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Abstract. In this paper we discuss the exponential map in the case of
nilpotent superalgebras. This provides global coordinates for nilpotent
analytic supergroups, which are useful in the applications.
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1 Introduction

In supersymmetry, originally introduced by Berezin (see [3] and also [4], [21]),
the concept of a Lie supergroup is central and it is indeed the search for extra
symmetries of physical systems that let to the discovery of supersymmetry and
later on of supergeometry (see [25], [26] and the comprehensive treatments [5],
[24], [16] and the references within).

First, the notion of Lie superalgebra was introduced and only later on, there
was a formalization of the notion of Lie and algebraic supergroup. The expo-
nential map plays an eminent role and was originally introduced and studied by
Koszul in [22] and later on the theory was further developed in [18].

In the algebraic setting, the recipe presented in [13], [14], [15] to construct
an algebraic supergroup starting from a Lie superalgebra, uses in a implicit way
the notion of exponential (see also [22], [6]).

In this paper we want to restrict our attention to a special case, which is
however important in the applications, namely the case of a nilpotent analytic
subsupergroup of an analytic complex matrix supergroup. We shall employ freely
the language of Super Harish-Chandra pair (SCHP) introduced in [21] and de-
veloped by Koszul in his fundamental work [22].

In Sec. 2, we present the construction of the exponential, while in the sub-
sequent sections we give applications, important in the study of the Harish-
Chandra representations of supergroups (see [19], [7], [8]).

* Supported by funded project GHAIA (GA 777822).
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2 The exponential map

Let g be a complex contragredient Lie superalgebra, g # A(n,n), g1 # 0; hence
g will be one in the following list of Lie superalgebras (see [20] Prop. 1.1):

A(m,n) with m #n, B(m,n), C(n), D(m,n), D(2,1;a), F(4), G(3) (1)

go is either semisimple or with a one-dimensional center. Hence, by the ordi-
nary theory, we know that the simply connected Lie group G, go = Lie(G) is a
matrix complex analytic and algebraic group. Then, the super Harish-Chandra
pair SHCP G = (G, g) (see [5] Ch. 11 and [12]) can be viewed either as a com-
plex analytic or algebraic supergroup, via the theory of SHCP that establishes
an equivalence of categories between the categories of analytic supergroups and
SHCP (see [6]). We shall take the first point of view and regard G as a com-
plex analytic matrix supergroup, but later on we will also view G as a pair
G = (G, 0¢), O¢ a sheaf of superalgebras, (see [6]).

Fix h a CSA of g and fix P a positive system. Let us define b and n* the
Borel and nilpotent subsuperalgebras:

g=boPoa, tF=0B > g0,  nFi= ) ga (2)

acA aEXP aErP

We will call B* Borel subsupergroup and N* unipotent subsupergroup, their
corresponding analytic Lie supergroups in G. In particular, Btand N* are
connected and are algebraic subsupergroups of G. Let A be the torus with
Lie(A) = b.

We want to define the exponential diffeomorphism: exp : n= — N~ for the
analytic supergroup N~. To ease the notation we shall drop the index “—”.

Our purpose in the construction of the exponential diffeomorphism is to
obtain global coordinates on the nilpotent supergroup N; such coordinates are
going to be essential for some important applications, (see [7], [8]).

We start with some general remarks on the functor of the A-points, we invite
the reader to consult [1] and [2] for the complete details.

Let M be a supermanifold. Instead of looking at the whole functor of points
M(-): (smflds) — (sets), it is sometimes convenient to restrict the functor of
points from the category (smflds) to the subcategory (spts) consisting of just
the superpoints: k°™. These are the supermanifolds ({*}, A™), where A" de-
notes the Grassmann algebra in n generators over k. In this approach the set
M (k") can be endowed with the structure of an ordinary manifold, but with
some peculiarities. The tangent space at a point is a Ag-module and the change
of coordinates induced by a change of coordinates in M must have Af-linear
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differential. These are called Ag-manifolds and we denote with (Agmflds) the
corresponding category. The functor

(spts) — (Apmflds) kO™ s (RO (3)

is a full and faithful embedding (see [1] Sec. 4, Theorem 4.5). We notice that, if
V is a vector superspace, we have the identification V (k%") ~ (V ® A")y and
the previous result is known as the even rules principle (see also [10]).

Proposition 1. 1. If G is a complex matriz supergroup as above, the Ay-
manifold G(k0|") is a group object in the category (Aomflds) and in particular
it is an analytic Lie group. Similarly g(k0|") is an ordinary Lie algebra.

2. The ordinary exponential expyorn : g(k°1") — G(K%™) is a morphism of Ag
manifolds.

Proof. (1) is a simple check. As for (2), one can readily see that the differential
of this map is Ao-linear and the correspondence g(k°") — G(k°") is functorial.

Since the functoriality property of exp in Prop. 1 (refer also to [1,2] for
a thorough treatment of A-points), we can immediately define the exponential
morphism for an analytic supergroup G.

Definition 1. Let G and g as above. We define the exponential map as the
morphism of analytic supermanifolds given on the A-points as the ordinary ex-
ponential as in Prop 1 (2).

Proposition 2. Let N be a nilpotent supergroup as above. Then the exponential
morphism exp: n — N is a global superdiffeomorphism.

Proof. In case N is a unipotent Lie supergroup as in (2), each G(A) is also a
unipotent Lie group and, by a classical result, each expyo» is a diffeomorphism.
Hence exp is a superdiffeomorphism.

3 The nilpotent subsupergroup N~

In this section we give some applications of the global coordinates we have built in
the previous section. Let I' = N~ AN™T denote the big cell; it is the open analytic

subsupermanifold I" = (Nf;l]/\”r , OG|NfZ]/v .) of the analytic supergroup G =

(é, O¢). We need some preliminary propositions.
Proposition 3. N~ is a section for I' — I'/ B, the left action of A reads:
AxT'/BY — T'/B*, (h,nB*(A))— hnh=1B*(A),

where n € N*(T), h € A(T), T € (smflds). ((smflds). denoting the category of
analytic supermanifolds).
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Proof. Since the big cell I' C G is right B¥-invariant and open, and the canonical
projection p: G — G/B™ is a submersion, we can define the open subsuperman-
ifold of G/B™:

[‘/BJr = (F/BJraOG/B*‘N)
r/B+
We have a N~ equivariant diffeomorphism N~ — I'/BT, n= — n~B*(T),
n~ € N=(T), T € (smflds).. In fact, by the ordinary theory we have a diffeo-
morphisms of the underlying differentiable manifolds and the differential at the
identity is an isomorphism: n~™ = g/b™.

Clearly p~}(I'/B*) = I'. We are going to construct a section s: I'/BT — T.
The local splitting v: N~ x BY — I' is an holomorphic morphism such that
v*Or/p+ = Oy~ ® 1. Hence we have an isomorphism N~ — I'/B* given by
the composition of the “canonical” embedding i:: N~ < N~ x BT with v and
p (which is essentially the same as considering p o V\fo{e})' Its inverse is the
required section.

Proposition 4. The (ordinary) torus A normalizes N*.
Proof. We give the proof for NT = N. We want to prove that the conjugation

conj(a) : G — G conj(a) = £y—1 01g, acA

stabilizes N. Since N is connected and the exponential map exp: n — N is
surjective it is enough to prove that (dconj(a))1(n) € n We know from the
infinitesimal theory that ad(h)(n) = n. Hence, we have

Ad(eX)Y =eX(Y) VX ebh, Yen

so that Ad(e!®)n = n. Since the exponential map of an abelian connected Lie
group is surjective we have that Ad(A)n = n.

By the simply connectedness of N, we get a map conj(a) : N — N.Itis easy
to check that the pair

e~ - —

Ad(a) : n—n conj(a) : N - N

is a SHCP morphism: (conj(a), Ad(a)) : (N,n) — (G, g), so that, by the equiv-
alence of categories between analytic SHCP and analytic supergroups, we have
a morphism of super Lie groups N — G. Since its differential coincides with the
differential of conj(a) : N — G and the reduced maps are the same, the two
morphisms coincide, hence conj(a)N = N.

Let us fix a character x : A — C* of the ordinary torus, that we can trivially
extend to a character (still denoted by ) of the supergroup B*. Define:

LX(I') := {f € Oc(I")| f(gb) = x(0)~" f(9)}
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We can geometrically view this superspace as the superspace of sections of the
line bundle uniquely associated with y. This superspace is the key for the con-
struction of the infinite dimensional representations of real forms of the analytic
supergroup G (see [7], [8] for more details). The actions that we are going to
describe are absolutely essential for the realization of such representations.

Since A acts on N~ by conjugation (see Prop. 4), we have a global action of
A on I' defined as:

a-(nbY)=(an"a"Y)b*, aec A, n e N"(T),b* € BY(T).
Since A also acts on BT by left translation, we can define the left action of A
on I as:
a-(n"b") = (an"a Ha-bT.
Both actions commute with right translations by BT and hence define represen-
tations of A on LX(I")
i, 0: Ax LX(I") — LX(I")

where:

io(f)(n7bF) = f((a™n"a)b™),  La(f)(n707) = f((@™'n"a)a”'bT)  (4)

anda € A, n~ € N~(T), bt € BT(T), f € LX(I).
Let t, denote the global homogeneous exponential coordinates on N~ ob-
tained by Prop. 2.

Lemma 1. Let the notation be as above. Then

1. gaf = X(a)(iaf) _
2. igte = Xal(a)ts Vac A

where xo 15 the character of the mazimal torus A obtained by exponentiating the
root a € h*.

Proof. (1) follows immediately from the definitions. For (2) let n = exp(}_4cp
ysX_g) be an element in N, then the result comes from the following formal
calculation in the exponential global coordinates:

ta(a”'na) = ta(exp( Y ysAd(a)X_p)) = ta(exp( ) ysxp(a)X_p)
BeP BeP

= Xal(a)ta(n), ac€ Avv ys € C

4 The action of U(g) and G on LX(I")

Now we want to use the theory developed so far and extend the action of the
maximal torus A C G to an action of the whole group on LX(I"). We start
by defining the natural action of U(g) on the holomorphic functions on any
neighbourhood W of the identity of the supergroup G.
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Definition 2. Let W C G be an open neighbourhood of the identity 1g in G.
There are two well defined actions of g, hence of U(g), on Og(W), that read as
follows:

(X)f=(=Xeu(f), X)) f=>0eX)u(f), Xecg

The actions ¢ and @ commute with each other. Moreover, if U is open in

G/B, then ¢ is a well defined action on LX(U).

We now want to show that the natural action ¢ of U(g) on LX(N~B™) pre-

serves the polynomial sections on N—. For this we need some preliminary nota-
tion. Since g = n~ @ bT, if we fix bases of n= and b, by the PBW (Poincaré
Birkhoff Witt) theorem any X € U(g) can be written as

X = ZC[J(X)B]N], B] Eu(b+),N[ GU(n_) (5)
I,J

Lemma 2. Let ¢ € Og(N~B™T). In the SHCP notation, ¢ is in LX(N~BT) if
and only if

$(X)(nb) = X(0) "> ers(0.X)ABG(NS)(n), X €U(g), A= dx
1J

where b.X 1is the adjoint action of b € B* on U(g) and as usual By denotes the
antipode of By in the Hopf superalgebra U(g).

Proof. By the very definition we have ¢ € LX(N~B™) if

1. 176 =X(b)"'¢, be BF
2. DE(¢) = AY)o, Alg, = dX.

where as usual X denotes the reduced morphism. The result comes with a cal-
culation.

Notice that once the lemma is established, if p is a polynomial in the global
coordinates of N~ , we can define p~ € LX(N~BY) as:

p~(X)(nb) = X(0)™" > ers (0. X)ABF )p(N,)(n)
1J

Vice-versa we can recover p from p™ restricting to N . In the language of SHCP
this amounts to two restrictions: we impose b = 1 and X € U(n~). We shall
denote the set of such p™~ with P~.

Proposition 5. The actions ¢ of U(g) on LX(U), p~*(U) C I leave P~ invari-
ant.
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Proof. We need to show that, given Z € U(g) and X € U(n™), (DEp™~|n-)(X)
is a polynomial section. We have (see [5] Sec. 7.4):
(DEP™)(X)(g) = DR~ ((971.2)X)](g)
Hence if n € N7, we have:
(DEp™)(X)(n) = (=)W~ ((n~".2)X)](n)
= (=D)AIPY e (01 2) X)ABrP™ (Ng)] ()
1J

where By and N are obtained as in (5) applied to (n™1.Z)X. The last equality
is true by Lemma 2.

Once this is established, we have the following result.

Theorem 1. There is a non-singular U(g) invariant pairing between P~ and
the Verma module V) :

():PYxU() —C (fou) = (D)MOW) ) ()
Proof. In order for (,) to be a U(g) invariant pairing, we need to verify:
() f,u) = (f.(=0VTu), cuclp),feP™

where ()7 denotes the antiautomorphism of U(g) induced by X ~ —X with
X € g. This is just a check.

Now let g, be a real form of g and define the real supergroup G, = (CAT';, or),
where C/T‘vr is a real form of C:', Lie(évr) = gr0. Since g, + bT = g as real super-
algebras (see [9], Iwasawa decomposition), we have that S := G, BT is an open
subsupermanifold of G.

Theorem 2. Assume LX(S) # 0 modulo J the submodule generated by the odd
part. Then LX(S) contains an element 1 which is an analytic continuation of
1~ and

(U@ =P~ =7y
where m_y the irreducible representation with lowest weight —\. Furthermore
LX(S) carries a G, representation defined as:

(9-f)=0f g€G,
X.f=DEf Xege

where, as usual, X is the antipode of X € U(g).
Proof. Direct check.

The closure of £(U(g))y in LX(S), with a Fréchet superspace structure is a
Harish-Chandra representation, with £(U(g))« as its K, finite part, where K, is
the supergroup corresponding to the subalgebra £, in the Cartan decomposition
of g, (see [9]). The proof of these facts is non trivial, we invite the reader to see

(7], [8].



8 Carmeli, Fioresi and Varadarajan
References
1. L. Balduzzi, C. Carmeli, R. Fioresi, The local functors of points of supermanifolds.
Exp. Math. 28 (2010), no. 3, 201-217.
2. L. Balduzzi, C. Carmeli, R. Fioresi A comparison of the functors of points of
supermanifolds. J. Algebra Appl. 12 (2013), no. 3, 125-152, 41 pp.
3. F. A. Berezin, Introduction to superanalysis. D. Reidel Pub., Holland, 1987.
4. F. A. Berezin, D. Leites, Supermanifolds, Dokl. Akad. Nauk SSSR, Vol. 224, no. 3,
505-508, 1975.
5. C. Carmeli, L. Caston, R. Fioresi, Mathematical Foundation of Supersymmetry,
EMS Ser. Lect. Math., European Math. Soc., Zurich, 2011.
6. C. Carmeli, R. Fioresi, Super Distributions, Analytic and Algebraic Super Harish-
Chandra pairs, Pac. J. Math., vol. 263, p. 29-51, 2013.
7. C. Carmeli, R. Fioresi, V.S. Varadarajan, Super Bundles, Universe, (2018), 4(3),
46.
8. C. Carmeli, R. Fioresi, V. S. Varadarajan Highest weight Harish-Chandra super-
modules and their geometric realizations., Trasf. Groups, preprint, 2019.
9. M. K. Chuah, Fioresi R., Hermitian real forms of contragredient Lie superalgebras,
J. Algebra, Vol. 437, 161-176, 2015.

10. P. Deligne, J. Morgan, Notes on supersymmetry (following J. Bernstein), in:
“Quantum fields and strings. A course for mathematicians”, Vol. 1, AMS, 1999.

11. R. Fioresi, Compact forms of complex Lie supergroups. J. Pure Appl. Alg., vol. 218,
p. 228-236, 2014.

12. R. Fioresi, Smoothness of Algebraic Supervarieties and Supergroups, Pac. J. Math.,
234, 295-310, 2008.

13. R. Fioresi, F. Gavarini, Chevalley Supergroups, AMS Memoirs, vol. 215, 1-64, 2012.

14. R. Fioresi, F. Gavarini, On Algebraic Supergroups with Lie superalgebras of classical
type, J. Lie Theory, vol. 23, p. 143-158, 2013.

15. R. Fioresi, F. Gavarini, On the construction of Chevalley supergroups. Lecture
Notes in Math., 2027, Springer, Heidelberg, 2011.

16. R. Fioresi, M. A. Lledo The Minkowski and Conformal Superspaces: The Classical
and Quantum Descriptions, World Scientific Publishing, 2015.

17. R. Fioresi, M. A. Lledo, V. S. Varadarajan The Minkowski and conformal super-
spaces, J. Math. Phys., 48, 113505, 2007.

18. S. Garnier, T. Wurzbacher, Integration of vector fields on smooth and holomorphic
supermanifolds, Documenta Mathematica, 18, (2013), 519-545.

19. Harish-Chandra, Representations of semi-simple Lie groups IV, V, VI. Amer. J.
Math. no. 77, 743-777 (1955); no. 78, 1-41 and 564-628, (1956).

20. V. G. Kac, Lie superalgebras, Adv. Math. 26 (1977), 8-26.

21. B. Kostant. Graded manifolds, graded Lie theory, and prequantization. Lecture
Notes in Math., Vol. 570, Springer, Berlin, 1977.

22. J.-L., Koszul, Graded manifolds and graded Lie algebras, Proceedings of the in-
ternational meeting on geometry and physics (Florence, 1982), 71-84, Pitagora,
Bologna, 1982.

23. D. A. Leites, Introduction to the theory of supermanifolds, Russian Math. Surveys
35: 1 (1980), 1-64.

24. V. S. Varadarajan, Supersymmetry for mathematicians: an introduction, Courant
Lecture Notes 1, AMS, 2004.

25. D.V. Volkov, V.P. Akulov, Is the neutrino a Goldstone particle?, Phys. Lett. B 46

(1973) 109.



The exponential of nilpotent supergroups 9

26. J. Wess, B. Zumino. Supergauge transformations in four dimensions. Nucl. Phys.
B, 70, (1974), 39-50.



