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We present PULP-NN, an optimized computing
library for a parallel ultra-low-power tightly coupled
cluster of RISC-V processors. The key innovation
in PULP-NN is a set of kernels for Quantized
Neural Network (QNN) inference, targeting byte
and sub-byte data types, down to INT-1, tuned for
the recent trend toward aggressive quantization in
deep neural network inference. The proposed library
exploits both the digital signal processing (DSP)
extensions available in the PULP RISC-V processors
and the cluster’s parallelism, achieving up to 15.5

MACs/cycle on INT-8 and improving performance by
up to 63× with respect to a sequential implementation
on a single RISC-V core implementing the baseline
RV32IMC ISA. Using PULP-NN, a CIFAR-10 network
on an octa-core cluster runs in 30× and 19.6×
less clock cycles than the current state-of-the-art
ARM CMSIS-NN library, running on STM32L4 and
STM32H7 MCUs, respectively. The proposed library,
when running on GAP-8 processor, outperforms by
36.8× and by 7.45× the execution on energy efficient
MCUs such as STM32L4 and high-end MCUs such
as STM32H7 respectively, when operating at the
maximum frequency. The energy efficiency on GAP-8
is 14.1× higher than STM32L4 and 39.5× higher than
STM32H7, at the maximum efficiency operating point.
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1. Introduction
The Internet-of-Things has favored a rapid growth of the number of wireless-connected nodes for
a large variety of applications, including agriculture [1], health monitoring [2], surveillance [3],
structural monitoring [4]. Such a massive unconstrained increment poses severe challenges to
the network infrastructure, due to the exponential increase of data flowing through the network.
Capacity, security and reliability issues are exacerbated as the number of IoT nodes increases
exponentially together with the ability to produce high-bandwidth data.

To address IoT scalability issues, data must be filtered at the edge of the network, on the sensor
system itself [5], using compression and analytics algorithms. To this aim, Machine Learning
(ML), including also state-of-the-art Deep Learning (DL), provides attractive solutions for edge
processing. ML algorithms “squeeze” raw sensor data in a much more semantically dense
format (i.e. classes or extracted high-level features/symbols), eventually packed into few bytes
of information for wireless transmission.

To empower IoT nodes with smart capabilities [6], the design process of edge devices must
trade-off the high computation and memory requirements of leading DL methods with the usual
scarcity of resources of deeply embedded systems, powered by batteries or energy harvesters.
Typically, deep network inference tasks run on GPUs or FPGAs devices, which however have
a power envelope significantly higher than what can be sustained on extreme-edge devices,
integrated with the sensors. On the other side of the spectrum, resource-constrained MCUs are
flexible, due to their software programmability, low-cost, low-power and suitable for extreme-
edge usage, but they present severe limitations in memory footprint and computation resources
that may prevent meeting application-specific latency and accuracy requirements.

To reduce the computational cost and memory footprint of Neural Newtorks, so that they can
fit the limited computing capability and storage capacity of MCU-class devices, recent progress in
DL training methodologies has introduced novel quantization methods, aiming at compressing
either network weights parameters or activations into 8-bit or smaller data types, while incurring
into a reduced or even negligible accuracy loss [7–13]. Since Quantized Neural Networks (QNNs)
feature much lower memory requirements than 32-bit floating point full precision models and
low-bitwidth fixed-point execution units can operate efficiently at the core of the convolution
routine, industry and academia are devoting a major effort to develop hardware and software
platforms for efficient execution of QNNs on MCU-class devices.

In this work, we propose the first multicore computing library for QNN inference on
fully programmable edge devices, which supports low bit-width (8-bit, 4-bit, 2-bit and 1-bit)
operations. While efficient libraries for commercial MCUs have been proposed for edge QNN
inference [14,15], not many software solutions have been yet presented that efficiently exploit
a parallel MCU architecture. We fill this void by building the back-end library upon the recent
architectural template of parallel ultra-low-power RISC-V based platforms such as GAP8 [16],
which improve energy efficiency and performance in IoT edge devices coupling parallelism with
low voltage operation [17]. The main contributions of this paper are the following:

• PULP-NN 1, an open-source optimized library based on the CMSIS-NN [14,15] dataflow
including a full set of kernels and utilities to support the inference of Quantized
Neural Networks (8,4,2 and 1-bit) on a DSP-optimized RISC-V based processor. By fully
exploiting the DSP extensions available within the ISA, we can achieve a speedup of 9×
with respect to a plainRV32IMC ISA;

• We optimized the library for a Parallel Ultra-Low-Power (PULP) cluster of RISC-
V processors, leading to near-linear speedup with respect to single core execution,
increasing the throughput of each kernel by up to 7.5× on eight cores;

• We optimized the convolution kernel, the most computing intensive task of CNN
workloads, by improving data reuse, with a further 20% performance gain with respect

1https://github.com/pulp-platform/pulp-nn
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to the original kernel of CMSIS-NN [14], with a ∼1.9× improvement with respect to the
GAP-8 NN native library and an overall efficiency of 49% in terms of MAC utilization,
which implies just 1.01 LD/ST per MAC, and brings us to just a factor of 2 from the
theoretical peak MAC utilization achievable using only register operands;

• We compare our solution with State-of-the-Art architectures and software, by running a
CIFAR-10 quantized model on the GAP8 8-core cluster, outperforming by 19.5× a high-
end MCU (based on ARM CORTEX-M7) running the same network using the CMSIS-
NN library. The inference with the proposed library also achieves 14.1× better energy
efficiency with respect to a highly energy efficient MCU (based on ARM CORTEX-M4).

These order-of-magnitude improvements with respect to State-of-the-Art MCUs demonstrate for
the first time that extreme-edge inference of QNN models is indeed possible on today’s parallel
ultra-low power MCUs.

2. Related Work
The success of Deep Learning (DL) has paved the way to many different DL deployments on
embedded computing platforms of all kinds. In this section, we recap the state-of-the-art and
give insights on its applicability to CNN inference at the extreme-edge, on IoT end-nodes.

FPGA Based Approaches

Recent heterogeneous FPGAs such as Xilinx Zynq have enabled many solutions for CNN
acceleration, embedding general purpose processors that manage the program flow, handle I/O
and memory accesses, making them easier to program. As DSP-capable FPGAs have a power
envelope in the order of Watts, numerical precision of the CNN operands plays a crucial role
to achieve high performance and thus energy efficiency. While several architectures available in
literature feature a precision of 16-bit (fixed-point) [18–21], more and more designs are moving
towards lower precision. For example, Qiu et al. [22] proposed a CNN accelerator supporting 8
and 4-bit data, implemented on a Xilinx Zynq platform. On this trail, even extreme quantization
approaches have been presented, exploiting ternary or binary networks [23,24]. While most DSP-
capable FPGAs currently do not offer a low enough power envelope to be used in IoT end-nodes,
Lattice recently announced SenseAI class of FPGAs [25] providing a comprehensive hardware
and software solutions for always-on artificial intelligence (AI) within a power budget between
1 mW and 1 W. However these ultra-low power FPGAs are currently too expensive for many
applications where MCUs are traditionally chosen because of their low cost. Furthermore, they
report [26] a measured performance of 8 fps with 64×64 RGB input for a VGG8 like 16-bit CNN
at a power consumption of 7 mW, which maps to 0.88mJ/frame, and performance of 5 fps for
a VGG network consisting of 6 convolution layers and 4 fully connected at a power consumption
of 3.3 mW with an energy per inference of 0.66mJ/frame. Both the results are significantly
higher (4.63× and 3.48×, respectively) than the energy per frame that we report at the maximum
efficiency point for our solution in sec. 5.

Application Specific Architectures

On the other side of the programmability spectrum, ASIC accelerators are known to achieve best
in class performance and energy efficiency. Notable examples are Orlando [27] achieving energy
efficiencies in the order of a few Top/s/W, and Origami [28] achieving a throughput of 274 Gop/s,
with an efficiency of 803 Gop/s/W. Dropping the arithmetic precision of CNN operands has
demonstrated to be a useful technique to reduce the memory footprint and the energy cost for
computation [29–32]. UNPU [33] is an example of an accelerator targeting fully-variable weight
bit-precision, achieving a peak energy efficiency of 50.6 Top/s/W at a throughput of 184 Gop/s.
YodaNN [34] targets binary-weight networks and reaches energy efficiency up to 61 Top/s/W.
Other accelerators exploit extreme quantization for the deployment of binary neural networks
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on silicon using in- or near-memory computing techniques (e.g., Brein [35], Conv-RAM [36])
with energy efficiencies in the range 20-55 Top/s/W. Such high energy efficiency and throughput
achievable using ASIC accelerators are counterbalanced by limited flexibility, being application
specific, which makes them unattractive to satisfy fully the flexibility demand of IoT edge nodes.

Software Programmable Architectures

Software-programmable general-purpose processors provide the highest degree of flexibility in
QNN inference at the edge. While CNNs are traditionally executed on programmable high-
performance GPUs [37,38] also with reduced precision support [39], these platforms are typically
not designed to operate in the tight power envelope of IoT end-nodes, and their cost is off-spec
too. Some architectures exploit the computing power of multi-core processors, such as Raspberry
Pi 3+ [40], powered by a Quad-core ARM CORTEX-A53. Although these platforms are relatively
inexpensive and flexible, their power consumption is too high as well.

To fit the power budget of IoT edge devices, many low power microcontrollers include ARM
CORTEX-M cores. Among these solutions, STMicroelectronics produces low-power (STM32L4
family based on ARM CORTEX M-4 cores) and high-performance (STM32H7 family featuring
ARM CORTEX M-7 cores) microcontrollers supporting DL processing at the edge [41,42]. To
improve the computing capabilities of such tiny and cheap computing platforms, ARM recently
announced the development of the ARMv8.1-M [43] architecture, featuring Helium, an ISA
extension tailored for DSP-oriented workloads, such as an inference task. However, such an
extension is not supported yet by any device.

Other solutions move toward heterogeneous architectures, coupling microcontrollers with
dedicated CNN accelerators, to deal with the extremely regular CNN workload. ARM proposed
Trilium [44], a heterogeneous compute platform which provides flexible support for ML
workloads. Conti et al. [45] proposed a convolution engine to be integrated in a microcontroller to
speed up the convolutional kernels while Kendryte [46] is a dual-core RISC-V SoC outfitted with
a CNN accelerator for AI applications. Flamand et al. proposed GAP8 [16], a multi-GOPS fully
programmable RISC-V IoT-edge computing engine, featuring a cluster of 8 cores with dedicated
DSP extensions and a CNN-specialized accelerator. These accelerators can give the MCU a 5 to
10× energy efficiency boost, but they are proprietary, closed, platform specific and currently not
fully supported by the software design flows. Hence, their acceptance and penetration among
application developers is still quite low.

Table 1 summarizes the trade-offs among the CNN computing platforms described so far. Next
section will describe the State-of-the-Art of software solutions for MCU platforms, the main focus
of this work.

Summary of CNN Embedded Inference Computing Platform
Performance Energy Efficiency Power Budget Flexibility

ASICs [27,28,33,34] 1 - 10 Tops/s 10 - 100 Tops/s/W 1 mW - 1 W Low
FPGAs [18–22] 10 - 200 Gops/s 1 - 10 Gops/s/W 1 W - 10 W Medium
MCUs [41,42] 100 - 300 Mops/s 1 - 3 Gops/s/W 1 mW - 1 W High

PULP SoCs [6,16,47] 1 - 2 Gops/s 30 - 50 Gops/s/W 1 mW - 100 mW High

Table 1. The table shows the trade-offs among the CNN computing platforms described in the related work section.

Optimized Software Libraries

On the MCU side, the limited computational and memory capabilities make aggressive software
and algorithmic optimizations necessary to deploy DNN inference models on them. An efficient
solution to reduce DNN memory footprint is to use fixed-point arithmetic and quantization
of both weights and activations into 8-bit or smaller data types, at the cost of a minor drop



5

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

in accuracy [7,8,13]. Relying on fixed-point quantized networks, ARM proposed the CMSIS-
NN library [14], which maximizes the performance of the DL kernels on CORTEX-M series
cores, supporting 16-bit and 8-bit fixed-point data. On the same trail, targeting a parallel
MCU architecture such as GAP-8, Greenwaves Technologies released open-source a set of
QNN kernels (16- and 8-bit data precisions) as part of a proprietary tiling solution [16].
The tiling procedure, exploiting the DMA controller available on GAP-8, hides the latency of
fetching/storing activations and weights along the memory hierarchy introducing only a small
overhead (a few %), thus enabling the processing of large networks whose layers may not fit
the MCU on-board memory. In this work we focus on the computational aspects of reduced
precision quantized CNN inference. In this context, despite the demonstrated effectiveness of
sub-byte aggressive quantization [11], only Rusci et al. [15] explored the inference speed as well as
memory requirements of using low-precision (4-, 2- or 1-bit) convolution kernels on a Cortex-M7
microcontroller.

Our work aims at bridging this gap, leveraging the results of [11] and focusing on the
computational side to enable efficient QNN inference at the edge on fully programmable devices.
To this purpose, we propose an open-source QNN library targeting 8-bit as well as sub-byte
quantized data types, down to 1-bit data, targeting parallel ultra-low-power (PULP) architectures.
By exploiting the ISA extensions available on PULP architectures and tightly coupled cluster, our
contributions outperform the CMSIS-NN based solutions by one order of magnitude in terms of
performance and energy efficiency.

3. Background

(a) Quantized Neural Networks
A Deep convolution Neural Network (CNN) is made of several layers stacked one on top of the
other. Each layer can be considered as a computation kernel, and the most computive-intensive
ones are the convolution and the fully connected layers.

To favor the deployment of CNN models into resource-constrained devices, a set of constraints
can be applied to the numeric domain of either network parameters or activation values,
turning the original model into a Quantized Neural Network (QNN). One of the most effective
approaches [7] to quantize a real-valued weight parameterw to aQ-bit signed fixed-point number
q(w) is by using the following quantization function:

q(w) = clip[−1,1)(2
−(Q−1) · round(w · 2(Q−1)) , (3.1)

where clip[a,b)(x) =max(a,min(x, b)). We define then the integer W = q(w) · 2(Q−1) as the
corresponding INT-Q representation of w. According to [7], the quantization rule (3.1) applies
also to any activation value. In this work, we explore the case of INT-8, INT-4, INT-2 and INT-1
data types as they are the most natural ones to fit in a 32-bit register of the targeted MCUs. If both
weights and activations are INT-Q values, the convolution becomes a sum of products operation
in the integer domain:

φ(w, x) = 2−2(Q−1)
∑
i∈C

WiXi
.
= 2−2(Q−1) · Φ(W,X) . (3.2)

where C is the number of input channels and φ is the convolution operation. Φ(W,X) is the
accumulator value with high precision, i.e. INT-32 for INT-8 operands and INT-16 for sub-byte
(INT-4, INT-2, INT-1) operands. To produce an output activation value, the accumualtion is
compressed back into Q bits, working as input for the next layer. For INT-8 data we adopt the
compression approach proposed by Lai et al. [14], which relies on scaling and clamp operations,
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while for the 2 and 4 bit cases a thresholding-based 2 compression is considered, described by the
staircase function that generalizes (3.1):

Y = q
(
φ(x)

)
=

2Q−1−1∑
p=−2Q−1

(
p · χ[τp,tp+1) · Φ(W,X)

)
, (3.4)

where χs(·) it the characteristic function of the interval s. In this equation also the threshold values
feature high precision (INT-16), since they are meant to be compared with INT-16 accumulations.
The staircase function is optimally implemented through a balanced binary tree where an INT-16
comparison takes place at every node. To produce a Q-bit output, 2Q − 1 threshold values per
channel must be stored for any convolution layer. The INT-1 format, where activation and weight
values are expressed by binary values, is a special case because the convolution can be reduced
to a logical XNOR and a bit-count operation:

Φbin(X) = popcount(W xnorX) (3.5)

where popcount(·) is the bitcount operator. Also in this scenario, a thresholding procedure is
applied for compression.

On the model accuracy side, it has been demonstrated that, through specific re-training
techniques, the accuracy drop-off of quantized fixed-point networks can be significantly reduced
[7,10,13]. Choi et al. [48], for example, have proved that a 4-bit quantization leads to an accuracy
level close to single-precision floating point representation. The accuracy drop is limited to 3%

when running ResNet50 on Imagenet with 2-bit weights and 4-bit activations and to 6.5% when
downscaling the weights and activations to 2 bits. Furthermore, the authors of [11] investigated
the trade-off between energy efficiency and accuracy of QNNs, highlighting the practical
effectiveness of the sub-byte fixed-point networks. At the cost of specific retraining procedures,
the accuracy drop of is kept very close to the single-precision floating point counterpart while
the energy efficiency gain, at the iso-accuracy, is orders of magnitude higher. Moreover, for
the investigated networks, trained on CIFAR-10 and MNIST datasets, the energy consumption
achieved with 1- to 4-bit fixed-point networks, at iso-accuracy, outperforms the 8-bit counterpart
by up to 10×.

(b) Dataflow Schedule and Data Layout
In this subsection, we detail the dataflow schedule and data layout as implemented in the CMSIS-
NN library [14], which is at the base of the proposed library. A convolution layer, standing as the
basic building block for a CNN or a QNN model, produces an output feature map based on a
set of weight filters and the output from the previous layer. An activation value of any output
feature map is computed as the dot product between a weights filter bank and a region of the
input feature map, i.e. the C features values of every point under the area kw x kh of the filter. To
efficiently implement this operation on an MCU-like device, the convolution is decomposed into
two phases: an im2col step to load the input features of the current convolution into a contiguous
memory array and a dot product. Besides the memory requirements of the activation maps and
the model parameters, the im2col demands an extra memory footprint of C x kw x kh values,
on which the dot product operates. Fig 1(a) shows graphically this operation. Given this, the
computation of one value of the output feature map, indicated as O(m,x, y) becomes:

O(m,x, y) = dot
(
W (m), im2col(x, y)

)
, (3.6)

2 The τp thresholds absorb bias, batch normalization and the 2−2(Q−1) factor. Specifically, considering the batch-normalized
y = γ/σ(b+ φ− µ) + β (where b is the bias, γ, σ, β, φ are the batch normalization parameters), the thresholds are

τp = [2
Q−1

(p · σ/γ − 2
Q−1 · (b− µ) + β · σ/γ] . (3.3)
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where W (m) is the m-th bank of weight filter, im2col is the unrolled input buffer of length
C x kw x kh. The inner loop of the convolution dot product is realized through a matrix
multiplication kernel, as depicted in Figure 1(b). In general, s output features of r activation
outputs (s=2 and r=2 in the example in figure) can be computed at this low-level stage. As a
specific case, CMSIS-NN implements a matrix multiplication kernel working on two spatially
adjacent pixels of two consecutive channels inside the inner loop of the convolution kernel; we
identify this configuration as 2×2, as explained in detail in Section 4.(c).

Moreover, authors of [14] demonstrated the most convenient data layout to be Height-Width-
Channel (HWC), as it introduces minor overhead when building the im2col buffer with respect to
the Channel-Height-Width (CHW) layout. According to such a layout, the data along the channels
is stored with a stride of 1, data along the width is stored with a stride equal to the number of
channels C.

(c) Target Architectures
The target architecture of this work is based on a Parallel Ultra-Low-Power (PULP) cluster of
RISC-V based processors. A commercial embodiment of this architectural template is GAP8 [16],
on which we run our experiments. The GAP8 PULP cluster contains eight RISC-V cores,
implementing a 4 stage in-order single-issue pipeline, supporting the RV32IMC instruction set
[49], plus extensions targeting energy-efficient digital signal processing and machine learning
(Xpulp) [50]. The cores are served by a 64kB L1 data memory, named Tightly-Coupled Data
Memory (TCDM), enabling shared-memory parallel programming models such as OpenMP. The
shared L1 can serve all memory requests accessing different banks in parallel with single cycle
access latency. The 4 KB cluster program cache is also shared among the cores [51]. The cluster is
also provided by an Event Unit which manages synchronization and thread dispatching, enabling
low-overhead and fine-grained parallelism, thus high energy efficiency: each core waiting for
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a barrier is brought into a fully clock gated state. The cluster features also a DMA controller
which manages the transfer between the L1 and the L2 memory (512kB in size), the latter
residing outside-of-the-cluster of the GAP-8 architecture. The Xpulp extensions available in the
ISA3 include hardware loops, load/store with post-increment, Multiply and Accumulate as well
as dedicated digital signal processing extensions inferred in the c code as built-in functions,
presented below.

The SIMD vectorial instructions allow processing more sub-word data in parallel, most of them
taking only one clock cycle. The vectorial data types to be used with such instructions are v4s
and v2s: v4s allows to fill a 32bit register with four INT-8 data, v2s does the same by filling the
register with two INT-16 integers, in one clock cycle. Sum of dot products SIMD instructions are
provided to process either two 16 bit (sdotp2) or four 8 bit (sdotp4) integer operands in a single
cycle. sdotp4 takes two v4s data operands as input and computes the sum of dot products over
the same accumulator, which is the INT-32 output of the built-in function. The max4 instruction
instead allows to compare two v4s operands by returning the element-wise maximum, in one
cycle. bextract extracts, in one clock cycle, a specified number of bits ("size") from a register,
starting at a specified position ("offset"). The extracted bits are then sign-extended and stored
in the destination register. The natural counterpart is the bitinsert built-in function, specifying
the number of bits to be inserted ("size") to the destination register, starting from the specified
position ("offset"). pack4 allows to pack four INT-8 variables in a SIMD v4s data type in two clock
cycles. Finally, the popcnt built-in returns, in one cycle, the number of bits set to one in a word
which is passed to the function as input.

4. PULP-NN Library
This section introduces the PULP-NN library and describes the optimization of the kernels
with the presented RV32IMCXpulp extended ISA on a parallel cluster of eight processors and
the optimization of the main computational kernel of the library: the matrix multiplication.
We focus on the computational part since we are interested in exploring software solutions
capable of achieving high computing performance and energy efficiency, on top of parallel edge
architectures like PULP.

(a) Implementation and Optimization on RISC-V
We present implementation details of the most significant QNN kernels on the target
RV32IMCXpulp ISA. The experiments are conducted assuming that all the data resides in L1
memory of the PULP cluster.

INT-8 Kernels

The first layer for which we detail the implementation is the convolution one. We first consider
the INT-8 kernel, as it also provides a basis for the implementation of INT-4 and INT-2. Starting
from the implementation presented in section 3.(b), with a 2×2 matrix multiplication kernel, we
optimize it to fully exploit the RV32IMCXpulp ISA. Since the matrix multiplication operation has
to be looped over the size of each filter bank (C x kw x kh), we take advantage of the hardware
loops to accelerate the for statement. In the inner loop, we also exploit the load and store with
post-increment since the access pattern to the im2col and filter elements is extremely regular by
construction. In the same way, we use the 8-bit SIMD instructions to increase the throughput of
the computation. Figure 2 graphically schematizes the execution of the inner loop of the matrix
multiplication kernel and reports the corresponding assembly code.

After filling two im2col buffers that are needed to compute two spatially adjacent output
pixels, the matrix multiplication inner loop takes place as follows. At every iteration of the loop,
four consecutive elements are loaded into the register file from each of the two im2col buffers
3https://github.com/pulp-platform/riscv/tree/master/doc
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=

pBuffer pBuffer2

For i=0 to size/4

V4s A1 = *((v4s*) pWeight);

V4s A2 = *((v4s*) pWeight2);
V4s B1 = *((v4s*) pBuffer);
V4s B2 = *((v4s*) pBuffer2);
S1 = sdotp4(A1,B1);
S2 = sdotp4 (A1, B2);
S3 = sdotp4(A2, B1);
S4 = sdotp4(A2, B2);

end

Pseudocode

lp.setup // hardware loop

p.lw w1, 4(a0!)              // load with post-increment

p.lw w2, 4(a1!)
p.lw x1, 4(a2!)
p.lw x2, 4(a3!)
pv.sdotsp.b s1, w1, x1   // 4x8bit vectorial sdotp
pv.sdotsp.b s2, w1, x2
pv.sdotsp.b s3, w2, x1
pv.sdotsp.b s4, w2, x2

end

Disassembled pseudocode

Figure 2. 2×2 sized matrix multiplication kernel for INT-8 data operands.

(pointers pBuffer1 and pBuffer2 in the figure), and from two weight banks (pointers pWeight and
pWeight2), after casting INT-8 pointers to v4s. The total number of load operations required is four.
In this way we have sufficient elements to set four sdotp4 built-in functions over four different
accumulators. Hence, in a single run of the inner loop of the matrix multiplication kernel, we can
compute four sdotp4 instructions, which correspond to 16 MAC operations, at the cost of four
load instructions.

Since the fully connected kernel is a simple matrix by vector multiplication, the previous
methodology naturally scales to it. Here there is no need to build the im2col buffer since the
spatial dimension of the filters is the same size as the spatial dimension of the input feature map.

To reduce load instructions and exploit a data reuse mechanism, the fully connected kernel
implements 2x1 matrix multiplication kernel within the inner loop (see Section 4.(c) and Figure
6). By loading two different subsets of weights, we can compute two consecutive output pixels
along the channel dimension. By using the SIMD ISA extensions as before, with three loads we
are able to set two sdotp4 vector operations per loop cycle, which translates in 8 MACs.

Ancillary operations also take benefit of the DSP extensions. ReLU, which consists of a simple
max looped over the input feature map, exploits hardware loops, load store with post-increment
and the SIMD max4 built-in instruction. The same is also used to optimize the max-pooling kernel,
which is implemented in two steps: first along the width dimension, working destructively in situ
on the input buffer; then along the height dimension.

Sub-byte Extensions

The smallest data type well supported by the ISA with the SIMD extensions is INT-8. To exploit
efficiently such vector operations, it is necessary to provide additional support functions to
convert sub-byte data, i.e. INT-2 and INT-4, into INT-8. Having sub-byte operands compactly
stored in memory, in the case of INT-4 data two consecutive elements are placed in a single byte.
The casting operation, realized through the pulp_nn_int4_to_int8 function, takes place either when
building the im2col buffer as well as in the innermost loop of the matrix multiplication kernel to
"unpack" weight elements. To reduce the overhead due to the unpacking operations, combined
use of the bextract and pack4 built-in functions allows to extract four INT-4 elements (weights or
pixels) with few instructions, as shown in Figure 3. After loading eight INT-4 data with a single
load, four elements are extracted by means of the bitextract built-in and packed into one single
SIMD v4s variable, which feeds the matrix multiplication kernel.
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Src = *((v4s*) pSrc);     //pointer casting
B1 = bextract( Src[0..3]);  //bit extraction
B2 = bextract( Src[4..7]);
B3 = bextract( Src[8..11]);
B4 = bextract( Src[12..15]);
Res = pack4( B1, B2, B3, B4);  // packing into a v4s var.

Pseudocode

p.lw Src, 0(a0);    // vectorial load
p.bextract w1e, Src, 4, 0;  //bextract built-in 
p.bextract w2e, Src, 4, 4;
p.bextract w3e, Src, 4, 8;
p.bextract w4e, Src, 4, 12;
p.packhi.b Res, w3e, w4e;   //pack built-in (two assembly insns)
p.packlo.b Res, w1e, w2e;

Disassembled Pseudocode
07 …

W8 W7 W6 W5 W4 W3 W2 W1

bextract
Sig. 
ext.

W1
Sig.
ext.

W2
Sig.
ext.

W3
Sig.
ext.

W4

Sig. 
ext.

W1
Sig.
ext.

W2
Sig.
ext.

W3
Sig.
ext.

W4

0

pack4

Src

Res

3

07

…

…

Figure 3. INT-4 to INT-8 unpacking function.

Matrix Multiplication
(INT-8)

2x2 16-bit
accumulators

Thresholding
procedure

pulp_nn_int4_quant()

Packing INT-4 results
bitinsert()

* **

Pseudocode

q1 = pulp_nn_int4_quant( s1, thresholds);  // restoring 4bit range precision *
q2 = pulp_nn_int4_quant( s2, thresholds);  
q3 = pulp_nn_int4_quant( s3, thresholds);
q4 = pulp_nn_int4_quant( s4, thresholds);

Out = bitinsert( q1, offset=0, size = 4);  // packing two INT-4 pixels in one INT-8 variable **
Out = bitinsert( q3, offset=4, size = 4);  
Out2 = bitinsert( q2, offset=0, size = 4);
Out2  =bitinsert( q4, offset=4, size = 4);

Figure 4. The compression procedure for INT-4 data types.

The results of the matrix multiplication kernel (which is always performed with the INT-8 data
type) are 16-bit long, as the accumulator features a precision higher than operands, as described
in Section 3.(a). A compression procedure is thus needed to bring the result back to INT-4. Starting
from the considerations in [15], the 16-bit accumulator is compared with the corresponding 24 −
1 threshold values, using an optimal balanced binary tree function, named pulp_nn_int4_quant.
Such a procedure is necessary to restore the precision of the results in a 4 bit range. To save
memory footprint, two consecutive output INT-4 data are stored in a single-byte variable using
the bitinsert built-in function. A graphical explanation of the compression mechanism is provided
in Figure 4. A similar process is implemented for INT-2 convolutions, by featuring dedicated
packing and unpacking functions.

Binary Convolution Kernel

For the INT-1 data representation no casting/unpacking is needed because of the natural support
provided by the ISA for binary operations. We exploit the bitwise instructions to implement the
convolution kernel, which is based on bitwise XNOR operations between binary weights and
binary inputs. The accumulator is filled by counting the number of ones occurring after the
XNOR. To this purpose we use popcnt built-in. The 16-bit accumulator is compared with a single
threshold and results either in a zero or one, stored back into memory by means of the bitinsert
built-in function.
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Figure 5. The right side of the figure shows how the chunks are assigned to the 8 cores of the PULP cluster. To take

advantage of the HWC data-layout each chunk is built along the spatial dimension of the output feature map. The left

side gives a graphical intuition of the need each core has to create its private im2col buffer. Considering the 2×2 matrix

multiplication kernel each core requires two private buffers of such type.

(b) Multicore Execution
As discussed above the convolution kernel execution consists of two phases: the im2col function
and the matrix multiplication kernel. The proposed data-parallel multi-core optimization is
motivated by the HWC format used to store pixels and weights and by the two phases of the
dataflow. Because of the HWC format, it is convenient to split the workload along the spatial
dimension of the output feature map, in a way that each core computes the full set of M output
features for a given output spatial coordinate, as shown in Figure 5. To implement this strategy,
each core requires a private im2col buffer. More specifically, if we consider the 2×2 kernel, each
core must allocate and load two im2col buffers before running the matrix multiplication kernel.
Therefore, the parallelization boost comes at the cost of a small amount of additional memory
footprint for the extra im2col buffers, which in the worst case (eight cores configuration) is about
9% of the total when considering 16×16×32 sized input feature map, 16×16×64 sized output
feature map and 64×3×3×32 sized 3D convolution filter. The weights instead are shared among
the cores.

Since the fully connected layer generates a set of neurons as output (i.e., the output feature
map does not extend along any spatial dimension), the only dimension along which we can split
the workload is the channel. We assign a balanced number of neurons to be computed to each
core. The parallelization of the ReLu and the Max Pooling kernel is straight-forward: the chunk
to be assigned to each core is a balanced group of pixels along the entire input feature map.

(c) Matrix Multiplication Kernel Size Exploration
To further increase the throughput of a memory intensive kernel such as matrix multiplication, it
is important to reduce the cost of loading the operands into the registers as much as possible, by
maximizing the data reuse at the register file level.

The direct implementation of the Equation (3.6) would be inefficient since, from a computation
perspective, two loads are required (one to fetch an im2col element and one to fetch a weight
parameter) to feed the MAC instruction. In this scenario, one load stall will be necessarily paid,
degrading the IPC metric and reducing the throughput. To avoid the stall, multiple output data
can be computed within the inner loop of the dot product routine, i.e., the inner loop of the matrix
multiplication kernel.

When applying equation (3.6) to compute the output data at the spatial coordinate (x+ 1, y),
the formula becomes:

O(m,x+ 1, y) = dot
(
W (m), im2col(x+ 1, y)

)
. (4.1)
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V4s A1 = *((v4s*) pWeight);

V4s B1 = *((v4s*) pBuffer);
V4s B2 = *((v4s*) pBuffer2);

S1 = sdotp4(A1,B1);  
S2 = sdotp4(A1,B2);  

V4s A1 = *((v4s*) pWeight);
V4s A2 = *((v4s*) pWeight2);

V4s B1 = *((v4s*) pBuffer);
V4s B2 = *((v4s*) pBuffer2);

S1 = sdotp4(A1,B1);  
S2 = sdotp4(A1,B2);  
S3 = sdotp4(A2,B1);   
S4 = sdotp4(A2,B2);

V4s A1 = *((v4s*) pWeight);
V4s A2 = *((v4s*) pWeight2);
V4s A3 = *((v4s*) pWeight3);
V4s A4 = *((v4s*) pWeight4);

V4s B1 = *((v4s*) pBuffer);
V4s B2 = *((v4s*) pBuffer2);

S1 = sdotp4(A1,B1);  
S2 = sdotp4(A1,B2);  
S3 = sdotp4(A2,B1);   
S4 = sdotp4(A2,B2);
S5 = sdotp4(A3,B1);
S6 = sdotp4(A3,B2);
S7 = sdotp4(A4,B1);
S8 = sdotp4(A4,B2);

S1

S7

S3

S5

S2

S8

S4

S6

1x2 2x2 4x2
width

channel

Kernel Size MAC/Load

1x2 1.33

2x2 4

4x2 5.33

Inner Loop
1x2 2x2 4x2

Figure 6. Inner loop of the matrix multiplication considering different sizes of the kernel.

We can notice that the same subset of weights is used in the computation of the output data at
coordinates (x, y) and (x+ 1, y) . What changes is only the im2col buffer. When operating on
these two point simultaneously, the inner loop consists of two dot product operations, which are
performed over two different accumulators. By reusing the register that stores the elements of
W (m) along the spatial dimension we can set two sdotp4 operations at the cost of one additional
load (three in total), needed to fetch the elements of the second im2col buffer. So doing, we
build the 1x2 sized kernel and increment the MAC to load ratio. If extending this strategy also
to the feature dimension, the inner loop of the convolution can operate on a 2×2 sized kernel,
i.e. computing four accumulations related to two features of two separate output pixels (x, y)

and (x+ 1, y). Such a kernel size is the one used by ARM CMSIS-NN. In this case, an additional
subset of weights, W (m+ 1) is needed and, at the cost of four loads, we can perform four sdotp4
operations in the inner loop. By means of this upgrading, the MAC to Load ratio grows up to 4.

Let us consider the 4x2 sized kernel, which means we want to compute two adjacent spatial
pixels along four consecutive channels of the output feature map. Following what we said before,
we need to build two im2col buffers, and we need four different subsets of weights. The elements
loaded in the register file are reused similarly as presented before to maximize the MAC to Load
ratio. Figure 6 explains the concept of register file data reuse. As a counterpart, we can explore the
2x4 sized kernel. In this case, the reasoning is reversed. The MAC to load ratio we can achieve in
both cases is 5.33, as we compute 32 MACs at the cost of 6 load operations, in a single run of the
inner loop. Thus we expect a better throughput with respect to the 2×2 sized area. It is interesting
to notice that in the 2x4 case, the memory footprint is slightly higher than the 4x2 sized kernel
because of the two additional im2col buffers. For the same performance, the former is thus to be
preferred between the two.

It is important to notice that the upscaling of the kernel size is limited by the resources available
in the register file to store operands and accumulators, thus limiting the data reuse design space
at this level. We explore such a space to find the best register file data reuse condition which
maximizes the throughput. The experimental results and further considerations are provided in
Section 5.(c).

5. Experimental Results and Discussion
The solutions presented in this paper are evaluated on the off-the-shelf GAP8 [16] microcontroller,
which is an embodiment of the target PULP architecture with eight cores. The same experiments
can also be replicated on the open-source PULP platform4 via RTL simulation.
4https://github.com/pulp-platform.
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Figure 7. Speed-up of PULP-NN conv kernels (single core execution on GAP-8) and CMSIS-NN conv kernels (on

STM32H7 and STM32L4) with respect to RV32IMC ISA.

(a) Comparison with RV32IMC ISA
To evaluate the proposed library, which exploits the DSP extensions available on the RI5CY
processor [50], we first compare the optimized single core execution of the convolution kernels
with respect to a corresponding RV32IMC ISA implementation, sweeping all the INT-Q datatypes
supported. This evaluation is performed by benchmarking a convolution kernel operating on
a 16x16x32 input tensor (HWC data-layout) with a filter size of 64x3x3x32 (CxkwxkhxM ). We
consider the convolution kernel as its workload is dominant when inferring an entire QNN (about
96 % on the CIFAR-10). As a second term of comparison, we run the kernels on off-the-shelf
STM32H743 [42] and STM32L476 [41] commercial microcontrollers based on ARM CORTEX-
M7 and CORTEX-M4 cores respectively, using the CMSIS-NN [14] library. To run the sub-byte
quantized version of the convolution layer on such MCUs, we refer to [15]; the extension to
the CMSIS-NN library is open access5. The results of the comparison are presented in terms of
speedup with respect to the RV32IMC implementation and reported in Figure 7.

We achieve the best speedup on the INT-8 convolution kernel, mainly thanks to the 8-bit
SIMD sdotp instructions. The ARM ISA features support for 16-bit instructions only, dividing
by a factor of 2 the MAC throughput with respect to the RI5CY processor. Moreover additional
rotate instructions are required on ARM architectures to pack 16-bit vector data to feed the MAC
units [15]. Finally, hardware loops provide another factor of improvement with respect to ARM.
Thanks to these extensions we outperform by 2.54× and 4.51× the STM32H7 and L4 MCUs
respectively, despite the CORTEX-M7 processor available in the STM32H7 featuring a dual-issue
pipeline.

When considering sub-byte data types, we notice a degradation of the speedup with respect
to RV32IMC which passes from 8.8× (INT-8) to 3.69× and 4.22× for INT-4 and INT-2 data
respectively. Such degradation is due to the additional instructions to unpack and cast INT-
2/4 operands to INT-8 ones. Although these operations are implemented with bextract and pack4
instructions, they do not achieve the same speedup as the INT-8 convolution kernel, limiting the
overall speedup for sub-byte kernels, still leading to a speedup of 1.42× and 2.1× with respect to
STM32H7 and STM32L4 for INT-4 kernel, respectively, and a speedup of 1.52× and 2.17× with
respect to H7 and L4 for INT-2 kernel, respectively. The ARM CORTEX-M7/M4 processors do not
have ISA support for efficient bit manipulation instructions nor for popcount instruction which is
helpful for the INT-1 case. However most of the computational load of this kernel is implemented
with xnor instructions available in all considered ISAs. Hence, the proposed implementation,
5https://github.com/EEESlab/CMSIS_NN-INTQ
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Configuration Nr. I$ stall TCDM cont. Load stall Total exec. Speedup
insns cycles cycles cycles cycles

Convolution
1 CORE 2546k 1.3k (0.05%) 0 18k (0.7%) 2586k 1×

2 CORES 1286k 4.5k (0.35%) 1.4k (0.11%) 11k (0.85%) 1299k 1.99×
4 CORES 636k 5.7k (0.86%) 3.8k (0.56%) 5.5k (0.83%) 660k 3.92×
8 CORES 318k 21.5k (5.96%) 6.6k (1.83%) 2.7k (0.75%) 361k 7.16×

Fully connected
1 CORE 20.7k 0.03k (0.09%) 0 0 33k 1×

2 CORES 10.4k 1.1k (6.25%) 1k (5.69%) 0 17.6k 1.89×
4 CORES 5.2k 0.1k (1.19%) 0.2k (2.38%) 0 8.4k 3.92×
8 CORES 2.6k 0.1k (2.27%) 0.3k (6.81%) 0 4.4k 7.52×

Table 2. The table shows the multicore execution profiling of the kernels. The measurements for multicore configurations

are reported as an average of the measurements taken on each core. The percentage value highlights the impact of each

measured contribution on the total execution cycles.

runs 1.41× and 2.22× faster than the extended CMSIS-NN solution on STM32H7 and STM32L4
respectively.

(b) Multicore Execution Results
In this section, we focus on the analysis of the multicore optimization of the kernels. Figure 8
shows a comparison of the convolution kernels running on the 8-core cluster of GAP-8 with
respect to the equivalent CMSIS-NN implementation on STM32H7 and STM32L4. It is possible to
notice that, due to the additional operations required to execute sub-byte kernels, their overall
cycles/MAC are 0.186 for INT-4 and 0.181 for INT-2, both 2.4× higher than the INT-8 case.
However, we can notice how the software-efficient exploitation of the parallel processors cluster
provides almost linear speedups (7.16× to 7.7×) with respect to the single core configuration,
leading to a dramatic improvement of performance with respect to the equivalent execution on
sequential RV32IMC (where the overall speedup passes from 8.8× of the single-core execution to
up 63× when considering 8-cores) and on single-core ARM architectures (10× to 32×). This huge
performance gain enables the exploitation of the benefits of heavily quantized neural networks
in terms of memory footprint, still performing one order of magnitude better than state-of-the-art
ARM-based implementations.

To provide more insight on the multi-core optimizations, we present an exhaustive study
of the performance achieved on the parallel cluster of GAP-8. First, we measure the amount of
executed instructions per each core providing an indication of the Amdhal’s limit of the kernels,
i.e. the amount of cycles lost due to non-parallelizable code. As a second point, we measure the
the number of cycles in which the cores are not waiting on a barrier (active cycle). Then we
measure the architectural sources of overhead: number of cycles lost due to contention on the
shared TCDM, cycles lost due to instruction cache stalls and cycle lost due to load stalls (read
after write). The results for the convolution and fully-connected kernels are summarized in Table
2.

Considering the convolution kernel, we achieve a Speedup of 7.16× with eight cores. By
analyzing the table we can notice that the Amdahl’s limit of the kernels is around 8× (thus, ideal),
but we lose a small number of cycles due to architectural overheads: the 67% of this overhead is
due to I$ non-idealities, 8% is due to load stalls and 20% is due to TCDM contention, which is
reasonable as there are eight cores that access the same shared L1 memory. The number of I$ stalls
increases with the number of cores due to the increasing contentions in the shared cache banks [51]
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by the kernel, b is the number of output activations.

(the banking factor of 8 can not completely remove the conflicts), on top of the I$ misses due to
the large inner loop of the kernel. The parallel execution of the fully connected layer presents a
speedup higher than the convolution kernel mainly thanks to the reduction of I$ stalls due to
the smaller size of the kernel. The speedup is never lower than 7× also when considering the
max-pooling and ReLU kernels running on eight cores.

(c) Kernel Exploration
The exploration of the matrix multiplication kernel size design space is carried out for the INT-8
operands, considering sizes ranging from 1×2 to 4×4. The results are summarized in Figure 9.
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A peak throughput of 15.5 MACs/cycle is reached when we consider a convolution kernel
with a 4×2 sized matrix multiplication kernel running over eight cores of the cluster, achieving a
result of just 1.01 LD/ST per MAC. This result translates in an overall efficiency of 49% in terms
of MAC utilization, only a factor of 2 from the theoretical peak achievable (32 MACs/cycle) on
a cluster of eight programmable cores with SIMD MAC units, i.e. considering the MAC units
constantly fed. Nearly the same throughput is achieved with the 2×4 sized kernel, as the almost
overlapping points in the graph suggests. Then, the optimal sized kernel has been chosen taking
into account also the extra memory footprint needed to build the im2col buffers in the two
configurations, which results to be lower for the 4×2 solution (see section 4.(c) for more details).
As regards the 1×2, 2×1 cases, they appear to be inefficient, as the amount of data reuse is meager
and we pay the overhead due to the higher number of loads. For these configurations, the MAC
to load ratio is slightly higher than 1. The 4×4 case instead would demonstrate to be the best,
since the first indication of ideal data reuse is equal to 8 (MAC/load). However, to set a 4×4 sized
matrix multiplication kernel inner loop we should have at least 24 registers available (16 for the
accumulators and 8 for the operands), while the target RISC-V, like most MCU-dedicated micro-
architectures, has a register file with 32 general purpose registers. With only eight usable registers,
the compiler has to spill variables to the stack to make room for the accumulators and operands,
leading to significant performance degradation.

(d) Comparison with GAP8 Native Library
We compare our library with the optimized multi-core kernels that are openly distributed by
GreenWaves Technologies as part of a proprietary tiling solution6 and tailored for the GAP8
processor. We call this library GWT-NN. In this section, we compare the performance of PULP-
NN on INT-8 data with that provided by GWT-NN. We focus on a 3×3 kernel in terms of filter
size as a representative example constituting the bulk of most SoA DNNs.

Differently from PULP-NN, GWT-NN operates spatially on CHW-formatted data with explicit
convolution filters working in a sliding window fashion, and accumulation over an appropriately
sized INT-32 buffer. In the innermost loop, the GWT 3x3 kernel uses the register file to implement
a sliding window and uses three sdotp4 instructions to implement a total of 9 multiply-accumulate
operations. [50] and [52] report further details with respect to this convolution kernel.

Figure 10 shows a comparison between the two libraries when running on a single core of
the GAP-8 cluster, in terms of performance in MAC/cycle. For PULP-NN, the performance is

6https://github.com/greenwaves-technologies/autotiler.
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Figure 11. This figure shows the execution cycles, the performance (at the maximum frequency) and energy efficiency

(at the lowest consumption configuration) to infer the entire QNN on GAP8, STM32L4 and STM32H7 microcontrollers.

swept by changing the number of input and output channels between 2 and 64 (only results from
configurations fitting the L1 are shown). We chose the biggest input spatial size (24x24) for which
configurations with 64 input or output channels fit L1. Conversely, for GWT-NN, performance is
substantially independent of the number of in/out channels, but only on the spatial size of the
input image; therefore, we fix their input/output channels at 4 and have them sweep their input
size between 4, 16, and 64 pixels height/width.

As visible from Figure 10, PULP-NN outperforms GWT-NN for all small images, and in most
cases of spatially bigger images by a significant margin. This is due to a combination of two
effects: the 3x3 sliding window requires three loads and three sdotp4 per output pixel, yielding a
lower sdotp4 per load ratio (1) with respect to the 4×2 PULP-NN kernel (1.4); moreover, only three
MAC are used per each sdotp4, yielding a further loss of 25% in terms of efficiency. Consequently,
the GWT-NN kernel is mostly competitive when the spatial size of the feature maps is much
higher than the number of channels, e.g., in the first layer of a CNN. While, when the number of
input/output channels is high, which typically represents the majority of the workload for state-
of-the-art deep networks topologies [53], PULP-NN can achieve as much as a +89% speedup with
respect to GWT-NN.

(e) Comparison with State-of-the-Art Architectures
To assess the library performance on an inference task, we run a full QNN, trained on CIFAR-10
dataset, on GAP-8, using PULP-NN back-end library. For comparison purposes, we run the same
network also on State-of-the-Art edge of IoT ARM Cortex-M based microcontrollers (STM32H7
and STM32L4), using CMSIS-NN. STM32H7 and STM32L4 were chosen as representative of
popular high-end and low-end MCU systems, with a clear trade-off between performance and
energy efficiency. The comparison with these two popular computing platforms allows to analyze
where our results lay in terms of trade-off between computing performance and energy efficiency.
The implemented network topology is composed by three convolution layers and one fully-
connected layer, consisting of 26.7 k parameters and 6.56 MMACs in total7. The weights and the
activations are quantized to INT-8 format. Such a topology is already used on IoT edge devices
(MCUs) and also used by ARM to validate Neural Networks on low-power microcontrollers such
as STM32L4 or STM32H7.

On GAP-8, the RGB image is initially stored in the L2 memory and brought in the L1 memory
before the start of the inference task, through a DMA transfer. The activation values are then kept
in the L1 memory to save on memory transfer overhead. Before the execution of each convolution
or linear kernel the weights, initially residing on L2 memory, are brought in L1 through DMA as

7The layer parameters can be found at: https://github.com/ARM-software/ML-examples/tree/master/cmsisnn-cifar10
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well. Also the im2col buffers are kept in L1 memory. On the STM32L4 microcontroller, the entire
network is stored in the first level of memory, which consists of 128 kB SRAM. On STM32H7 the
network is stored in SRAM as well and we enable also the harware data cache which is provided
by the MCU architecture.

In the single core configuration, we are able to infer the entire network in 28.6 ms, when GAP-8
runs at 170 MHz. We achieve almost linear speedup when considering two and four cores, 1.99×
and 3.79× respectively. With eight cores the speedup is slightly less than 7×. Figure 11 shows the
comparison of PULP-NN implementation of the network on GAP-8 with respect to the CMSIS-
NN implementation on STM32H743 and STM32L467 in terms of execution cycles, performance
(i.e. also considering the maximum operating frequency of the devices), and energy efficiency.

Our PULP-NN CIFAR-10 achieves a peak performance of 1.07 GMAC/s at the frequency of
170 MHz and the supply voltage of 1.2 V on GAP-8, inferring 241 frame per second (fps) with
an energy per inference of 0.27 mJ/frame. The performance is 7.45× better than the STM32H7
and 36.8× better than the STM32L4. The energy efficiency achieved at this operating point is 16.1
GMAC/s/W, 16.6× higher than the STM32H7 and 9.48× higher than STM32L4. At the same
time, at the best energy point, at the supply voltage of 1V, PULP-NN achieves a performance
of 577 MMAC/s on GAP-8, with energy efficiency of 24 GMAC/s/W, inferring 127 fps with
0.19 mJ/frame, and outperforming STM32H7 by 4.06× and STM32L4 by 32.05× in terms of
performance and by 39.5× and 14.1× the same devices respectively, in terms of energy efficiency.

(f) Discussion
In this work we demonstrate that coupling optimized software libraries with a parallel ultra-low
power computing platform we achieve energy proportionality where, as opposed to commercial
ARM-based solutions, we do not have to trade performance with energy efficiency, paving the
way to fully software programmable CNN inference at the extreme edge of the IoT. However,
sub-byte kernels still suffer from drop-off in performance when compared to the INT-8 ones,
despite their execution on GAP-8 performs more than one order of magnitude better with
respect to MCU-based SoA solutions. The overhead, as highlighted in section 5.(a), is due to
the hardware support of the target architecture only for 8-bit SIMD instructions, which makes
necessary to introduce additional packing and unpacking functions. The sub-byte precision
QNNs though, provide several advantages when deployed at the edge, since their memory
footprint decreases linearly with the bit-width used to represent weights and activations [7],
making them more suitable to fit the limited memory capacity of MCU-like devices. Moreover,
it has the potential to increase the energy efficiency, crucial for battery-powered devices [11].
Recent research demonstrated that, by exploiting specific retraining techniques, the accuracy
drop can be kept under control, leading to a cumulative loss which is acceptable for many IoT
applications [13]. Hence the research community is focusing more and more on the study and
implementation of strongly quantized NNs. It is therefore important going further in the work
presented in this paper to exploit fully the potential of heavily quantized networks on fully
programmable edge devices. From the hardware perspective, providing the target ISA with sub-
byte hardware SIMD operations will be a step forward to eliminate the software overhead and
to double, at least, the performance and the energy efficiency with respect to the current optimal
8-bit solution.

6. Conclusion
We have presented PULP-NN: an optimized library to run QNNs at the edge, targeting INT-
8, INT-4, INT-2, and INT-1 data operands. We showed that, by optimizing the library with
the SIMD extensions and bit manipulation instructions of the targeted architecture, we heavily
increase the performance of each kernel by up to 63x with respect to a corresponding RISC-V
IMC implementation, in an eight core cluster configuration. Running an entire INT-8 QNN on
GAP8 showed us that we can achieve a speedup (in terms of cycles) of 19.49× with respect to the
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inference of the network on an STM32H7 microcontroller, using CMSIS-NN library. Furthermore,
the energy efficiency achieved on GAP8 results to be 24GMAC/s/W , 14.1× higher with respect
to the one obtained with STM32L4 board. We conclude the same also for the performance: GAP8
achieves 1.066GMAC/s, which is 7.45× higher than the performance of STM32H7 board.
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