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a b s t r a c t

Standard tests based on predictive regressions estimated over the full available sample
data have tended to find little evidence of predictability in stock returns. Recent
approaches based on the analysis of subsamples of the data suggest in fact that
predictability where it occurs might exist only within so-called ‘‘pockets of predictabil-
ity’’ rather than across the entire sample. However, these methods are prone to the
criticism that the subsample dates are endogenously determined such that the use
of standard critical values appropriate for full sample tests will result in incorrectly
sized tests leading to spurious findings of stock returns predictability. To avoid the
problem of endogenously-determined sample splits, we propose new tests derived
from sequences of predictability statistics systematically calculated over subsamples
of the data. Specifically, we will base tests on the maximum of such statistics from
sequences of forward and backward recursive, rolling, and double-recursive predictive
subsample regressions. We develop our approach using the over-identified instrumental
variable-based predictability test statistics of Breitung and Demetrescu (2015). This
approach is based on partial-sum asymptotics and so, unlike many other popular
approaches including, for example, those based on Bonferroni corrections, can be readily
adapted to implementation over sequences of subsamples. We show that the limiting
null distributions of our proposed test statistics depend in general on whether the
putative predictor is strongly or weakly persistent and on any heteroskedasticity present
(indeed on any time-variation present in the unconditional variance matrix of the
innovations), the latter even if the subsample statistics are based on heteroskedasticity-
robust standard errors. As a consequence, we develop fixed regressor wild bootstrap
implementations of the tests which we demonstrate to be first-order asymptotically
valid. Finite sample behaviour against a variety of temporarily predictable processes is
considered. An empirical application to US stock returns illustrates the usefulness of the
new predictability testing methods we propose.
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1. Introduction

A large body of empirical research has been undertaken investigating whether stock returns can be predicted. Therein,
a wide range of financial and macroeconomic variables have been considered as putative predictors for returns, including
valuation ratios such as the dividend-price ratio, dividend yield, earnings-price ratio, book-to-market ratio, various interest
rates and interest rate spreads, and macroeconomic variables including inflation and industrial production.

Early empirical studies, including Fama (1981), Keim and Stambaugh (1986), Campbell (1987), Campbell and Shiller
(1988a,b), Fama and French (1988, 1989) and Fama (1990), often found significant evidence of in-sample predictability of
U.S. stock index returns, at least over relatively long horizons. It has since been argued, however, that these findings
could be spurious. Nelson and Kim (1993) and Stambaugh (1999) show that strongly persistent predictors lead to
biased coefficients in predictive regressions if the innovations driving the predictors are correlated with returns, as is
argued to be the case for many of the variables used as predictors; e.g., the stock price is a component of both the
return and the dividend yield. Goyal and Welch (2003) show that the persistence of dividend-based valuation ratios
increased significantly over the typical sample periods used in empirical studies, and argue that, as a consequence, out-
of-sample predictions using these variables are no better than from a no-change strategy. Predictability tests which are
asymptotically valid when the predictor is strongly persistent and driven by innovations which are correlated with returns
have been proposed in Cavanagh et al. (1995), Campbell and Yogo (2006), Kostakis et al. (2015), Breitung and Demetrescu
(2015), Elliott et al. (2015) and Jansson and Moreira (2006), inter alia. When such robust techniques are used the statistical
evidence of predictability is considerably weaker and often disappears completely; see, among others, Ang and Bekaert
(2007), Boudoukh et al. (2007), Welch and Goyal (2008) and Breitung and Demetrescu (2015).

The foregoing approaches are based on a maintained assumption that the coefficients of the predictive regression model
are constant over time. However, there are several reasons to suspect that if returns are predictable, then it is likely to be
a time-varying phenomenon. The business cycle, time-varying risk aversion, rare disasters, structural breaks, speculative
bubbles, investor’s market sentiment, and regime changes in monetary policy have all be cited as possible reasons; see,
e.g., Pesaran and Timmermann (2002). For example, significant changes in monetary policy and financial regulations could
lead to shifts in the relationship between macroeconomic variables and the fundamental value of stocks, via the impact of
these changes on economic growth and the growth rates of earnings and dividends. Timmermann (2008) argues that for
most time periods returns are not predictable but that there are ‘pockets in time’ where evidence of local predictability
is seen. In particular, if predictability exists as a result of market inefficiency rather than because of time-varying risk
premia, then rational investors will attempt to exploit its presence to earn abnormal profits. Assuming a large-enough
proportion of investors are rational, this behaviour will eventually cause the predictive power of the relevant predictor
to be eliminated. If a variable begins to have predictive power for returns then a window of predictability might exist
before investors learn about that relationship, but it will eventually disappear; see, in particular, Paye and Timmermann
(2006), Timmermann (2008) and Farmer et al. (2018). It therefore seems reasonable to consider the possibility that the
predictive relationship might change over time, so that over a long span of data one may observe some windows of time
during which predictability occurs.

A growing body of empirical evidence is supportive of the view that the slope parameter in prediction models for
returns varies over time. Henkel et al. (2011) find that return predictability in the stock market appears to be closely
linked to economic recessions with dividend yield and term structure variables displaying predictive power only during
recessions. Similarly, Gargano et al. (2019) find that commodity returns are predictable using macroeconomic information,
but again only during recessions. Lettau and Ludvigsson (2001) find evidence of instability in the predictive ability of the
dividend and earnings yield in the second half of the 1990s. Goyal and Welch (2003) and Ang and Bekaert (2007) find
instability in prediction models for U.S. stock returns based on the dividend yield in the 1990s. Other studies which report
evidence of time-varying behaviour in stock return predictability include Barberis (2000), Lettau and van Nieuwerburgh
(2008), Welch and Goyal (2008), Pástor and Stambaugh (2009, 2012), Pettenuzzo and Timmermann (2011), Dangl and
Halling (2012), Gonzalo and Pitarakis (2012), Rapach and Wohar (2006) and Giannetti (2007), inter alia. In the context of
predicting the equity premium, Kolev and Karapandza (2017) find that, for a given set of predictors, alternative data splits
often lead to strongly contradictory outcomes concerning return predictability. Paye and Timmermann (2006) undertake
a comprehensive analysis of prediction model instability for international stock market indices using conventional Bai–
Perron structural break tests and report statistically significant evidence of structural breaks for many of the countries
considered, arguing that the ‘‘[e]mpirical evidence of predictability is not uniform over time and is concentrated in certain
periods’’ (op. cit. p. 312). Paye and Timmermann (2006) also cite a number of applied studies which find significant
evidence of in-sample (ex post) predictability in returns data but yet find very weak evidence of out-of-sample (ex ante)
predictability, and argue that a possible explanation is structural instability in the predictive relations involved.

A limitation of many of the statistical techniques used in previous research on the instability of return prediction
models is that they are not designed for use with highly persistent, endogenous predictors. Paye and Timmermann (2006)
investigate the effects of persistence and endogeneity of the regressors on the Bai–Perron tests for structural breaks using
Monte Carlo simulations. Their simulations reveal that size distortions, whereby parameter change is falsely signalled
when none is present, can be substantial. They also show that some of the tests lack power in this context because of the
large amount of noise typically present in predictive regression models. Moreover, because tests from predictive regression

models based on the full sample of available data will have relatively low power to detect short windows of predictability,
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a number of these studies applied such tests to separate subsamples of the data (data splits) with the timings of those
subsamples either chosen by the practitioner or performed over a large set of possible subsamples of the data. In both
cases the critical values which would apply to the test run on the full sample cannot validly be used. In the former
case because the subsamples are endogenously determined. For the latter case the probability of spuriously signalling a
predictive relationship when none is present will tend to one as the number of subsamples considered increases; see Inoue
and Rossi (2005) for a detailed discussion of this problem in relation to the use of t-tests.

With these issues in mind, our goal is to provide size controlled tests designed to detect predictability regardless of
whether it applies across the entire available sample or within pockets of predictability. Our proposed tests are based
on predictability statistics obtained from sequences of predictive regressions computed over subsamples of the data. In
particular we will consider forward and backward recursive sequences of predictive regressions as well as rolling and
double-recursive sequences. For each of these sequences of statistics the proposed test will be given by the largest (in
absolute value) outcome. Because the range of subsamples considered in each sequence is set without reference to the
particular data set involved this avoids the problem of endogenously chosen sample splits. Moreover, by considering
the maximum of the sequences we avoid the spurious detection issues discussed in Inoue and Rossi (2005). As we will
demonstrate in the Monte Carlo experiments considered in the paper, each of these sequences has particular patterns
of local predictability that it is well designed to detect. For example, the test based on the (forward) reverse recursive
sequence of statistics is suited to detecting (beginning-of-sample) end-of-sample pockets of predictability. As such, the
reverse recursive based tests could usefully be employed in an on-going monitoring exercise for the emergence of
predictive regimes. Because both the forward and reverse recursive sequences contain the usual full sample predictability
test, they also deliver tests which have power to detect predictability which holds over the whole sample. For a given
window width, tests based on a rolling sequence of statistics are designed to pick up a window of predictability, of roughly
the same length, within the data. The double-recursive sequence amounts to considering all possible window width rolling
sequences, subject to a minimum width. These then are useful for picking up multiple predictive regimes of potentially
different lengths within the data.

The approach we take has implications for the type of predictability statistics that can be used, as it will be necessary
to characterise the joint behaviour of the full sequence of statistics in order to conduct inference. Some commonly used
testing approaches such as those based on the Bonferroni inequality (e.g. Campbell and Yogo, 2006) or on bias corrections
(e.g. Amihud and Hurvich, 2004) are difficult to implement for sequences of statistics; the same holds for technically more
involved procedures such as those proposed by Jansson and Moreira (2006) or Elliott et al. (2015). Rather we will use
tests based on instrumental variable [IV] estimation which benefit from the fact that closed-form expressions for the test
statistics exist, which can be characterised using familiar partial-sum-based asymptotics. Specifically we will adapt the
full sample methods from Kostakis et al. (2015) who propose the use of the so-called extended IV, or IVX, approach, and
Breitung and Demetrescu (2015) who propose the combination of several instruments with complementary properties.
While the marginal null limiting distribution (at least when based on heteroskedasticity-robust standard errors) of any one
of the subsample statistics in the sequences considered does not depend on either the degree of persistence or endogeneity
of the regressors in the predictive regression, or on any heteroskedasticity present in the shocks, we show this is not the
case for the limiting null distribution of themaximum statistics from these sequences. We therefore propose fixed regressor
wild bootstrap implementations of the maximum tests and demonstrate that these are first-order asymptotically valid
under heteroskedasticity, irrespective of whether the regressors are strongly or weakly persistent.

The paper is organised as follows. Section 2 introduces the time-varying predictive regression model we consider
together with the assumptions needed for our analysis. Section 3 reviews the standard full sample IV-based predictability
tests, while Section 4 details the subsample implementations of these statistics across the various sequence types
discussed above and discusses relevant instruments that can validly be used in the context of our proposed approach.
Representations for the limiting distributions of these statistics under both the null and local alternatives are provided and
are shown to depend on any heteroskedasticity present, regardless of whether the putative predictor follows a strongly
persistent process (modelled as near-integrated) or a weakly persistent process (modelled as a stable autoregression).
Moreover, the form of these limiting distributions depends on whether the predictor is near-integrated or weakly
dependent, even under homoskedasticity. Section 5 discusses fixed regressor wild bootstrap implementations of our
proposed tests and demonstrates the first-order asymptotic validity of these. Section 6 presents the results from a
Monte Carlo analysis into the finite sample behaviour of the tests under both the null hypothesis of no predictability
and alternatives where local predictability occurs within the data. An application to monthly U.S. stock returns data is
presented in Section 7. Section 8 concludes. Accompanying on-line supplementary material provides detailed proofs of
the technical results given in the paper along with extensions to allow for multiple predictors and a general deterministic
component, additional material relating to our empirical application and additional simulation results.

The notation Dk will be used to denote the space of càdlàg real functions on [0, 1]k equipped with the Skorokhod
topology, and we abbreviate D1 to D. The weak convergence of probability measures on both function spaces (in particular,
on Dk) and on Rk is denoted by ⇒. We reserve the notation P, E etc. for probability, expectation etc. with respect to
the distribution of the original data and use P∗, E∗ etc. for probability, expectation etc. induced by the data and the
wild bootstrap multipliers (denoted {Rt}) conditionally on the data. The notation w

⇒p stands for weak convergence in
probability; specifically, ζ ∗

T
w
⇒p ζ holds for random elements ζ ∗

T and ζ , not necessarily defined on the same probability
∗ ∗
space, if E f (ζT )→ E f (ζ ) in P-probability for all bounded continuous real functions f with matching domain. In the
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special case ζ = 0 ∈ R, we recall that ζT
w
⇒p 0 (equivalently, ζT = op∗ (1) in P-probability) means that P∗ (|ζT | > ε) → 0

in P-probability for every ε > 0. Finally, ζT = Op∗ (1) in P-probability signifies that for every ε > 0 there exists a K > 0
such that P

{
P∗ (|ζT | > K ) < ε

}
> 1 − ε for all T . The op and Op symbols retain their usual meaning.

. The episodic predictive regression model

The basic predictive regression model for stock returns, yt , allowing for time-variation in the slope coefficient on the
redictor variable, is taken to be of the form

yt = β0 + β1,txt−1 + ut , t = 1, . . . , T (2.1)

here xt , t = 0, . . . , T , is observed and satisfies the data generating process [DGP]

xt = µx + ξt , t = 0, . . . , T (2.2a)

ξt = ρ ξt−1 + vt , t = 1, . . . , T (2.2b)

with ξ0 a mean zero Op(1) variate. The innovations ut form a martingale difference [MD] sequence, while vt is allowed to
exhibit weak serial dependence. For expositional simplicity we have only allowed for a single predictive regressor, xt−1,
and an intercept in (2.1). Generalisations to the case where the predictive regression contains multiple predictors and/or
a general deterministic component of the form considered in section 3.2 of Breitung and Demetrescu (2015) are detailed
in section S.2 of the supplementary material.

The DGP in (2.1) generalises the constant parameter predictive regression model by allowing the slope coefficient
on xt−1 to vary over time, thereby allowing for changes over time in the predictive content of the regressor xt−1. The
constant parameter predictive regression model obtains by setting a constant slope parameter such that β1,t = β1, for all
t = 1, . . . , T . Our interest will focus in this paper on testing the usual null hypothesis that (yt − β0) is a MD sequence
and, hence, that yt is not predictable by xt−1, which entails that β1,t = β1 = 0, for all t = 1, . . . , T , in (2.1). In contrast to
the extant literature which tests this null hypothesis against the alternative that yt is predictable by xt−1 with a constant
slope parameter holding across the whole sample, that is β1 ̸= 0, under the maintained hypothesis that β1,t = β1, for all
t = 1, . . . , T , we will test against alternatives such that β1,t ̸= 0 for some t but without imposing constancy on β1,t . Some
structure obviously needs to be placed on the class of alternative hypotheses we may consider and this will be formalised
below.

As discussed in the Introduction it is important to allow for the possibility of high persistence in the predictor variable
xt and to allow the shocks driving the predictor, vt in (2.2), to be correlated with the unpredictable component of stock
returns, ut in (2.1). As regards the latter, we will allow ut and vt to be contemporaneously correlated and heteroskedastic;
exact conditions will be detailed in Assumption 3. For the former, we allow ρ in (2.2) to satisfy the following assumption.

Assumption 1. Exactly one of the two following conditions holds true:

1. Weakly persistent predictors: The autoregressive parameter ρ in (2.2) is fixed and bounded away from unity,
|ρ| < 1.

2. Strongly persistent predictors: The autoregressive parameter ρ in (2.2) is local-to-unity with ρ := 1 −
c
T where

c is a fixed non-negative constant.

emark 1. Many predictors are strongly persistent, exhibiting sums of sample autoregressive coefficients which are
lose to unity. Near-integrated asymptotics has been found to provide better approximations for the behaviour of test
tatistics in such circumstances; see, inter alia, Elliott and Stock (1994). However, a large part of the literature works
ith models which take xt to be generated from a stable autoregressive process; see, for example, Amihud and Hurvich
2004). Assumption 1 allows for either of these possibilities to hold on xt . ⋄

We will develop tests for the null hypothesis that yt is not predictable by xt−1 in any subsample, which do not require
the practitioner to know which of Assumption 1.1 or Assumption 1.2 holds in (2.2), nor indeed what the precise value
of ρ is in either case. Moreover, we aim to develop tests which possess non-trivial asymptotic local power against DGPs
here predictability is present. Predictive regressions for stock returns typically exhibit small R2 and low signal-to-noise
atios (see, inter alia, Campbell, 2008, and Phillips, 2015) so departures from the null, should predictability be present,
re small. We will therefore conduct our theoretical analysis of the large sample properties of the tests we discuss under
ocal alternatives such that the slope parameter β1,t is local-to-zero for an asymptotically non-vanishing set of the sample
bservations. The localisation rate (or Pitman drift) will need to be such that β1,t is specified to lie in a neighbourhood
f zero which shrinks with the sample size, T . The appropriate Pitman drift is dictated by which of Assumption 1.1 and
ssumption 1.2 holds in (2.2). Where xt is near-integrated the appropriate rate is T−1, while for weakly dependent xt−1,

the rate is T−1/2. The different localisation rates reflect the fact that near-integration implies a much stronger signal from
the predictor xt−1. Moreover, tests based on the maxima from sequences of subsample predictability test statistics can
only deliver non-trivial asymptotic local power in cases where an asymptotically non-vanishing fraction of the data is such
that β ̸= 0 holds on the DGP. For example, if β ̸= 0 at one time point only, then although this would formally violate
1,t 1,t
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the null that yt is not predictable by xt−1, this data point would, as T → ∞, however be dominated by the remaining
T − 1 data points where the null hypothesis holds. Formally, in our framework we specify β1,t to satisfy the following
assumption.

Assumption 2. In the context of (2.1) and (2.2), let β1,t := n−1
T b (t/T ), where b(·) is a piecewise Lipschitz-continuous

real function on [0, 1], with nT =
√
T under Assumption 1.1, and nT = T under Assumption 1.2.

Using the framework of Assumption 2 we can then equivalently write our null hypothesis that β1,t = 0, for all
t = 1, . . . , T , as

H0 : The function b(τ ) is identically zero for all τ ∈ [0, 1]. (2.3)

We can now also formally specify the alternative hypothesis as,

H1,b(·) : The function b(·) is non-zero over at least one non-empty open interval contained in [0, 1]. (2.4)

Remark 2. The alternative hypothesis specified by H1,b(·) is very general but entails that at least one subset of the sample
observations (this need not be a strict subset, so it could contain all of the sample observations) comprising contiguous
observations exists for which β1,t ̸= 0, and where the size of this subset is proportional to the sample size T . Notice
that under H1,b(·) the integral of |b(·)| on [0, 1] is non-zero and it is this property which qualifies H1,b(·) as a genuine
(local) alternative. Moreover, as we will establish later, the form that b(·) takes under H1 determines the local power
offsets obtained in the limiting distributions of the statistics we propose. Notice also that, under H1,b(·), b(·) may be zero
n certain parts of its domain and it may also change magnitude and/or sign over its domain; the former corresponds to
ata points where β1,t = 0, while the latter reflects observations for which β1,t does not have a fixed magnitude and/or

sign across the full sample. ⋄

We conclude this section by detailing in Assumption 3 the conditions that we will place on the disturbances ut and vt
in (2.1) and (2.2).

Assumption 3. Let(
ut
vt

)
=

(
1 0
0 B (L)

)
H(t/T )

(
at
et

)
, with

(
at
et

)
∼ White Noise (0, I2) , (2.5)

where Ik denotes the k × k identity matrix and:

1. ζt := (at , et)′ is a uniformly L4-bounded martingale difference sequence which is such that
supt E

⏐⏐E (
ζtζ

′
t − I2|ζt−m, ζt−m−1, . . .

)⏐⏐ → 0 as m → ∞;

2. H(·) :=

(
h11(·) h12(·)
h21(·) h22(·)

)
is a matrix of piecewise Lipschitz-continuous bounded functions on (−∞, 1], which is

of full rank at all but a finite number of points;
3. B (L), where L denotes the usual lag operator, is an invertible lag polynomial with b0 = 1 and 1-summable

coefficients,
∑

j≥0 j
⏐⏐bj⏐⏐ < ∞, for which ω :=

∑
j≥0 bj > 0.

Remark 3. The structure in (2.5) imposes that the disturbances ut are uncorrelated with the increments of xt at all
(positive) lags. Where ζt is independent and identically distributed [IID], this structure would entail that xt−1 is weakly
exogenous with respect to ut , and we will continue (with an abuse of language) to use the same term as a shorthand to
describe this structure irrespective of whether ζt is IID or not. Assumption 3.3 allows the increments to the predictor xt−1
to be serially correlated. These dynamics are not restricted beyond a 1-summability regularity condition on the moving
average representation, as is typical in this literature; see, for example, Breitung and Demetrescu (2015) and Kostakis
et al. (2015). ⋄

Remark 4. Assumption 3 allows for quite general forms of heteroskedasticity in
(
ũt , ṽt

)′
:= H(t/T ) (at , et)′ and hence

in ut and vt . In particular, Assumption 3.1 imposes a MD structure on ζt allowing for conditional heteroskedasticity
which is natural for the empirical applications to financial data we have in mind. Assumption 3.1 also imposes finite
fourth moments; while daily returns often display very fat tails (see, for example, Nicolau and Rodrigues, 2019) such that
the assumption of finite fourth order moments might not be a suitable assumption for daily data, standard predictive
regression models have tended to be run on lower frequency data (monthly, quarterly or even annual data) where infinite
kurtosis does not appear to be a concern. Assumption 3.1 places uniformity conditions on the cross-product moments of
the innovations which limits the degree of serial dependence allowed in the conditional variances; these conditions are
satisfied, for example, by strictly stationary and ergodic MD sequences with finite variance. Assumption 3.2 allows for
unconditional time heteroskedasticity in the innovations through the matrix H(τ ). Where H(τ ) is diagonal for all τ ∈ [0, 1]
the innovations

(
ũt , ṽt

)′ can display time-varying variances but are contemporaneously uncorrelated, so in the case where
ζ is IID with independent components, this would entail that x is strictly exogenous with respect to u (again we will use
t t t
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this terminology, with an abuse of language, whether ζt is IID or not). Importantly, the off-diagonal elements of H(τ )H(τ )′

i.e., the covariance matrix of
(
ũt , ṽt

)′) are not imposed to be zero, thus allowing for contemporaneous and time-varying
orrelation among the innovations. The structure placed on H(τ ) by Assumption 3.2 allows for a wide class of models for
he behaviour of the variance matrix of the innovations including single or multiple (co-) variance shifts, variances which
ollow a broken trend, and smooth transition variance shifts. As discussed in Breitung and Demetrescu (2015, p. 360),
uch patterns are plausible with macro and financial data and it is therefore important to use tests which are robust to
uch behaviour to avoid the possibility of spurious rejection of the null because of non-constancy in the variance matrix
ather than genuine predictability from xt−1. ⋄

Under Assumption 1.1, xt is a particular case of a locally stationary process which admits a time-varying variance
hen the series vt displays time-varying volatility. In fact, the variance of the putative predictor is given as Var

(
x⌊τT⌋

)
≈

¯
2
ξ (ρ)

(
h2
21(τ ) + h2

22(τ )
)
, where σ̄ 2

ξ (ρ) denotes the sum of the squared coefficients of the lag polynomial (1 − ρL)−1B(L)
which is finite in the stable autoregression case). This form of heteroskedasticity impacts on the inferential procedures
ased on subsample sequences of statistics discussed in this paper. Furthermore, time-varying volatility where present in
he regression errors, ut , and in the instrumental variables used in constructing the statistics can also affect the behaviour
he sequences of statistics.

Heteroskedasticity has analogous effects under Assumption 1.2 (near-integration), though the transmission mechanism
s somewhat different. In particular, under Assumption 3 we have that 1

√
T

∑
⌊τT⌋

t=1 H(t/T )ζt ⇒
∫ τ

0 H(s)dW (s) =:

U(τ ), V (τ ))′ on D2, where W is a two-dimensional standard Wiener process (see e.g. the invariance principle given in
emma 1 of Boswijk et al., 2016), such that

1
√
T

⌊τT⌋∑
t=1

(
ut
vt

)
⇒

(
1 0
0 ω

)∫ τ

0
H(s)dW (s) =:

(
U(τ )
ωV (τ )

)
(2.6)

n D2. The processes U(τ ) and ωV (τ ) are individually time-transformed Brownian motions whose correlation may also
ary over time; their covariance at time τ is given by ω

∫ τ

0 H(s)H(s)′ds. Under Assumption 1.2 xt satisfies the invariance
rinciple, 1

√
T
x⌊τT⌋ ⇒ ωJc,H(τ ), where Jc,H(τ ) is an Ornstein–Uhlenbeck-type process driven by V (τ ), i.e., Jc,H(τ ) :=

τ

0 e−c(τ−s)dV (s). Notice that Jc,H(τ ) is a heteroskedastic process when H(·) is not constant: the quadratic variation
processes of U (τ ) and V (τ ), given by [U] (τ ) :=

∫ τ

0

(
h2
11(s) + h2

12(s)
)
ds and [V ] (τ ) :=

∫ τ

0

(
h2
21(s) + h2

22(s)
)
ds, respectively,

are nonlinear in general, and their quadratic covariation process is given by [UV ] (τ ) :=
∫ τ

0 (h11(s)h21(s) + h12(s)h22(s)) ds.

. Full sample predictability tests

Consider the maintained hypothesis that the slope parameter β1,t in (2.1) is constant, such that β1,t = β1, for all
= 1, . . . , T . This yields the standard constant parameter predictive regression

yt = β0 + β1xt−1 + ut , t = 1, . . . , T . (3.1)

number of procedures have been developed for testing H0 : β1 = 0 in (3.1) against the local alternative Hc : β1 = n−1
T b1,

with b1 a non-zero constant. Of these the simplest is the standard (full sample) ordinary least squares [OLS] t-test for the
significance of xt−1 in (3.1). While standard normal asymptotic theory applies to the t-statistic under Assumption 1.1
provided the errors are homoskedastic (although this can be weakened by using heteroskedasticity-robust standard
errors), it does not under Assumption 1.2 where the limiting null distribution of the t-statistic is nonstandard and depends
on the local-to-unity parameter c unless xt is strictly exogenous with respect to ut .

Tests robust to c have been developed in Elliott and Stock (1994), who propose a Bayesian mixture procedure,
and Cavanagh et al. (1995) and Campbell and Yogo (2006) who develop tests based on conservative bounds, and Jansson
and Moreira (2006), who conduct inference on the basis of conditionally sufficient statistics. However, these procedures
are all developed for the case where xt is near-integrated, i.e. such that Assumption 1.2 holds, and for the case of
homoskedastic disturbances. Variable addition [VA] techniques (see Breitung and Demetrescu (2015, p. 359) for a literature
review) can be used to develop predictability tests which can be validly used regardless of whether xt is local-to-unity or
stationary. However, these VA-based tests have only trivial asymptotic local power against the Pitman rate, T−1, where
xt is near-integrated. Breitung and Demetrescu (2015) show that the finite sample power of the VA-based tests is indeed
very low relative to the tests designed for the use with near-integrated xt when the AR parameter ρ in (2.2) is close to
unity. They also develop modifications of the VA approach but some loss of power still remains. Gorodnichenko et al.
(2012) proposed tests based on quasi-differencing but like the original VA-based tests these only have power in T−1/2

neighbourhoods of the null.
Breitung and Demetrescu (2015) also examine tests based on the instrumental variables [IV] approach. They show that

these can be validly implemented in the presence of endogeneity and uncertain regressor persistence and heteroskedas-
ticity of the form specified in Section 2. The basic idea underlying IV estimation of the predictive regression model is to
use instruments such that the instrument has lower persistence than the regressor xt−1 (so-called type-I instruments),
or is such that the instrument is strictly exogenous with respect to ut (so-called type-II instruments). Formal conditions

which must hold on these instruments are given in Breitung and Demetrescu (2015).
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A range of possible type-I instruments is given in Breitung and Demetrescu ( 2015, p. 361). These comprise: (i) a short
emory instrument whereby we generate zt−1 = (1 − ᾱL)−1

+ ∆xt−1 := ∆xt−1 + ᾱ∆xt−2 + · · · + ᾱt−2∆x1 with |ᾱ| < 1;
ii) a mildly integrated instrument, generated as zt−1 = (1−αT L)−1

+ ∆xt−1, for αT := 1−aT−γ with a > 0, 0 < γ < 1; (iii) a
ractionally integrated instrument, generated as zt−1 = (1− L)1−d∗

xt−1I(t > 0) := ∆1−d∗

+ xt−1 for some d∗
∈ (0, 1/2); (iv) a

ong differences instrument, generated as zt−1 = xt−1−xt−kT for KT := min{⌊KT υ
⌋, t−1} for some 0 < υ < 1 and positive

onstant K . The use of the mildly integrated instrument in (ii) is an example of the so-called IVX approach of Phillips and
agdalinos (2009). In each case the generated instrument is, by design, free of a stochastic trend and hence less persistent

han a near-integrated process, regardless of whether xt−1 is near-integrated or stationary. Being filtered versions of xt−1,
hese instruments are driven by the same innovations and it is therefore expected that they provide valid instruments
or xt−1; at the same time, the reduced persistence leads to standard inference. Breitung and Demetrescu ( 2015, p. 362)
lso discuss the following type-II instruments: (i) a generated random walk, zt−1 = (1 − L)−1

+ wt−1 where wt ∼ IID(0, σ 2
w)

ith wt independent of ut and vt ; (ii) deterministic functions of time, such as zt−1 = (t − 1) or zt−1 = sin(π (t − 1)/2T ),
nd (iii) Cauchy instruments, zt−1 = sign(xt−1). Each of these is exogenous with respect to ut by construction. However,
hey do not exploit any specific information about xt , other than where xt is near-integrated in which case they will be
orrelated with xt ; see Phillips (1998).
Simulation evidence in Breitung and Demetrescu (2015) shows that tests based on type-II instruments are significantly

ore powerful than those based on type-I instruments when xt is strongly persistent. However, these instruments will
e weak, in the sense that they will be almost uncorrelated with the regressor, where xt is stationary. In such cases,
reitung and Demetrescu (2015) show that the resulting IV test for β1 = 0 in (3.1) will have only trivial power. In order
o simultaneously exploit the settings which result in superior power properties for the IV approach based on type-I
nd type-II instruments, Breitung and Demetrescu (2015) recommend the use of a test which combines two instruments
or xt−1, one of each type, which we denote by zI,t−1 and zII,t−1, collected into the vector z t−1 :=

(
zI,t−1, zII,t−1

)′ for
= 1, . . . , T . The general form of the resulting full sample IV-combination test statistic of Breitung and Demetrescu

2015), implemented with Eicker–White standard errors to account for heteroskedasticity satisfying Assumption 3, is
iven by

tβ1 :=
A′

TB
−1
T C T√

A′

TB
−1
T DTB−1

T AT

(3.2)

here AT :=
∑T

t=1 x̂t−1ẑ t−1, BT :=
∑T

t=1 ẑ t−1ẑ
′

t−1, C T :=
∑T

t=1 ẑ t−1ŷt and DT :=
∑T

t=1 ẑ t−1ẑ
′

t−1û
2
t , with ŷt , x̂t−1 and ẑ t−1

enoting demeaned versions of yt , xt−1 and z t−1, respectively, so that, for wt generically denoting either yt , xt−1 or z t−1,
ˆ t := wt −

1
T

∑T
s=1 ws, and where ût denotes the regression residuals from estimating (3.1). For the reasons outlined in

Remark 4 of Breitung and Demetrescu (2015), the IV-combination test must be run as two-sided and so we accordingly
consider tests based on the square of tβ1 ; that is t

2
β1
. The limiting null distribution of t2β1

is χ2
1 under either Assumption 1.1

or 1.2; see Breitung and Demetrescu (2015) for details.
A variety of choices for the residuals ût used in constructing DT is possible. A natural choice is the IV regression residuals

so that ût := yt − β̂ iv
0 − β̂ iv

1 xt−1, where β̂ iv
j denotes the two-stage least squares [2SLS] estimator of βj, j = 0, 1. However,

both Breitung and Demetrescu (2015) and Kostakis et al. (2015) recommend the use of OLS residuals on the grounds that
they represent the best linear projection of yt on xt−1 regardless of the persistence of the putative predictor, and that
their finite-sample behaviour appears to be more stable than that of IV residuals. Finally, one could also use residuals
computed under the null; i.e., ût := yt −

1
T

∑T
s=1 ys. Under the local alternatives considered in Assumption 2, these three

possible choices can be shown to be asymptotically equivalent to one another in so far as the behaviour of (the suitably
normalised) DT is concerned.

As we will subsequently see, a special case of the large sample results which will be presented in Section 4 is that the
full-sample test based on t2β1

has non-trivial asymptotic local power against H1,b(·) for both weakly and strongly persistent
egressors. This property of the full sample IV-based test statistic obtains through the limiting behaviour of the sample
ross-product moment AT . In particular, its two components are not of the same order of magnitude; therefore, upon
ormalisation, one of these terms will converge to zero and so all weight is placed on the other instrument. Which
nstrument gets full weight depends on the persistence of xt−1. The type-II instrument is selected for strongly persistent
redictors (i.e., those satisfying Assumption 1.2), while the type-I instrument is selected for weakly persistent predictors
i.e., those satisfying Assumption 1.1); see the proof of Lemma S.6 in the supplementary material for details. As a result,
egardless of the degree of persistence of the regressor, the appropriate instrument is chosen in the limit.

However, as the simulation results in Section 6 demonstrate, the finite sample power of the full sample test can be quite
ow against such ‘‘pocket’’ alternatives. In the next section we therefore propose tests based on sequences of subsample
mplementations of the IV-combination test statistic. IV-based techniques are particularly useful to consider because the
orresponding subsample-specific statistics may be expressed in terms of partial sums, whose behaviour may in turn
e characterised in a tractable manner. This is not the case, for instance, with the test of Campbell and Yogo (2006) or
hose of Elliott and Müller (2006) and Elliott et al. (2015), where the analysis of the joint behaviour of subsample-specific
tatistics is considerably more involved.
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4. Subsample IV-combination tests for predictability

Our aim is to develop predictability tests with good power to detect temporary periods of predictability irrespective of
whether the putative predictor, xt−1 is stable or near-integrated, and which are robust to the presence of heteroskedas-
ticity in the data. To that end, we will base our testing approach on the computation of the IV-combination predictability
statistics outlined in the previous section in the context of (3.2) computed not over the full available sample but over
various sequences of subsamples of the data. For each such sequence we consider, our proposed test will be based on the
maximum (in absolute value) statistic within that sequence. By taking the maximum over these sequences, we therefore
base our test on the particular subsample within the given sequence of subsamples where the predictability statistic gives
the strongest signal of predictability.

4.1. Choice of instruments

Before laying out our subsample IV-combination testing approach, we first need to state some regularity conditions
which must hold on the type-I and type-II instruments such that we can validly use a testing strategy based on sequences
of subsample IV-combination predictability statistics. We will then discuss the choice of instruments to use in practice
which satisfy these conditions.

Assumption 4 details the conditions which need to hold on the type-I instrument used.

Assumption 4.
Let zI,t obey the following conditions:

1. Under either Assumption 1.1 or Assumption 1.2: E
(
ζt |ζt−1, ζt−2, . . . , zI,t−1, zI,t−2, . . .

)
= 0, there exists δI ≥ 0

such that T−δI zI,t is uniformly L4 -bounded, supτ∈[0,1]

⏐⏐⏐ 1
T1+δI

∑
⌊τT⌋

t=1 zI,t−1

⏐⏐⏐ p
→ 0, and supτ∈[0,1]

⏐⏐⏐ 1
T1+δI

∑
⌊τT⌋

t=1 zI,t−1u2
t

⏐⏐⏐ =

Op(1).
2. Under Assumption 1.1, and jointly on D

(a) 1
T1+δI

∑
⌊τT⌋

t=1 zI,t−1ξt−1 ⇒ KzI x (τ ), where KzI x (τ ) is a Hölder-continuous stochastic process of some order α > 0
and nonzero w.p.1;

(b) 1
T1+2δI

∑
⌊τT⌋

t=1 z2I,t−1
p

→ Kz2I
(τ ), where Kz2I

(τ ) is a deterministic Hölder-continuous function of some order
α > 0 and strictly increasing;

(c) 1
T1/2+δI

∑
⌊τT⌋

t=1 zI,t−1ut ⇒ GI (τ ), where GI (τ ) is a continuous process with independent increments (and
therefore, Gaussian), with GI (0) = 0 a.s., zero mean function, strictly increasing variance function [GI ] (τ )
and variance profile defined as ηI (τ ) :=

[GI ](τ )
[GI ](1)

;

(d) 1
T1+2δI

∑
⌊τT⌋

t=1 z2I,t−1u
2
t

p
→ [GI ] (τ ).

3. Under Assumption 1.2,

(a) supτ∈[0,1]

⏐⏐⏐ 1
T3/2+δI

∑
⌊τT⌋

t=1 zI,t−1ξt−1

⏐⏐⏐ p
→ 0;

(b) 1
T1+2δI

∑
⌊τT⌋

t=1 z2I,t−1
p

→ Kz2I
(τ ) on D, where Kz2I

(τ ) is a deterministic Hölder-continuous function of some order
α > 0 and strictly increasing;

(c) supτ∈[0,1]

⏐⏐⏐ 1
T1/2+δI

∑
⌊τT⌋

t=1 zI,t−1ut

⏐⏐⏐ = Op(1);

(d) 1
T1+2δI

∑T
t=1 z

2
I,t−1u

2
t = Op(1).

Remark 5. The conditions placed on zI,t−1 by Assumption 4 can differ depending on whether Assumption 1.1 or
Assumption 1.2 holds. This distinction is germane in cases where zI,t−1 is constructed from xt−1; see the examples
listed in Section 3. In such cases δI may take different values for the same instrument, and, similarly, Kz2I

(τ ) may take
different shapes under Assumption 1.1 and Assumption 1.2. We do not, however, make this explicit to ease notation.
Assumption 4.1 complements the condition in Assumption 3.1 to ensure that the innovations ut are uncorrelated with
the instruments. Assumption 4.2 is new compared to Breitung and Demetrescu (2015) , and is required because we
explicitly consider the behaviour of the IV-combination statistics under DGPs which can allow for either weak or strong
persistence in the (putative) predictors; it requires the instruments to have stochastic properties similar to those of a
stable autoregression driven by heteroskedastic innovations. Assumption 4.3 is the analogue of Assumption 3 of Breitung
and Demetrescu (2015) but is considerably less restrictive: rather than the weak convergence of suitably normalised
cross-product sample moments required there, we only require uniform boundedness in probability. Assumption 4 .3(b)
regarding the partial sums of the squared instrument is new, but would appear fairly mild. Our conditions are weaker
than those of Breitung and Demetrescu (2015) as we only consider the IV-combination statistic with two instruments,
one of type-I and the other of type-II. ⋄
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Remark 6. Although the weak convergence in Assumption 4.2 is joint, we do not specify the dependence structure be-
ween the limiting processes because our asymptotic results will hold irrespective of this structure. We note, however, that
he variance profile, ηI (·), which turns out to play an important role in our asymptotics under stability (Assumption 1.1)
depends on both the choice of type-I instrument and the DGP (specifically, on H(·) and the unconditional variance of ut );
ee Lemma 1 for an example. Similarly, the limiting processes KzI x(·) and Kz2I

(·) also depend on both the DGP and the
hoice of instrument; again, see Lemma 1 for an example. ⋄

Assumption 5 details the corresponding regularity conditions on the type-II instrument.

ssumption 5. The variable zII,t is deterministic and, for some function Z (τ ), Hölder-continuous of order α > 1/2, and
ome δII ≥ 0, satisfies T−δII zII,⌊τT⌋ → Z (τ ) in D where Z(·) is such that, for all 0 ≤ τ1 < τ2 ≤ 1,

∫ τ2
τ1

Z̃2
τ1,τ2

(s)ds ̸= 0 with
˜
τ1,τ2 (s) := Z(s) −

1
τ2−τ1

∫ τ2
τ1

Z(s)ds.

emark 7. Notice that the conditions stated in Assumption 5 do not involve the persistence of the regressor because the
ype-II instruments are exogenous. Assumption 5 essentially coincides with Assumption 4 of Breitung and Demetrescu
2015), up to minor differences. While Assumption 4 of Breitung and Demetrescu (2015) allows for stochastic zII,t , it
lso requires the average cross-products of the instrument and the regression error to have a mixed Gaussian limiting
istribution, such that it actually affords little additional flexibility in the choice of type-II instruments relative to
ssumption 5. Indeed, under the above assumptions it holds, for example, that 1

T1/2+δII

∑
⌊τT⌋

t=1 zII,t−1ut ⇒
∫ τ

0 Z(s)dU(s)
hich is immediately seen to be a Gaussian process, given that Z is deterministic. However, the quadratic variation
rocess of

∫ τ

0 Z(s)dU(s),
∫ τ

0 Z2(s)
(
h2
11(s) + h2

12(s)
)
ds, is in general nonlinear in τ and depends, analogously to the case

f Assumption 1.1, on both the DGP and the choice of the instrument zII,t−1. Finally, notice that Z(·) is not permitted
o be constant for any of the subsamples over which the test statistics are computed, as this would entail perfect
ulticollinearity in those subsamples. ⋄

We also require further regularity conditions regarding the interaction of the type-I and type-II instruments used.
hese are now collected in Assumption 6.

ssumption 6. For instruments zI,t and zII,t satisfying the conditions of Assumptions 4 and 5, respectively, it is also
equired that: 1. supτ∈[0,1]

⏐⏐⏐ 1
T1+δI+δII

∑
⌊τT⌋

t=1 zI,t−1zII,t−1

⏐⏐⏐ p
→ 0; and 2. supτ∈[0,1]

⏐⏐⏐ 1
T1+δI+δII

∑
⌊τT⌋

t=1 zI,t−1zII,t−1u2
t

⏐⏐⏐ = Op (1).

emark 8. Breitung and Demetrescu (2015) do not impose such conditions explicitly as they are implied by the
tricter set of assumptions under which they work. For instance, Assumption 6.1 would be implied by the weak
onvergence of the partial sums of zI,t−1 in Assumption 3 of Breitung and Demetrescu, but we do not require such weak
onvergence here because Assumption 4.1 on the uniform boundedness of the partial sums of the type-I instrument,
upτ∈[0,1]

⏐⏐⏐ 1
T1+δI

∑
⌊τT⌋

t=1 zI,t−1

⏐⏐⏐ p
→ 0, suffices for our purposes (and is, for example, implied by Assumption 3 of Breitung

and Demetrescu under near-integration). Indeed, Assumption 6.1 only differs through the weights T−δII zII,t−1, which are
deterministic; Assumption 6.2 can be seen as a randomly weighted version thereof, with weights T−δII zII,t−1u2

t . Notice
that Assumption 6.1 entails that the (appropriately scaled) type-I and type-II instruments are mutually asymptotically
orthogonal for all subsamples of the data, t = ⌊τ1T⌋ + 1, . . . , ⌊τ2T⌋, such that 0 ≤ τ1 < τ2 ≤ 1. ⋄

In the context of their full-sample predictability tests, Breitung and Demetrescu (2015) consider the following choice
for the type-II instrument, zII,t ,

zII,t−1 = sin
(
kπ (t − 1)

2T

)
(4.1)

here k is a positive integer chosen by the practitioner. Breitung and Demetrescu (2015) find that the best performing
V-combination test obtains for k = 1 in (4.1). For the type-I instrument we use the IVX approach which has become
opular in predictive regressions; see, among others, Gonzalo and Pitarakis (2012), Phillips and Lee (2013) and Kostakis
t al. (2015). This entails setting

zI,t−1 :=

t−2∑
j=0

ϱj∆xt−1−j with ϱ := 1 −
a
T γ

(4.2)

for some a > 0 and γ ∈ (0, 1). In Lemma 1 we show that these two instruments satisfy the set of conditions required by
ssumptions 4–6.1

1 We will formally establish this result for only these two instruments which will subsequently be used in both our Monte Carlo study and
empirical application. We conjecture, however, that the other examples of type-I and type-II instruments considered in Breitung and Demetrescu
(2015, pp. 361–362) will also satisfy Assumption 4–6.
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Lemma 1. Let Assumptions 1 and 3 hold with ζt strictly stationary and ergodic such that, for some ϑ > 0, supt∈Z

⏐⏐E ((
ṽ2
t −

E
(
ṽ2
t

))
ṽt−jṽt−k

)⏐⏐ ≤ C (jk)−1/2−ϑ/2. Then, Assumption 4–6 are satisfied by z t−1 :=
(
zI,t−1, zII,t−1

)′ when zII,t−1 and zI,t−1 are
s defined in (4.1), for any positive integer k, and (4.2), respectively. In particular, we have

1. Under Assumption 1.1, δI = 0, KzI x(τ ) = Kz2I
(τ ) = σ̄ 2

ξ (ρ)[V ](τ ) and GI (τ ) is a time-transformed Brownian motion given

as T−1/2 ∑
⌊τT⌋

t=1 ξt−1ut ⇒ GI (τ ), where this weak convergence result holds jointly on D3 with the weak convergence
given in (2.6), and

2. Under Assumption 1.2, δI = γ /2 and Kz2I
(τ ) =

ω2

a [V ](τ ).

Remark 9. The additional assumptions required to ensure the validity of the IVX instrument are relatively mild. Strict
stationarity and ergodicity restrict the weak stationarity of ζt required in Assumption 3 such that the asymptotic behaviour
f sample averages can be accounted for, as required for example in Assumption 4.2. The additional condition on the rate
f decay of E

((
ṽ2
t − E

(
ṽ2
t

))
ṽt−jṽt−k

)
limits the amount of serial dependence allowed in the second order moments of the

eries. This rate is obviously satisfied when E
((

ṽ2
t − E

(
ṽ2
t

))
ṽt−jṽt−k

)
= 0, but is much weaker than that condition and,

ence, still allows for asymmetric volatility clustering. ⋄

emark 10. Under Assumption 1.1, the processes KzI x(τ ) and Kz2I
(τ ) are both proportional to the quadratic variation of

(τ ), the limit process of the suitably normalised partial sums of ξt under stability. This demonstrates the usefulness of the
VX instrument in that, under stability, zI,t−1 is approximately equal to the stochastic component ξt−1 of the (putative)
redictor, xt−1, such that IVX effectively delivers the optimal instrument for xt−1 under Assumption 1.1. For a choice
f type-I instrument other than IVX this is, in general, not true and one obtains different processes KzI x(τ ) and Kz2I

(τ )
hose properties depend on the particular choice made; see also Corollary 2 of Breitung and Demetrescu (2015). Our

arge sample results will, however, be established under Assumptions 4 and 5 and, as such, will hold irrespective of the
articular shape or properties of KzI x(τ ) and Kz2I

(τ ). Furthermore, under Assumption 1.2 the IVX instrument will turn out
o be dominated uniformly over all subsamples by the type-II instrument, such that the precise properties of Kz2I

will not
e relevant under near-integration.2 ⋄

.2. Subsample-based predictability tests

For type-I and type-II instruments satisfying Assumptions 4–6, we can proceed to develop subsample implementations
f the IV-combination predictability test discussed in Section 3. To provide a unified notation for such subsample
tatistics it will prove useful to define the subsample-specific analogues AT (τ1, τ2), BT (τ1, τ2), C T (τ1, τ2) and DT (τ1, τ2)

f the full-sample quantities AT , BT , C T and DT , respectively, used to construct the standard IV-combination statistic,
β1 of (3.2). These are defined analogously to their full-sample counterparts but for a sample consisting of observations
= ⌊τ1T⌋ + 1, . . . , ⌊τ2T⌋, so that, for example, AT (τ1, τ2) :=

∑⌊τ2T⌋

t=⌊τ1T⌋+1 x̃t−1z̃ t−1 where ỹt , x̃t−1 and z̃ t−1 are now
ubsample-specific demeaned versions of yt , xt−1 and z t−1, respectively, so that, for wt generically denoting either yt ,
t−1 or z t−1, w̃t := wt −

1
⌊τ2T⌋−⌊τ1T⌋

∑⌊τ2T⌋

s=⌊τ1T⌋+1 ws. The full-sample quantity is recovered on setting τ1 = 0 and τ2 = 1.
Precise definitions of these quantities are provided (in partial sum notation) in section S.3.1 of the supplementary material.

If it was known that a pocket of predictability might occur over the particular subsample t = ⌊τ1T⌋ + 1, . . . , ⌊τ2T⌋,
then it would be logical to compute the subsample IV-combination statistic3

tβ1 (τ1, τ2) :=
A′

T (τ1, τ2)B−1
T (τ1, τ2) C T (τ1, τ2)√

A′

T (τ1, τ2)B−1
T (τ1, τ2)DT (τ1, τ2)B−1

T (τ1, τ2)AT (τ1, τ2)

(4.3)

nd a test for predictability in this specific subsample could be obtained by comparing (tβ1 (τ1, τ2))
2 with the χ2(1)

istribution. Indeed, this would be nothing more than the approach of Breitung and Demetrescu (2015) applied to the
articular subsample t = ⌊τ1T⌋+1, . . . , ⌊τ2T⌋. Such a test would be expected to have considerably more power to detect
regime of predictability over the subsample t = ⌊τ1T⌋ + 1, . . . , ⌊τ2T⌋ than would the full sample test based on tβ1 of

3.2) because the former would be calculated only for sample points where a predictive relationship holds.
In practice it is unlikely the practitioner will know which specific subsample(s) of the data might admit predictive

egimes. While some previous applied studies in the literature have considered a variety of sample splits and also looked
t the evolution of predictive regression statistics over a sequence of subsamples, these studies have tended to signal

2 It should be noted, however, that Kz2I
(τ ) is also proportional to [V ](τ ) under near-integration, albeit with a different constant of proportionality;

this is a consequence of the fact that zI,t is mildly integrated in this case.
3 In the context of DT (τ1, τ2) :=

∑T
t=1 z̃ t−1 z̃

′

t−1ũ
2
t , the residuals, ũ2

t , are now the subsample analogues of the full sample residuals, û2
t , used

n the construction of the full-sample statistic tβ1 in (3.2). The three possible choices discussed there can also be used here for the subsample
= ⌊τ1T⌋ + 1, . . . , ⌊τ2T⌋. As with the full sample statistic, these three are asymptotically equivalent in so far as the behaviour of (the suitably
ormalised) D (τ , τ ) is concerned.
T 1 2
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the presence of a predictive episode based on comparing each of these subsample statistics with the critical value that
would apply when running a test for predictability on a single known subsample. As discussed in Section 1, this induces
either multiple testing and/or endogenously determined breakdate problems and, hence, does not deliver size-controlled
tests; see, inter alia, Inoue and Rossi (2005). In order to control for these issues, the critical value of the test needs to
reflect the searching element involved. This can be done by basing one’s test on certain functionals of the sequence of
subsample predictability statistics considered. Given we are testing the null of no predictability against the alternative of
predictability in at least one subsample of the data, an approach based on the maximum of the sequence of subsample
predictability statistics considered would seem appropriate. The specific sequences of statistics that we take the maximum
over must also be entirely agnostic of the data to avoid any endogenous selection bias; we could not, for example, validly
choose to take the maximum statistic from the sequence of subsamples where previous studies had argued predictability
holds.

There is an extensive literature on testing for fluctuations in the parameters of linear regression models; see, inter
alia, Kuan and Hornik (1995). Common choices of agnostic sequences of statistics used include forward and reverse
recursive sequences, rolling sequences, and double-recursive sequences. We will adopt these choices here and base our
tests on the maximum statistic taken over each of these sequences of statistics. These can be formally defined as follows:

• The sequence of forward recursive statistics is given by {(tβ1 (0, τ ))
2
}τL≤τ≤1, where the parameter τL ∈ (0, 1) is chosen

y the user. The forward recursive regression approach uses ⌊TτL⌋ start-up observations, where τL is the warm-in fraction,
nd then calculates the sequence of subsample predictive regression statistics (tβ1 (0, τ ))

2 for t = 1, . . . , ⌊τT⌋, with τ
ravelling across the interval [τL, 1]. The statistic formed as the maximum taken across this sequence is then,

T f
:= max

τL≤τ≤1
(tβ1 (0, τ ))

2. (4.4)

• The sequence of backward recursive statistics is given by {(tβ1 (τ , 1))2}0≤τ≤τU with τU ∈ (0, 1) again chosen by the user.
n this case one calculates the sequence of subsample predictive regression statistics (tβ1 (τ , 1))2 for t = ⌊τT⌋ + 1, . . . , T ,
ith τ travelling across the interval [0, τU ]. The maximum statistic from this backward recursive sequence is then,

T b
:= max

0≤τ≤τU
(tβ1 (τ , 1))2. (4.5)

• The sequence of rolling statistics is given by {(tβ1 (τ , τ + ∆τ ))2}0≤τ≤1−∆τ where the user-defined parameter ∆τ ∈

0, 1). The rolling regression approach calculates the sequence of subsample statistics (tβ1 (τ , τ + ∆τ ))2 for t = ⌊τT⌋ +

, . . . , ⌊τT⌋ + ⌊T∆τ⌋, where ∆τ is the window fraction with ⌊T∆τ⌋ the window width, with τ travelling across the
nterval [0, 1 − ∆τ ]. The maximum statistic from this rolling sequence is then,

T r
:= max

0≤τ≤1−∆τ
(tβ1 (τ , τ + ∆τ ))2. (4.6)

• Finally, the double-recursive sequence of statistics is given by {(tβ1 (τ1, τ2))
2
} 0≤τ1,τ2≤1

τ2−τ1≥∆τ

, where ∆τ ∈ (0, 1) is again

user-defined parameter. The double-recursive approach calculates a double indexed sequence of subsample statistics
tβ1 (τ1, τ2))

2 for t = ⌊τ1T⌋ + 1, . . . , ⌊τ2T⌋, for all subsamples such that 0 ≤ τ1 < τ2 ≤ 1 and where τ2 − τ1 ≥ ∆τ .
otice that this entails that the forward recursive sequence discussed above is calculated across all possible warm-in
ractions such that τL ≥ ∆τ , which is why this sequence is referred to as double-recursive.4 The maximum statistic from
he double-recursive sequence is then,

T d
:= max

0≤τ1,τ2≤1
τ2−τ1≥∆τ

(tβ1 (τ1, τ2))
2. (4.7)

emark 11. The full sample IV-combination statistic t2β1
of (3.2) is contained within the forward recursive sequence of

tatistics and obtains by setting τ = 1, and similarly is contained within the backward recursive sequence for τ = 0. It
s also contained within the double-recursive sequence for τ1 = 0 and τ2 = 1. Notice also that if we set ∆τ = 1 in the
ontext of the rolling sequence then this would collapse to the single full sample statistic, t2β1

. ⋄

Tests based on the maximum from each of the foregoing sequences of subsample statistics have particular patterns of
ocal predictability that they will be well designed to detect. Tests based on the forward recursive sequence of statistics
re designed to detect pockets of predictability which start at or near the start of the full sample period available
o the practitioner. The longer the duration of such an episode the more powerful these tests will be, other things
eing equal, because they are based on a sequence of increasing subsamples all starting from the first data point. By
nalogy, tests based on the reverse recursive sequence of subsample statistics are designed to detect end-of-sample
ockets of predictability. As such, reverse recursive based tests could therefore usefully be employed in an on-going
onitoring exercise for the emergence of predictive regimes. Because both the forward and reverse recursive sequences,
nd indeed the double-recursive sequence, contain the usual full sample predictability statistic, regardless of the choice

4 Notice that this double sequence also obtains by calculating the rolling sequence discussed above for all possible rolling window widths between
∆τ and 1 inclusive.
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of the trimming parameters, they also deliver tests which have power to detect predictability which holds over the
whole sample, although in this particular case they would not be expected to be as powerful as the standard full sample
IV-combination test which is clearly designed for that specific alternative hypothesis.

For a given window width, tests based on a rolling sequence of statistics are designed to pick up a window of
predictability, of (roughly) the same length, within the data. As discussed above, the double-recursive sequence amounts
to considering all possible window width rolling sequences, subject to a minimum window width. These then are useful
for picking up multiple predictive regimes, of potentially different lengths, within the data. However, because the double-
recursive sequence considers such a large number of possible subsamples of the data a test based on the maximum from
this sequence would necessarily be expected to be less powerful than the recursive or rolling-based tests in scenarios for
which the latter are designed. This is because the more statistics one considers in a sequence over which the maximum
is taken the stricter the critical value needs to be to maintain a correctly sized test. So, for example, in the case where
a pocket of predictability existed in the middle of the sample data of length say m observations, a test based on the
maximum from the rolling sequence using a window width of m observations would be expected to be more powerful
than a test based on the maximum of the double-recursive sequence because the critical value for the latter would be
considerably larger than the former. However, a power advantage over the double-recursive test would not necessarily be
expected to hold for the corresponding rolling tests where the window width was either smaller than m or greater than
. In the former case this would be because the maximum subsample length available over which predictability held (m

observations) could never be utilised because the window width is less than m, while in the latter case all subsamples in
the sequence will contain a mix of data points where predictability holds and where it does not. It is of course very hard to
analytically predict what the relative finite sample power properties of the recursive, rolling and double recursive based
tests will be in cases like these and so we will investigate these further using Monte Carlo experimentation in Section 6.

Before establishing the asymptotic properties of the maximum subsample statistics, it is worth briefly commenting on
estimation of the location of any predictive windows in cases where our proposed tests reject. Even for the simplest
possible case where H1,b(·) of (2.4) implies predictability over just a single subsample of the data, say t = ⌊τ1T⌋ +

, . . . , ⌊τ2T⌋, with τ1 < τ2 and where either τ1 > 0 or τ2 < 1, consistent estimation of τ1 and τ2 is not possible
ecause of the Pitman localisation to zero placed on β1,t in this interval by Assumption 2. In practice, however, if a
iven maximum statistic rejects then a sensible estimate of τ1 and τ2 would be given by the start and end points of the
ubsample corresponding to the maximum value from the sequence of statistics from which a rejection was obtained.
f one was looking to date possibly multiple windows of predictability then one could reapply the procedures outlined
bove to the data set excluding those sample points for which a first stage rejection occurred, and do so repeatedly until
o rejection was obtained.

.3. Asymptotic distributions

In Proposition 1 we now provide representations for the asymptotic distributions of the maximum subsample statistics
efined in Section 4.2 under the appropriate local alternative, H1,b(·).

roposition 1. Consider the model in (2.1) and (2.2) and let Assumption 2–6 hold. Then under the local alternative H1,b(·) of
2.4):

i) Under Assumption 1.1, as T → ∞, it holds that,

T f
⇒ sup

τ∈[τL,1]

(
GI (τ ) +

∫ τ

0 b(s)dKzI x(s)
)2

[GI ] (1) ηI (τ )

T b
⇒ sup

τ∈[0,τU ]

(
GI (1) − GI (τ ) +

∫ 1
τ
b(s)dKzI x(s)

)2

[GI ] (1) (1 − ηI (τ ))

T d
⇒ sup

0≤τ1,τ2≤1
τ2−τ1≥∆τ

(
GI (τ2) − GI (τ1) +

∫ τ2
τ1

b(s)dKzI x(s)
)2

[GI ] (1) (ηI (τ2) − ηI (τ1))

T r
⇒ sup

0≤τ≤1−∆τ

(
GI (τ + ∆τ) − GI (τ ) +

∫ τ+∆τ

τ
b(s)dKzI x(s)

)2

[GI ](1) (ηI (τ + ∆τ ) − ηI (τ ))

where G (·), [G ](·), K (·) and η (·), are as defined in Assumption 4.2.
I I zI x I
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(ii) Under Assumption 1.2, as T → ∞, it holds that,

T f
⇒ sup

τL≤τ≤1

(∫ τ

0 Z̃0,τ (s)dU(s) + ω
∫ τ

0 Z̃0,τ (s)b(s)Jc,H(s)ds
)2

∫ τ

0 Z̃2
0,τ (s)d[U](s)

T b
⇒ sup

0≤τ≤τU

(∫ 1
τ
Z̃τ ,1(s)dU(s) + ω

∫ 1
τ
Z̃τ ,1(s)b(s)Jc,H(s)ds

)2

∫ 1
τ
Z̃2

τ ,1(s)d[U](s)

T d
⇒ sup

0≤τ1,τ2≤1
τ2−τ1≥∆τ

(∫ τ2
τ1

Z̃τ1,τ2 (s)dU(s) + ω
∫ τ2

τ1
Z̃τ1,τ2 (s)b(s)Jc,H(s)ds

)2

∫ τ2
τ1

Z̃2
τ1,τ2

(s)d[U](s)

T r
⇒ sup

0≤τ≤1−∆τ

(∫ τ+∆τ

τ
Z̃τ ,τ+∆τ (s)dU(s) + ω

∫ τ+∆τ

τ
Z̃τ ,τ+∆τ (s)b(s)Jc,H(s)ds

)2

∫ τ+∆τ

τ
Z̃2

τ ,τ+∆τ (s)d[U](s)

where Jc,H(·), U(·) and [U](·) are defined in Section 2, and Z̃·,·(·) is defined in Assumption 5.

emark 12. Expressions for the limiting null distributions of the statistics can be obtained by omitting those terms
nvolving the function b(·) from the representations given in Proposition 1. In what follows we will denote the resulting
imiting null distributions of the T f , T b, T d and T r statistics under Assumption 1.1 as T f ,I

∞ , T b,I
∞

, T d,I
∞

and T r,I
∞

, respectively,
and under Assumption 1.2 as T f ,II

∞ , T b,II
∞

, T d,II
∞

and T r,II
∞

, respectively. For any given s ∈ {f , b, d, r}, the limiting
distribution T s,I

∞
, appropriate for the case where the predictor is weakly persistent satisfying Assumption 1.1, and T s,II

∞
,

the corresponding limiting null distribution where the predictor is strongly persistent satisfying Assumption 1.2, have
different functional forms. For example, while T s,II

∞
, s = f , b, d, r , all depend on the choice of type-II instrument, T s,I

∞
,

s = f , b, d, r , do not. The impact of non-constancy in H(·) on these limiting null distributions also differs between the
strongly and weakly persistent cases; see the discussion in Remarks 15 and 16. ⋄

Remark 13. All of the statistics in the sequences are exact invariant to both µx and β0 by virtue of being based on
subsample demeaned variables. Moreover, the vector of instruments used is, by construction, invariant to µx, because
zI,t is based on differences of xt for the instruments mentioned in Section 3, and zII,t is a deterministic function of time
chosen by the user without reference to µx. Consequently the limiting representations in Proposition 1 do not depend on
either µx or β0. ⋄

Remark 14. Under Assumption 1.1, local power depends indirectly on the persistence of the putative predictor,
as measured by ρ and B(L) through KzI x(·); see Lemma 1 for the particular example of the IVX instrument. Under
Assumption 1.2, while the mean-reversion parameter c does not affect the limiting null behaviour of the maximum
statistics, the local power functions depend explicitly on c through Jc,H(·). In each case, the rule-of-thumb that the stronger
the mean reversion, the lower the local power, seems to hold; see the Monte Carlo results in Section 6. ⋄

For weakly persistent regressors, a time transformation can shed further light on the influence of heteroskedas-
ticity. Under Assumption 4.2(c), the process W (·) := GI (η−1(·))/

√
[GI ](1) is continuous with stationary independent

increments, W (0) = 0 a.s. and Var (W (τ )) = τ , and therefore, W (·) is a standard Wiener process. It follows that
GI (·) =

√
[GI ](1)W (ηI (·)) is a time-transformed Wiener process. Consequently, taking the limiting functional associated

with T f as an example, we have that supτ∈[τL,1]
(GI (τ )+

∫ τ
0 b(s)dKzI x(s))

2

[GI ](1) ηI (τ )

d
= supτ∈[τL,1]

(
W (ηI (τ ))+

∫ τ
0 b(s)d

KzI x(s)√
[GI ](1)

)2

ηI (τ )
with similar

istributional identities holding for the remaining statistics. As the maximum of a function is invariant to monotonic
ransformations of the argument, we may set r = ηI (τ ) and therefore obtain the following alternative representations of
he limiting results in part (i) of Proposition 1.

orollary 1. Let the conditions of Proposition 1 hold. Then under Assumption 1.1, as T → ∞,

T f
⇒ sup

r∈[ηI (τL),1]

(
W (r) +

∫ η−1
I (r)

0 b(s)dK̄zI x(s)
)2

r

T b
⇒ sup

(
W (1) − W (r) +

∫ 1
η−1
I (r) b(s)dK̄zI x(s)

)2
r∈[0,ηI (τU )] 1 − r
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T d
⇒ sup

0≤r1,r2≤1

η
−1
I (r2)−η

−1
I (r1)≥∆τ

(
W (r2) − W (r1) +

∫ η−1
I (r2)

η−1
I (r1)

b(s)dK̄zI x(s)
)2

r2 − r1

T r
⇒ sup

0≤r≤ηI (1−∆τ)

(
W

(
ηI

(
η−1
I (r) + ∆τ

))
− W (r) +

∫ η−1
I (r)+∆τ

η−1
I (r)

b(s)dK̄zI x(s)
)2

ηI
(
η−1
I (r) + ∆τ

)
− r

here W (·) := GI (η−1(·))/
√

[GI ](1) is a standard Wiener process and K̄zI x(·) := KzI x(·)/
√

[GI ](1). Moreover, the limiting null
distributions discussed in Remark 12 are such that,

T f ,I
∞

d
= sup

r∈[ηI (τL), 1]

(W (r))2

r
, T b,I

∞

d
= sup

r∈[0, ηI (τU )]

(W (1) − W (r))2

1 − r

T r,I
∞

d
= sup

0≤r≤ηI (1−∆τ )

(
W

(
ηI

(
η−1
I (r) + ∆τ

))
− W (r)

)2
ηI

(
η−1
I (r) + ∆τ

)
− r

T d,I
∞

d
= sup

0≤r1,r2≤1

η
−1
I (r2)−η

−1
I (r1)≥∆τ

(W (r2) − W (r1))2

r2 − r1
.

emark 15. The results in Proposition 1 and Corollary 1 highlight that both the limiting null distributions and the
ocal power functions of all of the tests depend, in general, on any unconditional heteroskedasticity present through the
esulting non-constancy of H(·). This holds irrespective of the persistence of the regressor xt ; moreover, heteroskedasticity
as differing effects on the limiting distributions depending on the degree of persistence of xt . At least under the null
his may seem surprising, as Eicker–White standard errors are designed to robustify any of the subsample statistics,
≤ τ1 < τ2 ≤ 1, to heteroskedasticity (conditional or unconditional). However, this asymptotic invariance only holds
arginally for a given statistic in the sequence; indeed, it can be shown for each of the sequences of statistics, and
egardless of which of Assumptions 1.1 and 1.2 holds, any given statistic in the sequence has a marginal χ2

1 limiting null
istribution. The representations in Corollary 1, for example, show that under Assumption 1.1 the suprema are taken over
tatistics computed for various intervals whose endpoints depend on the variance profile ηI (·) defined in Assumption 4
2, which depends in turn on both the DGP and the choice of type-I instrument. Moreover, under Assumption 1.2, the
ame phenomenon explains part (ii) of Proposition 1, with the additional complication that one cannot represent the
ubsample statistics more tractably using a time transformation due to the presence of the subsample-demeaned process
. Here, too, heteroskedasticity depends on the choice of instrument (now the type-II instrument) in addition to the
GP. Under local alternatives, heteroskedasticity additionally enters by means of KzI x(·) and Jc,H(·), under Assumptions 1.1
nd 1.2, respectively. It is important to emphasise that the precise effect of non-constancy of H(·) due to unconditional
eteroskedasticity on the limiting distributions of our maximum statistics depends on which of Assumption 1.1 or 1.2
olds. ⋄

emark 16. More generally, the impact of the DGP on the large sample behaviour of the statistics depends on the choice
f instrument and on the persistence of the (putative) predictor. Consider first the results under Assumption 1.1. Here
he limiting null distributions, T s,I

∞
, s = f , b, d, r , all depend on ηI (·) which in turn depends on the unconditional variance

f ut . In the case where ηI (s) = s, these limiting null distributions simplify to the suprema of squared standardised
iener processes taken over the range of the subsamples. However, constancy of H(·) is not sufficient to ensure linearity
f ηI (·), because heteroskedasticity can still enter via the instrument zI,t−1. Under the local alternative, the key quantity
ontrolling power is KzI x(·) which can be deterministic under Assumption 1.1 (see, for example, Lemma 1 for the case of
he IVX instrument), and (upon normalisation) characterises the strength of the instrument zI,t−1. However, KzI x(·) also
haracterises the signal; other things equal, if xt has a large marginal variance relative to ut , then local power will increase.
n the case of Assumption 1.2, local power depends on the process Jc,H(·) in a more intricate way, due to the fact that
c,H and

∫
Z̃dU may be dependent. Clearly, local power is influenced by all three factors c , ω and H(·). The effect of the

lements of H(·) is not easy to disentangle, as can be seen from the expressions given for the quadratic variation processes
f U(·) and V (·) at the end of Section 2. ⋄

In Corollary 2 we detail the limiting distributions of the full sample statistic t2β1
of (3.2) under the local alternative,

1,b(·) of (2.4).

orollary 2. Let the conditions of Proposition 1 hold. Then under H1,b(·), as T → ∞ : (i) Under Assumption 1. 1, t2β1
⇒

W (1) +
∫ 1
0 b(s)dK̄zI x(s)

)2
; (ii) under Assumption 1.2, t2β1

⇒

(∫ 1
0 Z̃2(s)d[U](s)

)−1 (∫ 1
0 Z̃(s)dU(s) + ω

∫ 1
0 Z̃(s)b(s)Jc,H(s)ds

)2
,

˜
∫ 1
here Z(s) := Z(s) − 0 Z(s).
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Remark 17. From Corollary 2, under the null hypothesis H0 of (2.3), t2β1
⇒ W (1)2 under Assumption 1.1, while t2β1

⇒(∫ 1
0 Z̃2(s)d[U](s)

)−1 (∫ 1
0 Z̃(s)dU(s)

)2
under Assumption 1.2 with

∫ 1
0 Z̃(s)dU(s) ∼ N

(
0,

∫ 1
0 Z̃2(s)d[U](s)

)
. Consequently, t2β1

s seen to possess a standard χ2
1 limiting null distribution regardless of whether xt is stable or near-integrated. Moreover,

he results in Corollary 2 show that the full sample IV-combination test exhibits non-trivial power against the class of
ocal alternatives we consider in this paper; that is, it has power to detect predictive episodes. However, local power
epends indirectly on heteroskedasticity which influences the stochastic properties of KzI x(·) and Jc,H(·); see Remarks 15
nd 16. ⋄

emark 18. Where β1,t = β1 ̸= 0, for all t = 1, . . . , T , the results in Corollary 2 specialise to the standard local power
f the full sample IV-combination test based on t2β1

. For type-II instruments without demeaning, one recovers the result
f Breitung and Demetrescu (2015, Theorem 2.2). ⋄

To summarise, the limiting null distributions of the maximum subsample statistics all depend both on any het-
roskedasticity present and on whether the putative predictor xt is a near-integrated or weakly dependent process. This
oses significant problems for conducting inference not encountered with tests based on the full sample statistic, t2β1

of
3.2). We next demonstrate that these issues can be solved using fixed regressor wild bootstrap implementations of the
ubsample tests.

. Bootstrap implementation

As the results in the previous section show, implementing tests based on the T s, s = f , b, d, r , statistics from Section 4.2
ill require us to address the fact that their limiting null distributions depend on any unconditional heteroskedasticity
resent in ut and vt , and on whether the predictor xt−1 is weakly dependent or near-integrated. To account for the former
e employ a wild bootstrap resampling scheme applied to the demeaned dependent variable ŷt := yt − 1

T

∑T
t=1 yt , while

for the latter we use the observed outcomes on x := [x0, x1, . . . , xT ]′ and z := [z ′

0, z
′

1, . . . , z
′

T ]
′ as a fixed regressor and

fixed instrument vector, respectively, when implementing the bootstrap procedure.
We now outline our fixed regressor wild bootstrap approach in Algorithm 1. We will then demonstrate the asymptotic

validity of this approach in Proposition 2.

Algorithm 1.

Step 1 Construct the wild bootstrap innovations y∗
t := ŷtRt , where ŷt := yt −

1
T

∑T
t=1 yt are the demeaned sample

observations on yt , and Rt , t = 1, . . . , T , is an IID N(0, 1) sequence independent of the data.5
Step 2 Using the bootstrap sample data

(
y∗
t , xt−1, z ′

t−1

)′, in place of the original sample data
(
yt , xt−1, z ′

t−1

)′, construct
the bootstrap analogues of the statistics T s, s = f , b, d, r , from Section 4.2. Denote these bootstrap statistics as
T s∗, s = f , b, d, r .

Step 3 Define the bootstrap p-values as P s,∗
T := 1−Gs,∗

T (T s), s = f , b, d, r , with Gs,∗
T (·) denoting the conditional (on the

original data) cumulative distribution function (cdf) of T s∗, s = f , b, d, r . In practice, the Gs,∗
T (·), s = f , b, d, r ,

will be unknown, but can be simulated in the usual way by repeating Steps 1 and 2 a large number, say B,
times to obtain empirical analogues of Gs,∗

T (·), s = f , b, d, r . The {Rt}
T
t=1 variables used in Step 1 must also be

independent across the B bootstrap replications.
Step 4 The wild bootstrap test of the null hypothesis H0 of (2.3) at level α based on T s rejects if P s,∗

T ≤ α, s = f , b, d, r .

emark 19. The bootstrap statistics T s∗, s = f , b, d, r , are calculated treating both xt−1 and the vector of instruments,
t−1, as fixed; i.e., they are calculated using the same observed xt−1 and z t−1 as were used in the construction of T s,
= f , b, d, r . This aspect is crucial for delivering bootstrap tests that are asymptotically valid regardless of whether xt
atisfies Assumption 1.1 or 1.2 and without knowledge of which of these holds. In particular, the same instrument (either
ype-I or type-II, depending on the true regressor persistence) gets full asymptotic weight in both the original 2SLS and
he bootstrap t-ratios (see section S.3 of the supplementary material). ⋄

emark 20. The wild bootstrap generating y∗
t in Step 1 of Algorithm 1 replicates the pattern of unconditional het-

roskedasticity present in the original innovations, as conditionally on ŷt , y∗
t is independent over time with zero mean and

ariance ŷ2t . Moreover, any heteroskedasticity present in xt−1 and z t−1 is replicated through the fixed regressor/instrument
spect of the bootstrap statistics. In particular, as ut is a MD sequence, it is anticipated that the bootstrap will replicate
he variance properties of either zI,t−1ut or zII,t−1ut , depending on the degree of persistence exhibited by xt . Having fixed
he regressor and the instruments when bootstrapping, the analogous terms in the bootstrap test statistics are given by
I,t−1ŷtRt and zII,t−1ŷtRt with variances z2I,t−1ŷ

2
t and z2II,t−1ŷ

2
t , respectively. Using the result detailed in the last sentence

f Remark 19, it is then seen that the correct variance profile is replicated in the limit. For full details see the proof of
roposition 2. ⋄

5 The Gaussianity assumption on Rt is standard in the literature and simplifies the proof of Proposition 2. This can, however, be generalised
such that R is any IID sequence with E(R ) = 0, E(R2) = 1 and E(R4) < ∞.
t t t t
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Remark 21. Step 1 of Algorithm 1 is based on residuals obtained under the null hypothesis. It is straightforward to show
that the large sample properties of corresponding bootstrap tests based on either the OLS or IVX residuals from estimating
the predictive regression over the full sample are unaltered from those given here. Moreover, albeit more computationally
intensive, one could also use the analogous subsample implementations of any of these three full sample residuals. ⋄

In Proposition 2 we now demonstrate the large sample validity of the fixed regressor wild bootstrap implementation
of the tests from Section 4.2. In particular, we show that our proposed bootstrap in Algorithm 1 correctly replicates the
first order asymptotic null distributions of the statistics given in Remark 12 under both the null hypothesis and local
alternatives.

Proposition 2. Let the conditions of Proposition 1 hold. Then, as T → ∞, under either the null hypothesis H0 of (2.3) or the
local alternative H1,b(·) of (2.4): (i) under Assumption 1.1, as T → ∞, it holds that T f ∗ w

⇒p T f ,I
∞ , T b∗ w

⇒p T b,I
∞

, T r∗ w
⇒p T r,I

∞
,

and T d∗ w
⇒p T d,I

∞
; (ii) under Assumption 1.2 as T → ∞, it holds that, T f ∗ w

⇒p T f ,II
∞ , T b∗ w

⇒p T b,II
∞

, T r∗ w
⇒p T r,II

∞
, and

T d∗ w
⇒p T d,II

∞
.

A consequence of Proposition 2 is that we obtain asymptotically correctly sized tests when using bootstrap critical
values obtained using Algorithm 1. We now formalise this result in Corollary 3.

Corollary 3. As T → ∞, under H0, P∗(T s∗
≤ T s) ⇒ Unif [0, 1], for each of s = f , b, d, r, where P∗ denotes probability

conditional on the original sample
(
yt , xt−1, z ′

t−1

)′, t = 1, . . . , T .

Remark 22. Corollary 3 establishes the asymptotic validity of our proposed bootstrap tests. This result holds with-
out knowledge of whether the (putative) predictor xt satisfies Assumption 1.1 or 1.2, and holds regardless of any
heteroskedasticity present in ut and vt satisfying Assumption 3. ⋄

Remark 23. Proposition 2 shows that each of the bootstrap statistics T s∗, s = f , b, d, r , attains the same first order
limiting distribution under both the null hypothesis and local alternatives as that attained under the null hypothesis by
the corresponding original (non-bootstrap) statistic T s, s = f , b, d, r . An immediate consequence of this is that each of
the wild bootstrap tests proposed in Algorithm 1 will admit the same asymptotic local power function as the (infeasible)
size-adjusted test based on the corresponding original statistic T s, s = f , b, d, r . ⋄

Remark 24. The full sample IV-combination statistic, t2β1
, of Breitung and Demetrescu uses Eicker–White standard errors

to correct the limiting null distribution of the statistic for non-constancy in H(·) due to unconditional heteroskedasticity in
the innovations. Because it is still necessary to implement the subsample maximum tests using a wild bootstrap it would
be feasible to replace the Eicker–White standard errors used in the computation of the subsample

(
tβ1 (τ1, τ2)

)2 statistic in
(4.3) and its bootstrap equivalent, computed in Step 2 of Algorithm 1, with conventional standard errors. While this would
alter the limiting representations given for the maximum statistics in Proposition 1 and Corollary 1, it can be shown that
the resulting wild bootstrap tests would still be asymptotically valid with an analogous result to that in Corollary 3 holding.
In this case the wild bootstrap tests would attain the same asymptotic local power functions as (infeasible) size-corrected
implementations of the (non-bootstrap) maximum tests based on conventional standard errors. These asymptotic local
power functions will not in general coincide with those obtained for the statistics based on Eicker–White standard errors,
but they would where H(·) is constant. ⋄

Remark 25. The bootstrap validity results given in this section also apply to a fixed regressor wild bootstrap imple-
mentation of the full sample IV-combination test based on t2β1

. In particular, this will satisfy a result of the form given
in Corollary 3 and will have the same asymptotic local power function as the test based on t2β1

using χ2
1 critical values,

discussed in Section 4.3. As with the discussion for the subsample maximum statistics in Remark 24, one could replace
Eicker–White standard errors with conventional standard errors without losing asymptotic validity. ⋄

6. Numerical results

We use Monte Carlo simulation methods to investigate the finite sample performance of the bootstrap implementations
of the subsample-based predictability tests T f , T b, T r and T d proposed in Section 4 for testing the null hypothesis of no
predictability in (2.3); i.e., H0 : β1,t = 0, for all t = 1, . . . , T , against the alternative H1,b(·) of (2.4) that predictability holds
across some subset of the sample data. Data are generated from (2.1)–(2.2). In Section 6.1 we explore the empirical size
properties of these tests comparing with the corresponding full sample IV-combination test of Breitung and Demetrescu
(2015), t2β1

of (3.2). In Section 6.2 we compare the finite sample local power properties of these tests against a variety of
DGPs displaying temporary predictability.

Following the discussion in Section 4.1, we base both the full sample tβ1 IV-combination statistic in (3.2) and the
corresponding subsample tβ1 (τ1, τ2) statistics in (4.3) on the instrument vector z t−1 :=

(
zI,t−1, zII,t−1

)′ with the type-II

instrument, zII,t−1, defined as in (4.1) with k = 1, and the type-I instrument, zI,t−1, given by the IVX choice of Kostakis et al.
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(2015) defined as in (4.2), with a = 1 and γ = 0.95.6 Excepting the IVX instrument, zI,t−1, all variables and instruments
ntering the estimated predictive regressions are demeaned, as in the main text. As discussed in Kostakis et al. (2015,
. 1514) the IVX instrument, zI,t−1, does not need to be demeaned as the slope estimator in the predictive regression is
nvariant to whether zI,t−1 is demeaned or not. In order to correct for the finite sample effects of estimating the intercept
erm in (2.1), which are most pronounced for highly persistent regressors which are strongly correlated with the predictive
odel’s innovations, Kostakis et al. (2015, p. 1516) recommend the use of a finite-sample correction factor. We also found

hat this correction factor led to significant improvements in the finite sample properties of our proposed tests and hence
t is implemented in all of the numerical and empirical results we report.

All simulations are preformed in MATLAB, versions R2018a and R2018b, using the Mersenne Twister random number
enerator. All results pertain to the nominal 5% level; qualitatively similar results were obtained for other conventional
ignificance levels. All of the subsample tests are computed according to Algorithm 1 using 399 bootstrap replications;
he bootstrap tests are denoted T s∗, s = f , b, d, r . Following Banerjee et al. (1992), we set τL = 1/4 and τU = 3/4 in the
context of the forward and backward recursive statistics, respectively, and ∆τ = 1/3 for the rolling and double recursive
statistics. The empirical size simulations were based on 5000 Monte Carlo replications and the local power simulations
on 1000 replications, with the exception of the double recursive tests where 1000 replications were used for size and 500
for power because of the much higher computing time required. For the full sample t2β1

test, results for versions based
n the asymptotic χ2

1 critical value and on a fixed regressor wild bootstrap are reported, the latter using 399 bootstrap
eplications. For all of the bootstrap tests, two versions are reported. The first is based on statistics using Eicker–White
tandard errors while for the second, following the discussion in Remark 24, conventional standard errors are used. These
wo variants are distinguished apart by the additional ‘‘NW ’’ nomenclature in the subscripts of the latter. Following the
iscussion in Section 3 and footnote 4.2, all of the reported statistics use residuals, ût , computed under the null hypothesis.

.1. Empirical size

We first investigate the finite sample size properties of our proposed tests. To that end, we consider the simulation
GP given by (2.1)–(2.2) with β1,t = β1 = 0 for all t = 1, . . . , T . Results are reported for T = 250 and T = 500. In
enerating the simulation data we set the intercepts β0 and µx in (2.1) and (2.2), respectively, to zero with no loss of
enerality. The autoregressive process characterising the dynamics of the putative predictor, xt , in (2.2) was initialised at
0 = 0. Results are reported for a range of values of the autoregressive parameter ρ in (2.2) that cover both stationary
nd persistent predictors; in particular, for ρ := 1 − c/T we consider c ∈ {0, 2.5, 5, 10, 20, 0.5T }. Notice that c = 0.5T

corresponds to ρ = 0.5, such that the autoregressive parameter is fixed and stable.
In our simulation DGP the innovation vector (ut , vt)

′ is drawn from an i.i.d. bivariate Gaussian distribution with

mean zero and covariance matrix Σ t : =

[
σ 2
ut φσutσvt

φσutσvt σ 2
vt

]
. Notice, therefore, that φ corresponds to the correlation

between the innovations ut and vt . Results are reported in Table 1 for the case where φ = 0, and in Table 2 for
the case where φ = −0.90.7 We report results for the case where the innovations are homoskedastic, σ 2

ut = σ 2
vt =

1 (labelled DGP1 in Tables 1 and 2), and for the case where there is a contemporaneous one-time break of equal
magnitude in the variances of ut and vt . Following the simulation designs considered in Georgiev et al. (2019), two
such heteroskedastic cases are considered: (i) an upward change in variance (labelled DGP2 in Tables 1 and 2) such
that σ 2

ut = σ 2
vt = 1I(t ≤ ⌊0.5T⌋) + 4I(t > ⌊0.5T⌋), and (ii) a downward change (labelled DGP3 in Tables 1 and 2) where

σ 2
ut = σ 2

vt = 1I(t ≤ ⌊0.5T⌋) +
1
4 I(t > ⌊0.5T⌋), where in each case I(·) denotes the indicator function, taking the value

ne when its argument is true and zero otherwise. DGP2 and DGP3 allow us to examine the impact of unconditional
eteroscedasticity, both in isolation and in its interaction with φ, on the finite sample size of the tests. In each of DGP2
nd DGP3 a fourfold change in variance is seen which is likely to be of rather larger magnitude than we might expect to see
n practice, but serves to illustrate how the tests behave in the presence of a large change in unconditional volatility. We
lso considered further DGPs allowing for stationary GARCH(1,1) with different degrees of persistence coupled with either
aussian or t-distributed innovations, thereby allowing for unconditionally heteroskedastic and fat-tailed innovations.
hese results were qualitatively similar to those reported here for DGP1 and can be found in the supplementary material.
Consider first the results pertaining to the homoskedastic DGP1. A comparison of the results in Table 1 for φ = 0

nd Table 2 for φ = −0.90 shows that, in the homoskedastic case at least, the correlation parameter φ has relatively
ittle impact on the size properties of the tests. For the full sample tests there is relatively little difference between the
ests based on the asymptotic χ2

1 critical value and the fixed regressor wild bootstrap. Similarly, as might be expected,
here is little to choose between the versions of the full sample tests with Eicker–White standard errors and those with
onventional standard errors. For the subsample tests, there is a general trend towards undersizing in the Eicker–White
ersions in cases where the putative predictor, xt−1, displays persistence at or close to a unit root process. This is most

6 We also considered tests based on using the fractionally integrated instrument suggested on page 363 of Breitung and Demetrescu (2015) for
zI,t−1 . We do not report these results here as the IVX choice performed better in our results, but they can be obtained from the authors on request.
7 In predictive regression models for the equity premium employing valuation ratios as predictors (e.g. the dividend-price ratio, earnings-price

ratio), as we shall do in the empirical application in Section 7, the relevant innovation terms are strongly negatively correlated, hence our choice of
φ = −0.90.
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c

Table 1
Empirical Rejection Frequencies under the Null Hypothesis, H0 . Nominal 5% significance level. DGP1-DGP3 with φ = 0.

c t2∗β1
t2∗β1,NW t2β1

t2β1,NW T f ∗ T b∗ T f ∗
NW T b∗

NW T r∗ T r∗
NW T d∗ T d∗

NW

DGP1: T = 250, φ = 0 and σ 2
ut = σ 2

vt = 1

0.0 0.045 0.046 0.046 0.045 0.037 0.036 0.049 0.051 0.017 0.057 0.015 0.067
2.5 0.047 0.047 0.049 0.045 0.032 0.032 0.048 0.049 0.013 0.053 0.008 0.059
5.0 0.043 0.044 0.043 0.041 0.031 0.032 0.047 0.044 0.009 0.050 0.012 0.062
10.0 0.042 0.043 0.040 0.039 0.033 0.039 0.046 0.048 0.014 0.050 0.015 0.057
20.0 0.049 0.048 0.046 0.044 0.039 0.039 0.044 0.048 0.025 0.050 0.028 0.056
0.5T 0.049 0.047 0.046 0.047 0.058 0.053 0.052 0.047 0.061 0.045 0.070 0.044

DGP2: T = 250, φ = 0 and σ 2
ut = σ 2

vt = 1I(t ≤ ⌊0.5T⌋) + 4I(t > ⌊0.5T⌋)

0.0 0.047 0.048 0.032 0.059 0.040 0.044 0.057 0.050 0.024 0.052 0.020 0.048
2.5 0.044 0.047 0.036 0.066 0.033 0.033 0.053 0.048 0.018 0.055 0.009 0.059
5.0 0.043 0.043 0.035 0.068 0.036 0.033 0.056 0.046 0.015 0.054 0.008 0.061
10.0 0.046 0.045 0.037 0.078 0.037 0.038 0.057 0.048 0.018 0.054 0.020 0.055
20.0 0.048 0.047 0.041 0.084 0.044 0.041 0.058 0.049 0.027 0.051 0.028 0.055
0.5T 0.052 0.051 0.047 0.090 0.062 0.058 0.051 0.050 0.066 0.050 0.070 0.057

DGP3: T = 250, φ = 0 and σ 2
ut = σ 2

vt = 1I(t ≤ ⌊0.5T⌋) +
1
4 I(t > ⌊0.5T⌋)

0.0 0.045 0.047 0.076 0.061 0.036 0.043 0.047 0.057 0.029 0.059 0.037 0.072
2.5 0.045 0.047 0.058 0.072 0.031 0.033 0.046 0.061 0.022 0.058 0.017 0.063
5.0 0.044 0.045 0.045 0.067 0.029 0.036 0.043 0.056 0.016 0.060 0.012 0.062
10.0 0.044 0.045 0.042 0.069 0.033 0.038 0.040 0.051 0.018 0.057 0.020 0.059
20.0 0.045 0.043 0.040 0.071 0.041 0.044 0.046 0.049 0.027 0.053 0.031 0.057
0.5T 0.047 0.045 0.045 0.084 0.056 0.062 0.049 0.053 0.069 0.049 0.063 0.038

DGP1: T = 500, φ = 0 and σ 2
ut = σ 2

vt = 1

0.0 0.046 0.046 0.043 0.045 0.043 0.039 0.049 0.051 0.017 0.052 0.011 0.050
2.5 0.048 0.049 0.047 0.047 0.042 0.039 0.052 0.052 0.016 0.054 0.014 0.048
5.0 0.047 0.048 0.047 0.046 0.044 0.045 0.053 0.056 0.015 0.054 0.013 0.050
10.0 0.050 0.051 0.049 0.048 0.047 0.042 0.056 0.049 0.027 0.055 0.027 0.056
20.0 0.053 0.052 0.053 0.053 0.051 0.043 0.052 0.052 0.041 0.051 0.043 0.062
0.5T 0.047 0.047 0.044 0.045 0.053 0.053 0.048 0.050 0.065 0.054 0.072 0.058

DGP2: T = 500, φ = 0 and σ 2
ut = σ 2

vt = 1I(t ≤ ⌊0.5T⌋) + 4I(t > ⌊0.5T⌋)

0.0 0.052 0.053 0.036 0.061 0.050 0.039 0.063 0.055 0.025 0.061 0.033 0.062
2.5 0.051 0.052 0.036 0.065 0.046 0.040 0.062 0.053 0.023 0.060 0.022 0.060
5.0 0.050 0.050 0.037 0.073 0.046 0.044 0.056 0.052 0.026 0.061 0.026 0.055
10.0 0.050 0.050 0.041 0.083 0.050 0.045 0.055 0.054 0.033 0.058 0.035 0.052
20.0 0.050 0.051 0.045 0.088 0.053 0.050 0.051 0.056 0.046 0.055 0.041 0.047
0.5T 0.052 0.050 0.045 0.092 0.066 0.054 0.053 0.050 0.063 0.056 0.069 0.050

DGP3: T = 500, φ = 0 and σ 2
ut = σ 2

vt = 1I(t ≤ ⌊0.5T⌋) +
1
4 I(t > ⌊0.5T⌋)

0.0 0.050 0.051 0.085 0.073 0.045 0.042 0.056 0.062 0.029 0.066 0.033 0.062
2.5 0.052 0.053 0.065 0.077 0.043 0.041 0.056 0.060 0.028 0.063 0.020 0.083
5.0 0.053 0.051 0.050 0.075 0.042 0.053 0.051 0.060 0.025 0.065 0.025 0.078
10.0 0.052 0.053 0.049 0.076 0.044 0.049 0.054 0.058 0.030 0.062 0.026 0.075
20.0 0.052 0.051 0.048 0.081 0.047 0.056 0.053 0.058 0.041 0.057 0.041 0.064
0.5T 0.051 0.051 0.048 0.092 0.056 0.061 0.050 0.053 0.066 0.056 0.055 0.050

Notes: A superscript ∗ denotes tests run using the fixed regressor wild bootstrap outlined in Algorithm 1; t2β1
and t2β1,NW denote the full sample

IV-combination predictability tests of Breitung and Demetrescu (2015) based on the 5% asymptotic critical value from the χ2
1 distribution and

omputed with Eicker–White [EW] and conventional standard errors, respectively, and t2∗β1
and t2∗β1,NW their bootstrap analogues; T f ∗ , T b∗ and T f ∗

NW ,
T b∗
NW , denote the maximum forward and backward recursive tests computed with EW and conventional standard errors, respectively; T r∗ and T r∗

NW
denote the maximum rolling tests computed with EW and conventional standard errors, respectively; T d∗ and T d∗

ols denote the maximum double
recursive tests computed with EW and conventional standard errors, respectively.

pronounced in the rolling and double recursive statistics. However, this undersizing is not seen with the versions of the
subsample tests based on conventional standard errors. It is well known that Eicker–White standard errors can be heavily
downward biased in small samples leading to incorrectly sized tests; see, for example, MacKinnon and White (1985).

We next turn to the results for the two unconditionally heteroskedastic DGPs, DGP2 and DGP3. Consider first the full
sample tests. As expected, the full sample test based on conventional standard errors and the asymptotic χ2

1 critical value,
t2β1,NW , is unreliable in the presence of heteroskedasticity. These size distortions are considerably worse for φ = −0.90
than for φ = 0 when c = 0; for the other values of c considered the differences between φ = 0 and φ = −0.90 are much
smaller. The size distortions observed with t2β1,NW are significantly ameliorated by the use of Eicker–White standard errors
(t2β1

) in all but the case of DGP2 with c = 0 where no apparent improvements are seen. The bootstrap implementations
of the full sample tests do a much better job at controlling finite sample size, regardless of whether Eicker–White or
conventional standard errors are used, although some over-sizing is still seen for φ = −0.90 when c = 0. There appears
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Table 2
Empirical Rejection Frequencies under the Null Hypothesis, H0 . Nominal 5% significance level. DGP1-DGP3 with φ = −0.90.

c t2∗β1
t2∗β1,NW t2β1

t2β1,NW T f ∗ T b∗ T f ∗
NW T b∗

NW T r∗ T r∗
NW T d∗ T d∗

NW

DGP1: T = 250, φ = −0.90 and σ 2
ut = σ 2

vt = 1

0.0 0.069 0.073 0.069 0.074 0.037 0.035 0.047 0.055 0.011 0.053 0.018 0.055
2.5 0.055 0.056 0.055 0.057 0.030 0.040 0.037 0.058 0.011 0.052 0.020 0.062
5.0 0.053 0.052 0.051 0.050 0.034 0.045 0.039 0.055 0.012 0.051 0.021 0.064
10.0 0.057 0.055 0.056 0.058 0.038 0.048 0.044 0.059 0.017 0.055 0.029 0.065
20.0 0.060 0.060 0.057 0.056 0.046 0.051 0.050 0.062 0.029 0.061 0.034 0.067
0.5T 0.055 0.053 0.051 0.052 0.059 0.067 0.057 0.060 0.073 0.058 0.067 0.055

DGP2: T = 250, φ = −0.90 and σ 2
ut = σ 2

vt = 1I(t ≤ ⌊0.5T⌋) + 4I(t > ⌊0.5T⌋)

0.0 0.057 0.057 0.044 0.071 0.032 0.031 0.026 0.046 0.009 0.030 0.018 0.021
2.5 0.052 0.053 0.044 0.076 0.035 0.032 0.027 0.051 0.011 0.028 0.012 0.031
5.0 0.054 0.053 0.046 0.076 0.037 0.037 0.033 0.054 0.013 0.032 0.014 0.038
10.0 0.054 0.051 0.046 0.077 0.042 0.043 0.037 0.055 0.018 0.039 0.019 0.051
20.0 0.054 0.052 0.049 0.080 0.047 0.046 0.042 0.054 0.032 0.045 0.036 0.055
0.5T 0.058 0.055 0.053 0.097 0.067 0.059 0.054 0.057 0.063 0.056 0.073 0.058

DGP3: T = 250, φ = −0.90 and σ 2
ut = σ 2

vt = 1I(t ≤ ⌊0.5T⌋) +
1
4 I(t > ⌊0.5T⌋)

0.0 0.072 0.078 0.125 0.118 0.029 0.036 0.049 0.076 0.007 0.072 0.009 0.084
2.5 0.046 0.048 0.059 0.068 0.022 0.046 0.038 0.071 0.008 0.071 0.005 0.077
5.0 0.049 0.048 0.055 0.068 0.027 0.049 0.040 0.064 0.010 0.068 0.006 0.075
10.0 0.058 0.051 0.052 0.073 0.033 0.049 0.041 0.056 0.018 0.061 0.013 0.062
20.0 0.053 0.053 0.049 0.077 0.040 0.052 0.050 0.050 0.028 0.055 0.036 0.061
0.5T 0.053 0.052 0.047 0.091 0.058 0.067 0.056 0.056 0.064 0.056 0.070 0.061

DGP1: T = 500, φ = −0.90 and σ 2
ut = σ 2

vt = 1

0.0 0.076 0.079 0.077 0.078 0.041 0.054 0.045 0.072 0.015 0.055 0.023 0.060
2.5 0.059 0.060 0.056 0.058 0.034 0.060 0.037 0.075 0.020 0.053 0.016 0.045
5.0 0.061 0.060 0.058 0.061 0.038 0.064 0.041 0.075 0.023 0.057 0.023 0.056
10.0 0.062 0.063 0.061 0.063 0.045 0.065 0.049 0.076 0.034 0.059 0.035 0.053
20.0 0.063 0.062 0.060 0.061 0.050 0.065 0.054 0.072 0.047 0.063 0.046 0.064
0.5T 0.050 0.049 0.049 0.050 0.060 0.058 0.053 0.053 0.070 0.059 0.067 0.058

DGP2: T = 500, φ = −0.90 and σ 2
ut = σ 2

vt = 1I(t ≤ ⌊0.5T⌋) + 4I(t > ⌊0.5T⌋)

0.0 0.072 0.067 0.055 0.082 0.041 0.047 0.029 0.066 0.022 0.037 0.021 0.033
2.5 0.060 0.057 0.052 0.079 0.041 0.049 0.030 0.063 0.021 0.036 0.030 0.039
5.0 0.061 0.060 0.052 0.085 0.045 0.057 0.033 0.068 0.024 0.040 0.039 0.043
10.0 0.058 0.058 0.053 0.088 0.049 0.055 0.040 0.064 0.034 0.043 0.049 0.045
20.0 0.061 0.058 0.052 0.095 0.056 0.060 0.044 0.066 0.044 0.045 0.056 0.051
0.5T 0.048 0.048 0.045 0.084 0.063 0.052 0.051 0.050 0.067 0.057 0.073 0.054

DGP3: T = 500, φ = −0.90 and σ 2
ut = σ 2

vt = 1I(t ≤ ⌊0.5T⌋) +
1
4 I(t > ⌊0.5T⌋)

0.0 0.082 0.089 0.133 0.129 0.043 0.054 0.060 0.092 0.019 0.092 0.017 0.100
2.5 0.053 0.053 0.066 0.074 0.029 0.071 0.047 0.090 0.022 0.093 0.023 0.081
5.0 0.054 0.054 0.056 0.076 0.033 0.068 0.047 0.077 0.027 0.083 0.026 0.083
10.0 0.060 0.058 0.057 0.086 0.040 0.069 0.048 0.070 0.033 0.076 0.033 0.078
20.0 0.061 0.058 0.055 0.092 0.047 0.063 0.054 0.063 0.044 0.070 0.049 0.074
0.5T 0.053 0.052 0.051 0.096 0.057 0.068 0.053 0.058 0.069 0.054 0.071 0.068

Notes: See notes to Table 1

to be no need to use Eicker–White standard errors with the fixed regressor bootstrap implementation of the full sample
test.

Consider next the subsample predictability tests. Undersizing, in many cases substantial, is again seen with the
subsample bootstrap tests based on Eicker–White standard errors. As with the full sample tests, these effects tend to
be larger, other things equal, for φ = −0.90 vis-à-vis φ = 0. As with the results for DGP1, the subsample bootstrap tests
based on conventional standard errors are much less prone to this undersizing phenomenon, albeit some undersizing is
seen in the case of DGP2 with φ = −0.90 for small values of c , most notably for the rolling and double recursive tests.
oreover, under DGP3 with φ = −0.90 some oversizing is seen in the persistent xt−1 cases for the backward recursive,

olling and double recursive tests. For φ = 0 all of the subsample bootstrap tests implemented with conventional standard
rrors appear to display good finite sample size control.

.2. Finite sample local power

We now turn to an investigation into the relative finite sample local power properties of the tests. We again generate
imulation data from DGP (2.1)–(2.2) but now for a variety of local alternatives satisfying H1,b(·) of (2.4). To keep the set of
esults to a manageable level we report results only for φ = −0.90, for the homoskedastic case, σ 2

= σ 2
= 1, for a sample
ut vt
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Fig. 1. Finite sample local power: Case 1, T = 250.

of size T = 250 and for three values of the persistence parameter, c , associated with xt ; specifically, c = {0, 10, 0.5T }.
In all of our experiments the slope parameter β1t in (2.1) is set to be local-to-zero. As specified by Assumption 2, for
c = 0 and c = 10, where xt is strongly persistent, we parameterise the slope parameter in (2.1) as β1t = b1t/T , and here
we consider the following values of the Pitman drift parameter, b1t ∈ {0, 5, . . . , 80}. For the case of a weakly dependent
predictor, c = 0.5T , we parameterise the slope parameter as β1t = b1t/

√
T , and here we consider the Pitman drift values

b1t ∈ {0, 1, . . . , 21}.
We report results for three distinct experimental cases, where episodes of predictability occur once in the sample

either at the beginning, the end or within the sample. To that end, we consider the following three simulation DGPs, with
the range of non-zero values of b1t as outlined above,

Case 1:

{
b1t > 0 for t = 1, . . . , ⌊T/5⌋

b1t = 0 for t = ⌊T/5⌋ + 1, . . . , T
Case 2:

{
b1t = 0 for t = 1, . . . , ⌊4T/5⌋

b1t > 0 for t = ⌊4T/5⌋ + 1, . . . , T

Case 3:

⎧⎪⎨⎪⎩
b1t = 0 for t = 1, . . . , ⌊T/5⌋

b1t > 0 for t = ⌊T/5⌋ + 1, . . . , ⌊3T/5⌋
b1t = 0 for t = ⌊3T/5⌋ + 1, . . . , T

ll other aspects of the simulation design are as described previously.
Figs. 1–3 graph the simulated finite sample local power curves for each of Cases 1–3, respectively. Each figure contains

ower curves for the fixed regressor wild bootstrap implementations of the full sample t2∗β1,NW test along with the
ubsample-based predictability tests T f ∗

NW , T b∗
NW , T r∗

NW and T d∗
NW . To aid presentation of the graphs, we have chosen only

o report the versions of the bootstrap tests implemented with conventional standard errors. Results with Eicker–White
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Fig. 2. Finite sample local power: Case 2, T = 250.

standard errors are available on request. In general the latter were less powerful (often considerably so) than the reported
tests based on conventional standard errors.

Consider first the results pertaining to Case 1 in Fig. 1. Recall from Section 4.2 that the temporary predictability DGP in
Case 1, with a pocket of predictability at the start of the sample, is one where we expect the forward recursive T f ∗

NW test
o perform best. Fig. 1 bears out this prediction. Regardless of the value of c , T f ∗

NW is significantly more powerful than the
other tests considered. The double recursive test, T d∗

NW , also displays significant power gains over the full sample t2⋆β1,NW
test, for all of the values of c considered. The rolling test, T r∗

NW , displays a similar power profile to T d∗
NW for c = 0 and

c = 0.5T , but is significantly less powerful than T d∗
NW for c = 10. The least powerful tests among those considered are

he backward recursive test, as expected, and the full sample t2⋆β1,NW test. To illustrate, the empirical power of t2⋆β1,NW at

T = 50 is approximately 50% for both c = 0 and c = 10 while for T f ∗
NW it is around 75%. For c = 0.5T and bT = 10

he power of t2β1,NW is about 55% while that of T f ∗
NW is in excess of 95%. In the latter example both the rolling (T r∗

NW ) and
double recursive (T d∗

NW ) tests have power of approximately 80%.
Consider next the results for Case 2, given in Fig. 2, where the pocket of predictability now occurs at the end of

he sample. When xt is weakly persistent the simulation DGP is approximately time-reversible and, as such, we would
nticipate that all but the forward and backward recursive tests, whose relative behaviour would be expected to switch
round, will behave similarly to how they behaved in Case 1 for the weakly dependent case. This is clearly seen to be
he case in Fig. 2(c), with the backward recursive test now clearly the most powerful, the forward recursive test the least
owerful, and the other tests all displaying almost identical power properties in Figs. 1(c) and 2(c). These patterns are
lso seen, albeit not as clearly, in a comparison of Figs. 1(b) and 2(b); the main difference being that the most of the tests
although not the double recursive test) tend to be slightly more powerful for c = 10 vis-à-vis c = 0.5T . The pattern
of a general increase in power of the tests as c decreases for an end-of-sample pocket of predictability is very clearly
continued in Fig. 2(a) for the case where c = 0 and x follows a pure unit root. Here, comparing with Fig. 1(a), we see that
t
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Fig. 3. Finite sample local power: Case 3, T = 250.

all of the tests display considerably higher local power against an end-of-sample pocket of predictability than against a
pocket of predictability at the start of the sample, and, comparing with Figs. 2(b) and 2(c), that the power of the tests is
considerably higher than for c = 10 and c = 0.5T . A possible explanation for this improvement in power is the shape of
the non-centrality term,

∫ τ2
τ1

Z̃τ1,τ2 (s)b(s)Jc,H(s)ds, entering the limiting distributions of the statistics under local alternatives
in the case where xt is strongly persistent. Clearly, end of sample predictability will be boosted from the larger magnitude
of Jc,H(τ ) when τ is close to 1, and this will be most evident when c = 0. Interestingly, the full sample t2⋆β1,NW test displays
competitive power in Fig. 2(a) although it should be recalled from Table 2 that t2⋆β1,NW is significantly over-sized in this
case while the subsample tests are not.

Finally, the results in Fig. 3 pertain to Case 3, where the simulation DGP admits a window of predictability of size
⌊2T/5⌋ within the sample. Here the double recursive test, T d∗

NW , displays superior power to the other tests considered for
both c = 10 and c = 0.5T (Figs. 3(b) and 3(c) respectively), and is jointly most powerful along with the forward recursive
T f ∗
NW test for c = 0 (Fig. 3(a)). Notice also that for a given value of c , T d∗

NW displays considerably higher power under Case
3 than it does under both Cases 1 and 2. This is expected given that a larger window of predictive data is now present
in the sample which the double recursive procedure is best able to exploit. Indeed, most of the tests considered display
improved power performance compared to Figs. 1 and 2. This is particularly evident for the rolling test, T r∗

NW , and again is
to be expected given that a greater number of the subsample predictability statistics in the rolling sequence will contain
data from a predictive period relative to the DGPs in Cases 1 and 2. For Case 3, the T b∗

NW test (as expected, given that the
window of predictability begins early in the sample) and the full sample t2β1,NW test display the lowest power among the
tests considered.
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Table 3
Application to updated (Welch and Goyal, 2008) data: bivariate regressions — (1950:01–2017:12)

t2β1
t2β1,NW T f T f

NW T b T b
NW T r T r

NW T d T d
NW LMx supFx

dpt−1 0.472 0.457 10.088 11.480 5.608 6.885 6.882 8.280 10.284 12.519 2.229 131.915
(0.481) (0.492) (0.121) (0.006) (0.340) (0.182) (0.729) (0.287) (0.998) (0.194) (0.000) (0.000)

dyt−1 0.581 0.568 15.565 12.616 6.241 7.849 11.143 9.318 10.252 11.891 0.295 11.178
(0.414) (0.408) (0.041) (0.005) (0.252) (0.133) (0.507) (0.182) (0.072) (0.029) (0.028) (0.038)

e/pt−1 0.335 0.451 8.459 9.189 2.163 4.744 8.583 9.419 8.583 11.742 0.209 38.229
(0.510) (0.513) (0.316) (0.043) (0.617) (0.398) (0.360) (0.152) (0.990) (0.231) (0.116) (0.000)

det−1 0.291 0.490 12.553 17.087 0.291 0.490 13.399 20.112 15.145 21.400 0.192 5.031
(0.594) (0.575) (0.029) (0.023) (0.852) (0.851) (0.058) (0.017) (0.099) (0.010) (0.210) (0.355)

rvolt−1 1.809 2.288 3.765 4.432 2.657 3.200 4.230 6.187 4.624 6.692 0.124 6.614
(0.096) (0.114) (0.308) (0.313) (0.182) (0.167) (0.694) (0.698) (0.455) (0.278) (0.525) (0.192)

bmt−1 0.037 0.042 7.150 7.125 5.959 7.321 7.612 8.299 7.612 8.299 0.342 7.555
(0.841) (0.844) (0.222) (0.229) (0.287) (0.154) (0.764) (0.322) (0.989) (0.544) (0.012) (0.148)

ntist−1 0.041 0.059 5.634 5.235 1.648 2.600 9.383 10.543 9.679 10.874 0.375 8.102
(0.830) (0.821) (0.180) (0.312) (0.623) (0.546) (0.074) (0.059) (0.101) (0.114) (0.070) (0.180)

tblt−1 7.001 9.408 11.763 15.989 7.001 9.408 8.203 11.618 11.764 16.588 0.131 12.348
(0.004) (0.004) (0.003) (0.001) (0.096) (0.040) (0.293) (0.035) (0.267) (0.029) (0.174) (0.132)

ltyt−1 4.178 5.524 11.036 13.410 6.529 6.547 8.224 10.070 11.135 14.308 0.103 7.985
(0.029) (0.026) (0.013) (0.009) (0.140) (0.152) (0.446) (0.115) (0.487) (0.044) (0.303) (0.182)

ltrt−1 4.172 5.724 8.479 10.313 4.438 6.021 8.145 9.702 8.902 10.709 0.163 6.407
(0.045) (0.044) (0.034) (0.055) (0.136) (0.167) (0.082) (0.115) (0.061) (0.094) (0.341) (0.325)

tmst−1 2.726 3.075 15.839 17.534 4.769 5.133 12.142 12.611 15.839 17.534 0.350 10.877
(0.084) (0.084) (0.001) (0.001) (0.145) (0.150) (0.061) (0.008) (0.042) (0.003) (0.060) (0.026)

dfyt−1 0.011 0.020 2.777 3.079 0.996 2.872 7.431 19.169 8.805 19.473 0.063 9.773
(0.908) (0.909) (0.617) (0.587) (0.695) (0.546) (0.246) (0.044) (0.216) (0.046) (0.788) (0.106)

dfrt−1 0.768 1.535 4.487 5.475 2.407 5.398 11.218 7.685 11.218 13.141 0.156 6.134
(0.477) (0.434) (0.475) (0.416) (0.336) (0.346) (0.228) (0.521) (0.295) (0.336) (0.537) (0.377)

inflt−1 3.042 4.890 9.083 16.834 3.999 6.138 11.705 11.516 12.195 16.839 0.326 11.517
(0.070) (0.048) (0.276) (0.003) (0.269) (0.155) (0.477) (0.060) (0.722) (0.026) (0.102) (0.032)

Notes: Numbers in parentheses are bootstrap p-values. Bold entries are those which are statistically significant at the 5% level (or stricter).

7. Empirical application

The data set used consists of monthly observations on the equity premium for the S&P Composite index calculated
using CRSP’s month-end values together with 14 different putative predictors, generically denoted xt , and is taken from
the updated monthly data set on Amit Goyal’s website (www.hec.unil.ch/agoyal/) which is an extended version of
the data set used by Welch and Goyal (2008). The data cover the period 1950:01–2017:12 (T = 817). We define the
equity premium as in Goyal and Welch (2003) as the log return on the value-weighted CRSP stock market index minus
the log return on the risk-free Treasury bill: yt = ept = log(1 + Rm,t ) − log(1 + Rf ,t ) where Rm,t is the CRSP return and
Rf ,t is the Treasury bill return. The variables are in log form (as in Goyal and Welch, 2003) and each of the predictors is
agged one period. A full list of the predictors together with graphs of the excess returns and the predictors can be found
n the supplementary material.

Table 3 reports the outcome of the conventional IV-combination test from bivariate predictive regression models
pplied to the full sample of data. We report versions of the statistic using Eicker–White (t2β1

) and conventional (t2β1,NW )
tandard errors. All of the IV-based test statistics computed in the empirical analysis follow the same specification as
as used in the Monte Carlo experiments; that is, they are based on a combination of the IVX instrument, zI,t−1 (as
efined in (4.2), with a = 1 and γ = 0.95), and the sine instrument, zII,t−1 (as defined in (4.1) with k = 1), with all of
he observed variables and zII,t−1 (but not zI,t−1) entering the estimated predictive regressions demeaned, and with the
finite-sample correction factor of Kostakis et al. (2015, p. 1516) implemented. Fixed regressor wild bootstrap p-values
computed according to Algorithm 1 with 999 bootstrap replications are reported in parentheses. For most of the putative
predictors considered, the results in Table 3 yield no statistically significant evidence of predictability. Exceptions are
seen for the treasury bill rate (tblt−1), the long term government bond yield and rate of return series (ltyt−1 and ltrt−1,
respectively), and inflation (inflt−1) all of which are significant at the 5% level. Rejections of the null of no predictability
are also seen at the 10% level for the term spread (tmst−1) and the equity premium volatility (rvolt−1) series.

To provide an insight into how stable the full sample predictive regressions are, Table 3 also reports the tests proposed
in Georgiev et al. (2018) for the stability of the slope coefficient in the bivariate predictive regression of the equity
premium on each (lagged) predictor. These tests are denoted LMx and supFx. The former is designed to test for the stability
of the slope coefficient against a smoothly evolving slope change model and the latter against a one-time change in the
slope. Bootstrap p-values calculated as outlined in Georgiev et al. (2018) for 999 bootstrap replications are reported in



108 M. Demetrescu, I. Georgiev, P.M.M. Rodrigues et al. / Journal of Econometrics 227 (2022) 85–113

l
l
n

p
c
c
s
r
o
e
p
a
t
i
o
t
s

s
a
t
b
d
f
f
s
a
t
d
5
a
v
T

w
5
5

r
1
o
s
e
o
o
t
p
s
w
o
d

s
o

c

parentheses. Significant rejections at the 5% level by at least one of these tests are observed for the predictive regressions
involving the dividend price ratio (dpt−1), dividend yield (dyt−1), earnings price ratio (e/pt−1), book to market ratio (bmt−1),
term spread (tmst−1) and inflt−1. The rejections seen for dpt−1 and e/pt−1 are particularly strong. A rejection at the 10%
evel is also seen for the net equity expansion ratio (ntist−1) predictor. Interestingly, for three of the four series (tblt−1,
tyt−1 and ltrt−1) for which the full sample IV-combination tests are significant at the 5% level these stability tests provide
o evidence of structural instability in the slope coefficient.
To provide some additional insight into any time-varying behaviour present in the slope coefficients, Figs. 4 and 5

lot forward recursive and rolling IV (using the same choice of instruments as detailed above for the full sample IV-
ombination tests) slope estimates from the predictive regression of yt on xt−1 and associated approximate 95% marginal
onfidence bands.8 The warm-in fraction for the recursive sequence, τL, and the rolling window fraction, ∆τ , were both
et at 1/4. In each case the horizontal axis dates correspond to the end of a given subsample. Commensurate with the
esults of the stability tests of Georgiev et al. (2018), these graphs highlight considerable time variation in the sequences
f subsample slope estimates. A general pattern evident in Fig. 4 is a decline over time in the absolute value of the
stimated slope coefficient with the recursive slope estimates generally tending to move closer to zero over time. This
attern can also be seen, albeit less clearly, in the rolling estimates in Fig. 5. This suggests that for some of these variables,
ny predictive ability they might have for the equity premium weakens over time. As a further heuristic device, rather
han a formal statistical test, many of the graphs show some periods where the 95% marginal confidence intervals do not
nclude zero, which is at least suggestive that pockets of predictability may be present in the data. Most of these episodes
ccur nearer the start of the data, such as, for example, with dyt−1, but some are much longer lived as with, for example,
he sequences of recursive estimates for tblt−1, ltrt−1, tmst−1 and inflt−1; recall that for tblt−1, ltrt−1 and inflt−1, the full
ample IV-combination tests gave significant rejections at the 5% level.
To pursue these findings further using statistically rigorous size-controlled methods, we next apply our proposed

ubsample-based predictability statistics. We report versions of the statistics using Eicker–White (T f , T b, T r and T d)
nd conventional (T f

NW , T b
NW , T r

NW and T d
NW ) standard errors. Fixed regressor wild bootstrap p-values computed according

o Algorithm 1 with 999 bootstrap replications are again reported in parentheses. In the computation of the forward and
ackward recursive statistics we set τL = 1/4 and τU = 3/4, respectively, while we set ∆τ = 1/4 for the rolling and
ouble recursive statistics. The instruments used are as described above for the full sample statistics. Focusing on the
orward recursive tests we see significant rejections at the 5% level (or stricter) of the null hypothesis of no predictability
or each of dpt−1, dyt−1, e/pt−1, det−1, tblt−1, ltyt−1, ltrt−1, tmst−1 and inflt−1; indeed, in many cases these rejections are also
ignificant at the 1% level. While these rejections tally with those delivered by the full sample test for tblt−1, ltyt−1, ltrt−1
nd inflt−1, for the other series, all of which (other than det−1) fail the structural stability tests of Georgiev et al. (2018),
hese are series for which the full sample tests delivered no significant evidence of predictability. With the exception of
pt−1 and e/pt−1, those series for which T f

NW delivers a rejection at the 5% significance level also show rejections at the
% level for at least one of the other subsample maximum tests reported. Additional evidence of temporary predictability
t the 5% level (or stricter) is provided for dfyt−1 by both T r

NW and T d
NW (notice that for this series the supFx test is in fact

ery close to giving a rejection at the 10% level). A significant rejection at the 10% level is also provided for ntist−1 by the
r
NW test.
To gain further insight, Fig. 6 graphs the forward recursive sequences of tβ1 (τ1, τ2) subsample statistics for each case

here a rejection at the 5% level is observed for the corresponding maximum test.9 Also reported on these graphs are the
% and 10% bootstrap critical values for the null distribution of the maximum statistic in the sequence, together with the
% and 10% critical values from the χ2

1 distribution (the marginal critical values which apply for any given subsample).
Consider first the graph in part (a) of Fig. 6 for the dividend price ratio, dpt−1. Looking at the time path of the forward

ecursive subsample statistic we can see that for much of the first half of the sequence (up until roughly the early
980s) the statistic exceeds the χ2

1 5% critical value, suggesting that running the IV-combination test on any subsample
f the data selected up until this point would have delivered a significant rejection at the (marginal) 5% level. After this
ample endpoint no significant evidence of predictability would have been found. We can also see that a large number of
xceedances of the 10% bootstrap critical value for the maximum are seen in the early part of the data, with exceedances
f the 5% bootstrap critical value also seen, most notably in the mid 1970s. These results are suggestive that a pocket
f predictability for returns existed for the predictor dpt−1 in the 1970s with peak predictability seen in the middle of
hat decade, and that since the 1980s onwards predictability appears to have evaporated. For the dividend yield, dyt−1, a
ocket of predictability appears to be present again from the early 1970s but lasting much longer, and with apparently
tronger magnitude, displaying many more contiguous exceedances of the bootstrap critical values for the maximum than
ere seen for dpt−1; indeed, here predictability appears to run until the early to mid 1990s. From the mid to late 1990s
nwards the evidence for predictability disappears. Evidence for both the earnings price ratio, e/pt−1, in part (c) and the
ividend pay out ratio, det−1, in part (d) is less strong than for the previous two series (reflected in the considerably

8 Denoting the IV slope estimate as β̂1 , the confidence bands were computed as β̂1 ± 1.96se(β̂1), where se(β̂1) are the associated IV Eicker–White
tandard errors. These confidence bands should, however, be treated with caution as they are not joint 95% confidence bands for the entire sequence
f slope estimates, but rather represent the marginal 95% confidence band at each point in the sequences of estimated slope coefficients.
9 Where both the maximum tests based on Eicker–White and conventional standard errors reject we report the version with the smallest p-value;

f. Table 3. Corresponding graphs for the rolling sequences are available on request.
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Fig. 4. Forward recursive slope estimates (solid line) and 95% confidence bands (dotted lines). Sample period 1950:01–2017:12. The yt and xt variable
labels are as defined in the main text.
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Fig. 5. Rolling slope estimates (solid line) and 95% confidence bands (dotted lines). Sample period 1950:01–2017:12. The yt and xt variable labels
are as defined in the main text.
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Fig. 6. Plots of forward recursive subsample statistics with marginal and bootstrap 10% and 5% critical values.

larger p-values for the maximum statistics for those series in Table 3), but again the period of predictability appears to be
concentrated in mid 1970s. For both the treasury bill rate, tblt−1, in part (e) and the long term bond yield, ltyt−1, in part
f) there appears to be evidence of predictability across a window from the early 1970s until the mid 1980s, albeit the
trength of predictability appears to waver somewhat over this period, particularly so for ltyt−1. For both of these series,
here is also evidence that predictability is re-emerging from around the period of the recent financial crisis onwards, most
otably so for tblt−1 where a number of exceedances of the bootstrap critical values occur. In the case of tblt−1 running
he IV-combination test on almost any subsample of the data would yield a rejection at the 5% using the marginal χ2

1
ritical value. This observation is also true for the long term rate, ltrt−1, in part (g) and for inflation, inflt−1, in part (i).
ecall that these are the three series for which the full sample IV-combination tests gave significant rejections at the 5%
evel. Finally for the tmst−1 series in part (h) predictability appears evident and consistently strong up until the mid 1990s
fter which the magnitude of predictability starts to tail off and then falls markedly around the time of the financial crisis
nwards. In contrast, the full sample tests reveal no significant evidence (at the 5% level) of predictability from tms .
t−1
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These examples highlight the advantage of considering the recursive sequence of statistics and their evolution through
ime rather than just full sample IV-combination tests, with much stronger evidence for predictability earlier in the sample
han later for a number of the predictors considered.

. Conclusions

Recent research has suggested that should stock returns be predictable, then this is likely to be a temporary
henomenon. Our motivation has been to develop tests with good power to detect such episodes. To avoid the problem
f endogenously-determined sample splits, our proposed tests are derived from sequences of predictability statistics
alculated over systematic subsamples of the data. The tests are based on the maxima of the instrumental variable-based
redictability statistics of Breitung and Demetrescu (2015) taken across sequences of forward and backward recursive,
olling, and double-recursive predictive regressions. The limiting distributions of these statistics were shown to depend
oth on any heteroskedasticity present and on whether the putative predictor follows a near-integrated or weakly
ependent process. To account for these dependencies, fixed regressor wild bootstrap implementations of the tests were
roposed and shown to be first-order asymptotically valid. Monte Carlo simulation demonstrated that the tests display
ecent finite sample size control, and can be considerably more powerful in detecting temporary predictability than full
ample tests. An empirical application to a well-known US monthly stock returns data set highlighted the ability of the
ew tests to detect predictability within the data where full sample tests could not.
We conclude with two suggestions for further research. First, we have focussed on tests based on subsample

mplementations of the IV-combination statistics of Breitung and Demetrescu (2015) which use two instruments per
redictor. It should be possible to apply the same approach to subsample implementations of statistics which use only
ne instrument, such as the statistics considered in section 2.2 of Breitung and Demetrescu (2015) or the IVX statistic
f Kostakis et al. (2015). Second, our proposed tests are based on an approach which assumes a linear predictive regression
odel with a constant slope parameter within the given subsample window and then bases a test on the fluctuations seen

n the sequence of such statistics over a range of subsamples. As such, this approach is ambivalent about the true form
f any time-variation present in the slope parameter and so would be expected to have reasonable power against a wide
ange of patterns of time-variation in the slope parameter, including those generated by threshold or other non-linear
GPs. LM-type tests could be developed based on an assumed non-linear model for the time-variation in the slope and
ould be expected to be more powerful than the tests developed here where this assumed model coincided with, or was
t least a close approximation to, the true (unknown) DGP, but would likely have much lower power if the true DGP was
ot well approximated by the model.

ppendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2020.01.001.
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