermograms, in the case of the method based on the 

manual selection of the homologous points (first method). 

Thermogram N° of Points MRE t1 [mm] t2 [mm] t3 [mm] α [°] β [°] γ [°] 

A 21 1.51 −18.64 19.18 544.17 126.73 3.25 −114.01 

B 26 1.51 −16.34 23.23 497.88 −73.48 −1.33 −120.38 

C 21 1.61 −3.19 21.62 375.58 25.16 −0.14 −86.90 

D 30 1.52 −1.11 12.48 453.16 −3.35 −1.68 −125.87 



Appl. Sci. 2020, 10, 828 12 of 20 

Table 2. Differences between the extrinsic parameters obtained with the automatic method (second 

method) and the ones obtained with the first method. 

Thermogram Δt1 [mm] Δt2 [mm] Δt3 [mm] Δα [°] Δβ [°] Δγ [°] 

A 1.13 0.01 −11.53 0.76 0.83 −0.74 

B 0.78 0.96 −4.75 0.29 −0.08 1.67 

C −0.11 1.15 −7.36 0.45 −0.90 0.35 

D −0.04 0.90 −9.66 −0.07 0.41 0.43 

 

Figure 9. Grayscale thermogram with highlighted the set of 2D points (purple circles) and the 

reprojection of 3D homologous points (yellow cross) once the extrinsic parameters were computed, 

in the case of thermogram B of Table 1. 

With reference to Table 2, thermograms A and B were obtained starting from a first guess of the 

parameters with the following differences with respect to the ones of Table 1: Δt1 = 20 mm, Δt2 = −20 

mm, Δt3 = 20 mm, Δα = −20°, Δβ = 0°, Δγ = 20°. For thermograms C and D, the initial differences were 

set as follows: Δt1 = −10 mm, Δt2 = 20 mm, Δt3 = 10 mm, Δα = −20°, Δβ = 15°, Δγ = 15°. 

As can be seen in Table 2, the final differences are relatively low, except for the Δt3, which is of 

several millimeters. However, this can be acceptable, considering that the t3 parameter is greater by 

an order of magnitude compared to the parameters t1 and t2 (relative error of about 2%). 

In Figure 10, the initial (a) and final (b) projection in the case of automatic extrinsic calibration 

of the thermogram B are shown. This type of visualization allows for a qualitative consideration on 

the effectiveness of the method. As can be easily seen, in the case (b), the 3D projected points (in red) 

fill the thermogram contour (yellow line) well. 

 

Figure 10. Case of automatic calibration of thermogram B: (a) Initial projection of 3D points, using a 

set of initial extrinsic parameters; (b) Projection utilizing the parameters for which the objective 

function of Equation (1) presents a global minimum. 
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Figure 11 shows a representation of the matrix 𝑀̿1 (see Section 3, Figures 3–4) converted for 

visual purposes into a color image. 

 

Figure 11. Visual representation of the matrix 𝑀̿1 created from the yellow contour of Figure 10. In 

the scale, y refers to the function graphed in Figure 4, which is here multiplied by a factor of 104 for 

the sake of clarity. 

The second set of experiments was aimed at evaluating the general reliability of the technique, 

by qualitatively assessing the final results obtained with the integration of different thermograms. 

In Figure 12, the result in the case of the integration of thermogram B is shown, whereas Figure 

13 shows an example of the integration of multiple thermograms (17 in total) acquired from different 

poses. The shots were taken while the object was being heated with a drier, fixed so that the heat flux 

came in contact with one side in particular (the one with higher temperature, colored yellow). 

 

Figure 12. Two different views of the result of the integration of thermogram B on the point cloud. 
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Figure 13. Four different views of the result of the integration of seventeen thermograms. 

Figure 14 shows how the union of several thermograms (acquired from different poses) by the 

method explained in Section 4.5 can compensate for the systematic error in the temperature caused 

by the dependence of the emissivity on the viewing angle. In Figure 14c, the temperatures of a single 

thermogram and of the union of several thermograms (the temperature superimpositions vary from 

4 to 8 depending on the point) are compared along a key zone, shown in Figure 14a,b, in which the 

normal vectors of the surface have a significant variation, which implies a significant variation on the 

viewing angles (referring to the case of the single thermogram, since after the union the concept of 

viewing angle loses meaning). In this zone, the temperature of the single thermogram is appreciably 

lower than the temperature of the union (with a maximum difference of roughly 1 °C). This behavior 

can be explained by correlating the difference ∆T of the temperatures (∆T = TUNION − TSINGLE) with the 

variation of the viewing angle, as shown in Figure 14d. The camera view during the acquisition of 

the single thermogram can be approximatively assumed to be the view of Figure 14a, which explains 

the angle of about 40 degrees for Y in the range 5–10 and 16–25 mm (the camera was tilted downwards 

with respect to the normal vectors in these points by about 40 degrees). For non-conductor materials, 

emissivity is nearly constant from 0 to 40–45 degrees, whereas at larger angles it has a significant 

drop [1] (pp. 39–40). This justifies the fact that the temperature in the zone of high viewing angles is 

underestimated in the case of the single thermogram. This error can be effectively compensated by 

the adopted method, as long as, for the same points, temperatures with lower viewing angles 

associated are available. 
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Figure 14. Effect of the temperature correction achieved by the union of different thermograms. (a) 

Zone in which the temperatures are examined, with the vectors normal to the surface in these points 

colored red; temperatures are shown with a “winter” colormap; (b) Close-up of the normal vectors, 

from a top view; (c) Comparison between the temperature of a single thermogram and the one 

resulting from the union of several thermograms; (d) Temperature difference (T resulting from the 

union minus T of the single thermogram) and viewing angle for each point examined. 

5.2. Statue “Madonna with the Child” 

After testing the method on the object previously described, in this section, an application in the 

cultural heritage field is considered. The integration was carried out on the statue Madonna with the 

Child, by the Florentine sculptor Agostino di Duccio (1418–1481), with an eye to monitoring its 

condition and gather additional information about its state. The point cloud of the statue was already 

available from previous works. Figure 15 shows the statue and the laser scanner in the Bishop’s palace 

in Forlì. For the sake of brevity here, we present only some of the most significant results. 



Appl. Sci. 2020, 10, 828 16 of 20 

 

Figure 15. Statue Madonna with the Child, with the laser scanner in position. 

In Figure 16, three thermograms of the statue acquired from different poses are shown. 

 

Figure 16. Three thermograms of the statue, acquired from different poses. 

Figure 17 shows several outcomes of the integration. There is a little spot on the top of the head 

to which no temperature is assigned, and to which a specific colour not belonging to the colormap is 

assigned. The survey shows that there is one side of the statue that is slightly hotter, whereas the base 

and the head present lower temperatures. It is probable that the particular lighting system and the 

statue arrangement near a window with a non-insulated frame give rise to these changes, which is 

not favourable for optimal preservation. Further investigations are needed to better clarify the cause. 
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Figure 17. Results of the integration of twelve thermograms. (a) Three different views coloured with 

the colormap “hot”. (b) Frontal view coloured with the colormap “jet”. 

6. Discussion 

The work presented includes methodologies to address each integration step, with the final aim 

of achieving 3D thermography by maintaining the decoupling of the devices. Concerning the 

extrinsic calibration, we proposed an automatic method that exploits the object silhouette. An 

evaluation of the accuracy of the method is presented in Table 2. Since our automatic method does 

not exploit the concept of homologous points (and thus, MRE cannot be computed), the evaluation 

of its accuracy was made by a comparison with the extrinsic parameters (considered the ground 

truth) obtained by the manual selection of homologous points, executed on a test object purposely 

designed. A comparison can be made with the automatic calibration method based on a silhouette 

developed by J.T. Lussier and S. Thurn [11]. The error concerning the x and y translations (Δt1 and Δt2 

in Table 2) in our work is about one order of magnitude lower (the max obtained is around 1 mm); 

concerning the z translation (Δt3 in Table 2), our maximum error stays within 12 mm, against the over 

50 mm reported in [11]. Regarding the error on the rotations (Δα, Δβ and Δγ in Table 2), our errors are 

higher, with a mean of 0.58 degrees against the 0.3 degrees reported in [11]. We want to point out 

that this comparison is made between integration procedures that suit different integration 

modalities. In [11], indeed, the authors carried out a real-time integration between thermograms and 

depth-maps (2.5D), whereas we integrate (offline) thermograms with 3D point clouds. The difference 

in the type of the range data integrated entails, among other things, the following fact—the accuracy 

of the method used in [11], as the authors said, depends on the scene coverage, that is to say the 

percentage of the area covered by the object of interest with respect to the background. The higher 

the coverage is, the higher the edge variability is, and the lower the error in the extrinsic parameters. 

In our case, since we did not work with an edge map but with 3D point cloud, the concept of edge 

variability is not similarly defined and the error did not depend on this parameter. 
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Unfortunately, regarding the accuracy, a direct comparison with the decoupled method 

presented by A. G. Krefer al. [22] is not possible because the automatic calibration procedure they 

used was based on the automatic matching of interest points and was evaluated by the classical MRE. 

Apart from the calibration method, other differences from the work [22] include the fact that they 

used the 3D data in the form of a polygonal mesh, whereas we keep the 3D data as a point cloud 

during the whole integration process. For visual purposes, if need be, the results may be converted 

into a coloured mesh at a later time. Concerning the handling of the points in which more 

temperatures are superimposed, we computed the temperature to be assigned as a weighted average, 

where the weight decreases in an exponential way if the viewing angle increases, which was the 

method exploited by S. Vidas and P. Moghadam in [9]. In [22], conversely, the weight of each point 

temperature was computed as a function of the position of the point inside the view frustum of the 

camera (the weight increases if nearer to the optical axis or to the optical centre). A flaw of this latter 

approach is that it did not take into account the object geometry (i.e., the normal vectors in each point) 

and so it was prone to fail to compensate for the variation of the emissivity at high viewing angles. 

Figure 14 clearly shows that at high viewing angles the temperature can be underestimated (in that 

specific case up to one degree). The methodology followed, which takes the object geometry into 

account, allows us to overcome this issue, assuming that thermograms of the interested area can be 

acquired from different orientations. However, if this is not possible (for instance, because of the 

position and of the limited mobility of the object or if the acquisition time is limited), an improvement 

of this method could be to apply a temperature correction to each thermogram singularly, exploiting, 

for instance, the correction formula proposed in [4], which relies on a theoretical model for the 

directional emissivity. 

The whole integration methodology was first tested on a purposely designed 3D-printed object 

and then on a historical marble statue, and the results demonstrate the general feasibility of the 

approach. We are planning, however, further tests, in particular aimed at improving the robustness 

of the automatic extrinsic calibration method, which is affected, to a certain degree, by the object 

geometry (especially in terms of level of detail of the geometrical features and of the presence of 

symmetries). For objects which present a sufficient number of points of interest clearly identifiable 

both in infrared and in their 3D geometry (e.g., very sharp edges), the manual selection of the 

homologous points can still be a better option to compute the extrinsic parameters, and could be 

improved, for instance by applying to the thermogram the intensity transformation proposed in [22], 

which is able to highlight certain points which are otherwise not clear enough. 

7. Conclusions 

In this work, a decoupled acquisition method for generating 3D thermal models is proposed. 

The integration is carried out using the triangulation laser scanner Konica Minolta Vivid 9i and the 

thermal camera Testo 882, but it can be exploited for generating 3D thermal models with a generic 

range sensor and a generic thermal camera. The two devices are kept independent during the 

acquisition phase, allowing the integration of 3D data and thermal data acquired at different times. 

With regard to the extrinsic calibration, two methods are used, a more standard one relying on 

a manual selection of homologous points, and an “automatic” one, the latter based on finding the 

optimum of a particular function which evaluates the degree of filling of the reprojection of the 3D 

points inside the object silhouette in the thermogram. The former method is used to assess the 

effectiveness of the latter, which is proven to work well in the case study, but has room for 

improvements, especially in terms of robustness. Concerning the data fusion, we propose an easy to 

implement algorithm which is able to deal with complex object shapes, handle occlusions and cases 

of incomplete data from the range finder. Furthermore, the viewing angle is computed, and it is used 

to calculate a weight for each ray, in order to assign a proper temperature value in the zones in which, 

when integrating multiple thermograms, overlaps occur. It was shown how this can effectively 

reduce the error in the temperature due to the dependence of the emissivity on the viewing angle. 

The integration methodology was first tested on a 3D-printed object and was then applied to a 

cultural heritage case study, and the results suggest that this approach can be effective and useful 
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with an eye to integration and restoration. We are planning further tests to better investigate the 

effectiveness of the method. 
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