
18 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Conti, C., Dyn, N., Romani, L. (2020). Convergence analysis of corner cutting algorithms refining nets of
functions. MATHEMATICS AND COMPUTERS IN SIMULATION, 176, 134-146
[10.1016/j.matcom.2020.01.012].

Published Version:

Convergence analysis of corner cutting algorithms refining nets of functions

Published:
DOI: http://doi.org/10.1016/j.matcom.2020.01.012

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/726443 since: 2021-02-21

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.matcom.2020.01.012
https://hdl.handle.net/11585/726443


This is the final peer-reviewed accepted manuscript of: 

Costanza Conti,  Nira Dyn, Lucia Romani:  Convergence analysis of  corner cutting
algorithms refining nets of functions, Mathematics and Computers in Simulation,
Volume 176, 2020, Pages 134-146 

The final published version is available online at:

 https://doi.org/10.1016/j.matcom.2020.01.012 

Rights / License:

The terms and conditions  for  the reuse of  this  version of  the manuscript  are specified in the
publishing policy. For all terms of use and more information see the publisher's website.  

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

https://cris.unibo.it/
https://doi.org/10.1016/j.matcom.2020.01.012


Convergence analysis of corner cutting algorithms refining nets of functions

Costanza Contia, Nira Dynb, Lucia Romanic,∗

aDipartimento di Ingegneria Industriale, Università di Firenze, Italy
bSchool of Mathematical Sciences, Tel-Aviv University, Israel

cDipartimento di Matematica, Alma Mater Studiorum Università di Bologna, Italy

Abstract

In this paper we propose a corner cutting algorithm for nets of functions and prove its convergence using some
approximation ideas first applied to the case of corner cutting algorithms refining points with weights proposed by
Gregory and Qu. In the net case convergence is proved for the above mentioned weights satisfying an additional
condition. The condition requires a bound on the supremum of the relative sizes of the cuts.

Keywords: Corner cutting for polygonal lines; Coons transfinite interpolation; Corner cutting for nets of functions;
Convergence; Lipschitz continuity

1. Introduction

This paper considers corner cutting algorithms refining nets of functions and proves the convergence of these
algorithms by extending a new approach to the proof of convergence in the case of corner cutting algorithms refining
points.

The first instance of a corner cutting algorithm for points was proposed by de Rham in [21, 22], where curves are
obtained by repeatedly cutting off the corners of a given polygon. Precisely, at each iteration each edge of the current
polygon is divided into three pieces in the ratio w : (1 − 2w) : w, where w is a given parameter. The de Rham process
is convergent to a continuous curve if w ∈ (0, 1

2 ) and to a differentiable curve if w < 1
3 (see [20]). If w = 1

4 the de
Rham curve is a quadratic spline and the corresponding iterative algorithm is also known as the Chaikin algorithm
introduced independently in [4]. A natural generalization of the de Rham algorithm is obtained by dividing each
polygon edge into more than three pieces (see [11]) or by dividing each edge of the k-th iteration into three pieces in
the level-dependent ratio αk : (βk − αk) : 1 − βk where αk and βk are given parameters, or even by choosing αk

i and βk
i

depending on the level and the location (see [1, 2, 14, 17, 19]). The latter case is the most relevant to our paper and
its convergence was analyzed in [2].

Corner cutting algorithms are special instances of non-uniform subdivision schemes, and they can be analyzed by
tools for subdivision (see, e.g., [5, 13]). Yet, the applications of these tools to the analysis of corner cutting for nets is
not clear.

In this paper, we provide an alternative proof of convergence, based on approximation arguments, for the general
class of corner cutting algorithms for points with weights as in [17]. The choice of this analysis method is motivated
by the fact that the approximation arguments are naturally extendable to the case of nets. Indeed, the two main
achievements of this paper are the design of a corner cutting algorithm for nets of functions (generalization of [8])
and the proof of its convergence for weights as in [17] but satisfying an additional condition which requires a bound
on the supremum of the relative sizes of the cuts.

The key idea of our corner cutting algorithm for nets of functions is to construct, at each recursion step, a C0-
piecewise Coons interpolant [6] to the coarse net of functions, from which the new refined net is sampled. This
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approach extends to the net case the classical procedure used by corner cutting algorithms refining points where, at
each recursion step, the refined points are sampled from a piecewise linear interpolant to the given points.

Besides the theoretical interest of the convergence result, corner cutting algorithms for nets of functions generate
a variety of C0 bivariate functions approximating the initial net, with the corner cutting weights acting as shape pa-
rameters. In a future work we plan to study the smoothness of the limits in the case of nets, and to derive conditions
on the corner cutting weights which guarantee C1 limit functions. This was investigated in the case of points in [3]
and in [17].

The structure of the paper is as follows. In Section 2 we give our proof of the convergence of corner cutting algorithms
refining points (polygonal lines) based on a nice approximation argument. In Section 3 we consider the case of
bivariate nets of functions. First, in Subsection 3.1 we give preliminary results on Coons patches (see [6]) and their
approximation properties since they are analogous to linear interpolants in the case of points. Then, in Subsection 3.2
we introduce the notion of bivariate nets of functions and present a corner cutting algorithm for them. The convergence
theorem and its proof are given in Subsection 3.3. Conclusions are drawn in Section 4.

2. Corner cutting algorithms for points in Rn

Corner cutting algorithms for points, as subdivision algorithms refining points (see [12]), are iterative methods
that starting from a given sequence of points p[0] = {p[0]

i , i ∈ Z} produce at each iteration denser and denser sequences
of points p[k], k > 0. Whenever convergent, they allow the user to define a continuous curve that approximates the
shape described by the given polyline.
In this section we investigate the convergence of univariate corner cutting schemes under the assumption that the
corner cutting weights are as in Gregory and Qu [17]. Convergence of corner cutting algorithms is equivalent to the
uniform convergence of any sequence of continuous piecewise interpolants to the points generated through the iterative
process. Our proof of convergence is based on the simple but crucial observation that the piecewise linear interpolant
L(u[k+1],p[k+1]) to the points p[k+1] at the corresponding parameter values u[k+1] is a piecewise linear interpolant to
L(u[k],p[k]) at (u[k+1],p[k+1]), where the parameter values u[k] are generated by the same corner cutting procedure as
p[k]. Using an elementary error formula, we show that the sequence of piecewise linear interpolants {L(u[k],p[k])}k≥0
is a Cauchy sequence.

Definition 2.1 (Corner cutting weights). Let `(Z) be the set of scalar valued sequences indexed by Z. We denote by
W a subset of `(Z) × `(Z) of the form

W :=
{
(α,β) ∈ `(Z) × `(Z) : inf

i∈Z
{αi, 1 − βi, βi − αi} > 0

}
. (2.1)

Moreover, for γ := (α,β) ∈W we define

µ(γ) := sup
i∈Z
{βi − αi, 1 − βi−1 + αi}. (2.2)

Now let `n(Z) denote the set of vector valued sequences indexed by Z and let P = {Pi ∈ Rn, i ∈ Z} ∈ `n(Z). In the
following we define the corner cutting operator for an arbitrary sequence P of points in Rn.

Definition 2.2 (Corner cutting operator). The corner cutting operator with corner cutting weights γ := (α,β) ∈ W,
denoted by CCγ, maps `n(Z) into `n(Z). For P ∈ `n(Z)

(
CCγ(P)

)
2i

= (1 − αi)Pi + αiPi+1,
(
CCγ(P)

)
2i+1

= (1 − βi)Pi + βiPi+1.
(2.3)

Remark 2.3. The corner cutting operator given in Definition 2.2 is the same as the one studied in [17]. A more
general corner cutting operator is considered in [2]. The condition required in (2.1) on the corner cutting weights is
related to the observation that

αi =
‖Q2i − Pi‖2

‖Pi+1 − Pi‖2
, 1 − βi =

‖Pi+1 − Q2i+1‖2

‖Pi+1 − Pi‖2
, βi − αi =

‖Q2i+1 − Q2i‖2

‖Pi+1 − Pi‖2
,
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where Q2i =
(
CCγ(P)

)
2i

, Q2i+1 =
(
CCγ(P)

)
2i+1

.

Pi

Pi+1

Q2i+1
βi − αi :

1− βi :

Q2iαi :

Figure 1: One application of the CCγ-operator on a sequence of points in `2(Z). Here Q2i =
(
CCγ(P)

)
2i

and Q2i+1 =
(
CCγ(P)

)
2i+1

.

Denoting by P[0] ∈ `n(Z) a sequence of points in Rn and assuming that, for each k ≥ 0, a pair of scalar valued
sequences γ[k] := (α[k],β[k]) ∈ W is assigned, we can formulate the corner cutting algorithm, for short the CCγ-
algorithm, as follows.

Algorithm 2.4. Corner cutting algorithm for points:

Input: P[0] ∈ `n(Z)

For k = 0, 1, . . . ,

Input: γ[k] ∈W

Compute P[k+1] = CCγ[k] (P[k]) according to (2.3)

In the remainder of this section we want to give a new simple proof of the fact that, for all choices of {γ[k] ∈W, k ≥ 0}
satisfying supk≥0 µ(γ[k]) < 1, and for all sequences of points in Rn with bounded L∞ distance between every two
consecutive points, the corner cutting algorithm always converges. To this end we present two technical lemmas,
where the first one is taken from [9, Lemma 18] and is here recalled for completeness.

Lemma 2.5. Let f be a univariate function defined on [a, b]. If f is Lipschitz continuous with Lipschitz constant L,
then the error in approximating f by the linear interpolating polynomial at the points a, b,

L(a, b; f (a), f (b))(x) =
x − a
b − a

f (b) +
b − x
b − a

f (a),

is bounded by

| f (x) − L(a, b; f (a), f (b))(x)| ≤
(b − a)L

2
, x ∈ [a, b] .

Proof. It is well known that

f (x) − L(a, b; f (a), f (b))(x) = (x − a)(x − b)[a, b, x] f (2.4)

with [a, b, x] f the divided difference of order 2 of f at the points a, b, x. By definition of divided differences we get

f (x) − L(a, b; f (a), f (b))(x) = (x − a)(x − b)[a, b, x] f =
(x − a)(x − b)

b − a

(
f (b) − f (x)

b − x
−

f (x) − f (a)
x − a

)
. (2.5)

Since |(x−a)(x−b)|
b−a ≤ b−a

4 , and f is Lipschitz continuous, then (2.5) yields

| f (x) − L(a, b; f (a), f (b))(x)| ≤
(b − a)

4

(
L|b − x|
|b − x|

+
L|x − a|
|x − a|

)
=

(b − a)L
2

.

The next lemma is about piecewise Lipschitz continuous functions. It is a well-known result but we provide the proof
for convenience of the reader.
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Lemma 2.6. Let f be a continuous function, Lipschitz continuous on each interval of a partition · · · < xi < xi+1 < · · ·
of the real line R = ∪i∈Z[xi, xi+1), with a bound L on the Lipschitz constants. Then f is Lipschitz continuous in R with
Lipschitz constant L.

Proof. Let t1, t2 ∈ R, t1 < t2. If t1, t2 belong to the same interval of the partition, say t1, t2 ∈ [xi, xi+1), the inequality
| f (t2) − f (t1)| ≤ L |t2 − t1| holds by assumption. Otherwise, assuming t1 ∈ [xi, xi+1), t2 ∈ [x j, x j+1), j ≥ i + 1, using the
continuity of f and writing

f (t2) − f (t1) = f (t2) − f (x j) +

j−1∑
l=i+1

( f (xl+1) − f (xl)) + f (xi+1) − f (t1) (2.6)

we easily arrive at

| f (t2) − f (t1)| ≤ L |t2 − x j| + L
j−1∑

l=i+1

|xl+1 − xl| + L |xi+1 − t1| = L |t2 − t1|,

which concludes the proof.

Theorem 2.7. For {γ[k]}k≥0 ⊂W such that
sup
k≥0

µ(γ[k]) < 1, (2.7)

the corner cutting algorithm (Algorithm 2.4) converges uniformly for all initial sequences P[0] = {P[0]
i ∈ R

n, i ∈ Z} ∈
`n(Z) satisfying

‖P[0]
i+1 − P[0]

i ‖∞ < L, ∀i ∈ Z,

with L > 0.

Proof. We prove convergence of the CCγ-algorithm working component-wise. First we introduce a parametrization
at each refinement level. Without loss of generality, we assume u[0] = Z and, for all k ≥ 0, we denote by u[k] the scalar
sequence obtained from u[0] by applying k steps of the CCγ-algorithm (Algorithm 2.4). Precisely, from the (k − 1)-th
level parameters, the k-th level parameters are obtained by the rules

u[k]
2i = (1 − α[k−1]

i )u[k−1]
i + α[k−1]

i u[k−1]
i+1 , u[k]

2i+1 = (1 − β[k−1]
i )u[k−1]

i + β[k−1]
i u[k−1]

i+1 .

Denoting by p[k]
i one component of P[k]

i , we construct the piecewise linear interpolant to the data (u[k]
i , p[k]

i ) and denote
it by L(u[k],p[k]). In other words

L(u[k],p[k])(u) = L(u[k]
i , u[k]

i+1; p[k]
i , p[k]

i+1), u ∈ [u[k]
i , u[k]

i+1].

By the assumption on P[0], we know that |p[0]
i+1 − p[0]

i | < L for all i ∈ Z and L(u[0],p[0]) is Lipschitz continuous with
constant L on [u[0]

i , u[0]
i+1] = [i, i + 1]. We show by induction that, for k ≥ 0, L(u[k+1],p[k+1]) is Lipschitz continuous

with constant L on [u[k+1]
i , u[k+1]

i+1 ]. Indeed, all points of p[k+1] lie on L(u[k],p[k]) and therefore by the choice of u[k+1]

we know that |p[k+1]
i+1 − p[k+1]

i | ≤ L |u[k+1]
i+1 − u[k+1]

i |. Hence, by Lemma 2.6, we can conclude that L(u[k],p[k]) is Lipschitz
continuous in R with constant L for all k ≥ 0. Since L(u[k+1],p[k+1]) is, by construction, a piecewise linear interpolant
to L(u[k],p[k]) at (u[k+1],p[k+1]), we can regard L(u[k+1],p[k+1]) as an approximation of L(u[k],p[k]). In particular,
for u ∈ [u[k+1]

2i , u[k+1]
2i+1 ], we have |L(u[k+1],p[k+1])(u) − L(u[k],p[k])(u)| = 0 (see Figure 2). On the other hand, for

u ∈ [u[k+1]
2i−1 , u

[k+1]
2i ], since L(u[k],p[k]) is Lipschitz continuous with constant L, we obtain by Lemma 2.5 that

|L(u[k+1],p[k+1])(u) − L(u[k],p[k])(u)| ≤
1
2

L|u[k+1]
2i − u[k+1]

2i−1 | ≤
1
2

L d[k+1], (2.8)

where d[k] = supi |u
[k]
i+1 − u[k]

i |. Now, we proceed by comparing d[k+1] with d[k]. To this purpose we have to distinguish
the following two cases (see Figure 2):

4



• Case 1: u[k+1]
2i+1 − u[k+1]

2i = (α[k]
i − β

[k]
i )u[k]

i + (β[k]
i − α

[k]
i )u[k]

i+1 = (β[k]
i − α

[k]
i )(u[k]

i+1 − u[k]
i );

• Case 2: u[k+1]
2i − u[k+1]

2i−1 = (1 − β[k]
i−1)(u[k]

i − u[k]
i−1) + α[k]

i (u[k]
i+1 − u[k]

i ).

Both cases yield that d[k+1] ≤ µ[k] d[k] with µ[k] := µ(γ[k]). Thus, in view of (2.8), we get that |L(p[k+1],u[k+1])(u) −
L(u[k],p[k])(u)| ≤ 1

2 Ld[k+1] ≤ 1
2 L d[0] (

∏k
h=0 µ

[h]). Taking into account also that
∏k

h=0 µ
[h] < µk+1 with µ := supk≥0 µ

[k],
for any arbitrary m ∈ Z+ we can write

|L(u[k+m],p[k+m])(u) − L(u[k],p[k])(u)| ≤
∑m−1
`=0 |L(u[k+`+1],p[k+`+1])(u) − L(u[k+`],p[k+`])(u)|

≤ 1
2 L d[0]µk+1

(∑m−1
`=0 µ

`
)
≤ Ld[0]

2(1−µ) µ
k+1,

from which we conclude that {L(u[k],p[k])}k≥0 is a Cauchy sequence and therefore convergent.

p
[k+1]
2i+1

p
[k+1]
2i

p
[k]
i

u
[k]
i u

[k]
i+1u

[k+1]
2i+1

p
[k+1]
2i−1

p
[k+1]
2i−2

p
[k]
i+1

u
[k+1]
2i−2u

[k]
i−1

p
[k]
i−1

u
[k+1]
2i−1 u

[k+1]
2i

Figure 2: L(u[k+1],p[k+1]) (dashed red) versus L(u[k],p[k]) (solid black).

Remark 2.8. Some important observations:

(i) The condition that the initial sequence of points P[0] ∈ `n(Z) is such that ‖P[0]
i+1 − P[0]

i ‖∞ < L for all i ∈ Z, is
equivalent to requiring the piecewise linear interpolant to the data (i, P[0]

i ), i ∈ Z to be Lipschitz continuous
with Lipschitz constant L.

(ii) Convergence of the corner cutting algorithm can be obtained under weaker assumptions on α[k]
i and β[k]

i than
the ones required in Theorem 2.7, namely by requiring that limk→+∞

∑m−1
`=0

∏k+`
h=0 µ

[h] = 0 for all m ∈ Z+.

3. Corner cutting algorithms for nets of functions

The aim of this section is first to define a corner cutting algorithm refining nets of functions and then to show its
convergence by suitably extending the results introduced in the previous section. For the first goal we need to recall
the definition of Coons patch and to prove some of its properties.

3.1. Preliminary results on the Coons patch
Since our proof of convergence of corner cutting schemes refining nets of univariate functions (u-functions for

short) is based on error estimates for Coons interpolation, we need to recall first the definition of bilinear patches and
Coons patch (see [15], [16]). Then we point out some important properties of Coons patches that are relevant to our
discussion.

Definition 3.1 (The bilinear patch). The bilinear patch interpolating the four points P = {Pi j, i, j ∈ {0, 1}} is

BL(P; h)(s, t) = (1 − s
h1

)
(
(1 − t

h2
)P00 + t

h2
P01

)
+ s

h1

(
(1 − t

h2
)P10 + t

h2
P11

)
,

where h = (h1, h2) and (s, t) ∈ [0, h1] × [0, h2].

5



It is easy to verify that
BL(P; h)(ih1, jh2) = Pi j, i, j ∈ {0, 1}.

Definition 3.2 (The Coons patch). Let φ0(s), φ1(s), s ∈ [0, h1] and ψ0(t), ψ1(t), t ∈ [0, h2] be four continuous u-
functions in R3 such that P ji = φi( jh1) = ψ j(ih2) for i, j ∈ {0, 1}. The Coons patch interpolating the four u-functions
φ0, φ1, ψ0, ψ1 is

C(φ0, φ1, ψ0, ψ1; h)(s, t) = (1 − s
h1

)ψ0(t) + s
h1
ψ1(t) + (1 − t

h2
)φ0(s) + t

h2
φ1(s) − BL(P; h)(s, t), (3.1)

where h = (h1, h2) and (s, t) ∈ [0, h1] × [0, h2].

In the following, to simplify the notation we write C(φ, ψ; h) in place of C(φ0, φ1, ψ0, ψ1; h).

Remark 3.3. It is easy to verify the transfinite interpolation properties of the Coons patch interpolant, i.e.

C(φ, ψ; h)(0, t) = ψ0(t), C(φ, ψ; h)(h1, t) = ψ1(t),

C(φ, ψ; h)(s, 0) = φ0(s), C(φ, ψ; h)(s, h2) = φ1(s).

Next, the notion of mixed second divided difference of a bivariate function F is introduced.

Definition 3.4. The mixed second divided difference (MSDD) of a bivariate function F at the points (σi, τ j) ∈ R2,
i, j ∈ {1, 2} is defined as

[σ1, σ2; τ1, τ2]F =
1

(σ1 − σ2)(τ1 − τ2)
(F(σ1, τ1) + F(σ2, τ2) − F(σ2, τ1) − F(σ1, τ2)).

The following result expresses the error between a bivariate function F and the Coons patch interpolating its
boundary u-functions.

Proposition 3.5. Let F be a bivariate continuous function defined on a rectangular domain R = [a, b] × [c, d], and
denote by C(F|∂R) the Coons patch interpolating F|∂R. Then

F(s, t) − C(F|∂R)(s, t) =
(s − a)(s − b)(t − c)(t − d)

(b − a)(d − c)
([b, s; d, t]F − [s, a; d, t]F + [s, a; t, c]F − [b, s; t, c]F), (s, t) ∈ R.

Proof. Let (Ls(F))(s, t) = s−a
b−a F(b, t) + b−s

b−a F(a, t) and (Lt(F))(s, t) = t−c
d−c F(s, d) + d−t

d−c F(s, c). In view of (2.4) we get

((I − Ls)(F))(s, t) =
(s − a)(s − b)

b − a

(
F(b, t) − F(s, t)

b − s
−

F(s, t) − F(a, t)
s − a

)
,

and

((I − Lt)(F))(s, t) =
(t − c)(t − d)

d − c

(
F(s, d) − F(s, t)

d − t
−

F(s, t) − F(s, c)
t − c

)
.

Moreover, since C(F|∂R) = Ls(F) +Lt(F) − Lt(Ls(F)), we can also write

F(s, t) − C(F|∂R)(s, t) = ((I − Lt)(I − Ls)(F))(s, t)

= (I − Lt)
(

(s−a)(s−b)
b−a

(
F(b,t)−F(s,t)

b−s −
F(s,t)−F(a,t)

s−a

))
.

Therefore,

F(s, t) − C(F|∂R)(s, t) =
(t−c)(t−d)

d−c
(s−a)(s−b)

b−a

(
[b,s]F(·,d)−[s,a]F(·,d)

d−t −
[b,s]F(·,t)−[s,a]F(·,t)

d−t

−
[b,s]F(·,t)−[s,a]F(·,t)

t−c +
[b,s]F(·,c)−[s,a]F(·,c)

t−c

)
=

(t−c)(t−d)
d−c

(s−a)(s−b)
b−a

(
[b,s](F(·,d)−F(·,t))

d−t −
[s,a](F(·,d)−F(·,t))

d−t

−
[b,s](F(·,t)−F(·,c))

t−c +
[s,a](F(·,t)−F(·,c))

t−c

)
=

(t−c)(t−d)
d−c

(s−a)(s−b)
b−a ([b, s; d, t]F − [s, a; d, t]F + [s, a; t, c]F − [b, s; t, c]F) .
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We introduce an important property of bivariate functions, which plays a key role in the convergence analysis of
corner cutting schemes refining nets of functions.

Definition 3.6. A bivariate function F defined on Ω ⊂ R2 has the bounded MSDD property (BMSDD property) with
constant L in Ω if for any σ1, σ2; τ1, τ2 ∈ R such that (σi, τ j) ∈ Ω, i, j ∈ {1, 2}, satisfies

|[σ1, σ2; τ1, τ2]F| ≤ L.

Remark 3.7. (i) Since the MSDD (mixed second divided difference) of a C2 function is equal to its second mixed
derivative at an intermediate point, as can be easily proved by Taylor expansion up to first order, a bivariate
function with a bounded second mixed derivative has bounded MSDDs.

(ii) A simple example of a class of bivariate functions that satisfy Definition 3.6 is F(s, t) = f (s) + g(t). For such a
bivariate function L = 0.

Combining Definition 3.6 with Proposition 3.5 we get

Corollary 3.8. Let F be a bivariate continuous function defined on a rectangular domain R = [a, b] × [c, d], and
denote by C(F|∂R) the Coons patch interpolating F|∂R. If F has the BMSDD property with constant L in R, then

‖F(s, t) − C(F|∂R)(s, t)‖∞ ≤ L
(b − a)(d − c)

4
, (s, t) ∈ R.

Note that Corollary 3.8 is a generalization of Lemma 2.5 to bivariate transfinite interpolation. Note also that, in
light of Remark 3.7, the set of functions to which Corollary 3.8 is applicable is rather wide.

3.2. Corner cutting of nets of u-functions

In this section we discuss a generalization of the Chaikin type corner-cutting algorithm for nets of u-functions,
that was presented in [7] and [8]. To this purpose we start by introducing the notion of net of u-functions.

Definition 3.9 (Net of u-functions). A net N is a bivariate function defined on a grid of lines

T = T ((h[s],h[t]),O) = {si × R, i ∈ Z} ∪ {R × t j, j ∈ Z} , (3.2)

with h[s],h[t] bi-infinite sequences of positive numbers, O = (s0, t0), si+1 = si + h[s]
i , i ∈ Z, and similarly for {t j} j∈Z

with h[t] replacing h[s]. In other words, N consists of the u-functions N(s, t j) and N(s j, t), j ∈ Z defined on R. The
point O is termed the origin of T and the intervals [s j, s j+1], [t j, t j+1], j ∈ Z are termed grid intervals.

To stress the relation between a net N of u-functions and the corresponding grid of lines we use the notation N = N(T ).

Definition 3.10 (C0 net). A net N is termed a C0 net if all the u-functions φ j(s) = N(s, t j), ψ j(t) = N(s j, t), j ∈ Z are
C0.

Definition 3.11 (Piecewise Coons patch). For a C0 net N consisting of the u-functions φ j, ψ j, j ∈ Z, we denote by
C(N) the piecewise Coons patch interpolating it, which is locally defined as

C(N)(s, t) = C(φi, φi+1, ψ j, ψ j+1; hi, j)(s − si, t − t j) , (s, t) ∈ [si, si+1] × [t j, t j+1], i, j ∈ Z

with hi, j = (h[s]
i , h[t]

j ), h[s]
i = si+1 − si, h[t]

j = t j+1 − t j i, j ∈ Z.

We remark that for a C0 net N(T ), the net obtained by evaluating the piecewise Coons patch C(N) along the grid lines
of any grid T̃ , is also C0, since C(N) is continuous. Hence the following iterative procedure is well defined.
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Algorithm 3.12. Corner cutting algorithm for nets of functions:

Input: a C0 net N[0](T [0]) with T [0] = {s[0]
i × R, s[0]

i = i ∈ Z} ∪ {R × t[0]
j , t[0]

j = j ∈ Z}

For k = 0, 1, . . .

Input: γ[s],[k] := (α[s],[k],β[s],[k]) ∈W and γ[t],[k] := (α[t],[k],β[t],[k]) ∈W

Compute s[k+1]
2i = (1 − α[s],[k]

i )s[k]
i + α[s],[k]

i s[k]
i+1 and s[k+1]

2i+1 = (1 − β[s],[k]
i )s[k]

i + β[s],[k]
i s[k]

i+1, for i ∈ Z

Compute t[k+1]
2 j = (1 − α[t],[k]

j )t[k]
j + α[t],[k]

j t[k]
j+1 and t[k+1]

2 j+1 = (1 − β[t],[k]
j )t[k]

j + β[t],[k]
j t[k]

j+1, for j ∈ Z

Define T [k+1] = {s[k+1]
i × R, i ∈ Z} ∪ {R × t[k+1]

j , j ∈ Z}

Compute N[k+1] = C(N[k])|T [k+1]

We denote the mapping from N[k] to N[k+1] in the above algorithm by N[k+1] = BCγ[s],[k],γ[t],[k] (C(N[k]). In the next
subsection we prove that Algorithm 3.12 is convergent under suitable assumptions on the initial net N[0] and the corner
cutting weights. To state the assumption on the initial net, we introduce the notion of a BMSDD net of functions which
is a direct analogue of Definition 3.6.

Definition 3.13. A net of functions N(T ) has the BMSDD property with constant L, if

|[σ1, σ2; τ1, τ2]N | ≤ L, for all (σi, τ j) ∈ T, i, j ∈ {1, 2}, (3.3)

where
[σ1, σ2; τ1, τ2]N =

1
(σ1 − σ2)(τ1 − τ2)

(N(σ1, τ1) + N(σ2, τ2) − N(σ2, τ1) − N(σ1, τ2)).

3.3. Convergence of the corner cutting algorithm for nets of functions
In this subsection we state and prove the main result of this paper that is convergence of Algorithm 3.12. We

mention that we prove it by showing convergence of the sequence of continuous piecewise Coons interpolants to the
generated nets.

Theorem 3.14. Let N[0] be a C0 net having the BMSDD property with constant L. Then the corner cutting algorithm
for nets of functions (Algorithm 3.12) is convergent for all {γ[s],[k],γ[t],[k]}k≥0 ∈W such that

µ∗ = sup
k≥0

max{µ(γ[s],[k]), µ(γ[t],[k])} <

√
3

3
. (3.4)

To prove this theorem we need several intermediate results. The first is an important observation about the BMSDD
property of nets of functions.

Lemma 3.15. Let N(T ) satisfy the inequality in (3.3) for

(a) t j ≤ τ1, τ2 ≤ t j+1; σ1 = si, σ2 = si+1, i, j ∈ Z,

or

(b) si ≤ σ1, σ2 ≤ si+1; τ1 = t j, τ2 = t j+1, i, j ∈ Z.

Then N(T ) has the BMSDD property with constant L.

Proof. Given σ1 < σ2, τ1 < τ2 such that (σi, τ j) ∈ T for i, j ∈ {1, 2}, there are two possibilities:

(i) σ1 = si, σ2 = si+`, for some i ∈ Z, ` ∈ N and τ1, τ2 ∈ R,
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or

(ii) τ1 = t j, τ2 = t j+`, for some j ∈ Z, ` ∈ N and σ1, σ2 ∈ R.

We consider case (i); the proof in case (ii) is similar. We prove that the inequality in (3.3) holds for case (i) by
induction. First we prove by induction on ` that the inequality in (3.3) holds in the case

(iii) σ1 = si, σ2 = si+`, for some i ∈ Z, ` ∈ N and t j ≤ τ1, τ2 ≤ t j+1, for some j ∈ Z.

The above claim holds for ` = 1 by assumption (a). It remains to show that if the inequality in (3.3) holds for ` ≤ m,
it holds for ` = m + 1. Now,

[si, si+m+1; τ1, τ2]N = 1
(si+m+1−si)(τ2−τ1) (N(si+m+1, τ2) + N(si, τ1) − N(si+m+1, τ1) − N(si, τ2))

=
(si+m−si)

(si+m+1−si)
1

(si+m−si)(τ2−τ1) (N(si+m, τ2) + N(si, τ1) − N(si+m, τ1) − N(si, τ2))

+
(si+m+1−si+m)
(si+m+1−si)

1
(si+m+1−si+m)(τ2−τ1) (N(si+m+1, τ2) + N(si+m, τ1) − N(si+m+1, τ1) − N(si+m, τ2)) .

(3.5)
Thus by the induction hypothesis and by (a) we get for case (iii)

|[si, si+m+1; τ1, τ2]N | ≤
(si+m − si)

(si+m+1 − si)
L +

(si+m+1 − si+m)
(si+m+1 − si)

L = L,

and the inequality in (3.3) holds in case (iii). This concludes the first part of the proof.
Next we prove, again by induction, that the inequality in (3.3) holds in case (i). We assume that the inequality in

(3.3) holds for t j ≤ τ1 ≤ t j+1 and t j+m ≤ τ2 ≤ t j+m+1 for some m ∈ N, and show that the inequality in (3.3) holds for
t j ≤ τ1 ≤ t j+1 and t j+m+1 ≤ τ2 ≤ t j+m+2. This is sufficient since the case m = 0 corresponds to case (iii). Now, for
t j ≤ τ1 ≤ t j+1 and t j+m+1 ≤ τ2 ≤ t j+m+2

[si, si+`; τ1, τ2]N = 1
(si+`−si)(τ2−τ1) (N(si+`, τ2) + N(si, τ1) − N(si+`, τ1) − N(si, τ2))

=
(t j+1−τ1)
(τ2−τ1)

1
(si+`−si)(t j+1−τ1)

(
N(si+`, t j+1) + N(si, τ1) − N(si, t j+1) − N(si+`, τ1)

)
+

(τ2−t j+1)
(τ2−τ1)

1
(si+`−si)(τ2−t j+1)

(
N(si+`, τ2) + N(si, t j+1) − N(si+`, t j+1) − N(si, τ2)

)
.

Thus,

[si, si+`; τ1, τ2]N =
(t j+1 − τ1)
(τ2 − τ1)

[si, si+`; t j+1, τ1]N +
(τ2 − t j+1)
(τ2 − τ1)

[si, si+`; t j+1, τ2]N.

The MSDD in the first term above corresponds to case (iii), since τ1, t j+1 ∈ [t j, t j+1], and the MSDD in the second
term above corresponds to case (i) with m, since t j+1 ∈ [t j+1, t j+2] and τ2 ∈ [t j+1+m, t j+1+m+1]. By the first part of the
proof we have |[si+`, si; t j+1, τ1]N | ≤ L and by the induction hypothesis we have |[si+`, si; t j+1, τ2]N | ≤ L. Thus,

|[si, si+`; τ1, τ2]N | ≤
(t j+1 − τ1)
(τ2 − τ1)

L +
(τ2 − t j+1)
(τ2 − τ1)

L = L, for t j ≤ τ1 ≤ t j+1, τ j+m+1 ≤ τ2 ≤ t j+m+2,

and the inequality in (3.3) holds in case (i) for m + 1.

A simple lemma follows from the linearity of the divided differences.

Lemma 3.16. If N`(T ), ` = 1, ...,m have the BMSDD property with constant L, then
∑m
`=1 N`(T ) has the BMSDD

property with constant mL.

Using a similar induction to that in the second part of the proof of Lemma 3.15, we can prove

Lemma 3.17. A bivariate function which has the BMSDD property with constant L on each rectangle of a grid T has
the BMSDD property with constant L in R2.
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The next lemma considers bivariate functions which are piecewise linear in one variable.

Lemma 3.18. Let F be a bivariate function of the form

F(s, t) =
s − si

si+1 − si
F(si+1, t) +

si+1 − s
si+1 − si

F(si, t), s ∈ [si, si+1], t ∈ R, i ∈ Z,

where {si}i∈Z ⊂ R is an increasing sequence. If F satisfies the inequality in (3.3) for σ1, σ2 ∈ [si, si+1] for any i ∈ Z
and τ1, τ2 ∈ R, then F has the BMSDD property with constant L in R2.

Proof. First we show that F satisfies the inequality in (3.3) with constant L in each rectangle of a grid T defined by the
parameters {si}i∈Z and any increasing sequence {t j} j∈Z. Let σ1, σ2 ∈ [si, si+1] and τ1, τ2 ∈ [t j, t j+1] for some i, j ∈ Z.
Since

[σ1, σ2; τ1, τ2]F =
1

(τ1 − τ2)
([σ1, σ2]F(·, τ1) − [σ1, σ2]F(·, τ2)) ,

the linearity of F in s implies that

[σ1, σ2]F(·, τ j) =
1

(si+1 − si)

(
F(si+1, τ j) − F(si, τ j)

)
, j = 1, 2,

and we get

[σ1, σ2; τ1, τ2]F =
1

(τ1 − τ2)
1

(si+1 − si)
(F(si+1, τ1) + F(si, τ2) − F(si+1, τ2) − F(si, τ1)) .

From the assumption that F satisfies the inequality in (3.3) for σ1, σ2 ∈ [si, si+1] for any i ∈ Z and τ1, τ2 ∈ R, we
conclude that F has the BMSDD property with constant L on each rectangle of T . Hence, by Lemma 3.17 F has the
BMSDD property with constant L in R2.

Remark 3.19. It is obvious that the same result holds if F is linear in t in each rectangle of T .

Another important observation is

Remark 3.20. The restriction to a grid of a bivariate function which has the BMSDD property with constant L in R2

is a net which has the BMSDD property with constant L.

The next Theorem is our first key result.

Theorem 3.21. If N(T ) has the BMSDD property with constant L then C(N) has the BMSDD property with constant
3L.

Proof. Define the bivariate functions related to N (similarly to the bivariate functions related to F in the proof of
Proposition 3.5)

(Ls(N))(s, t) = s−si
si+1−si

N(si+1, t) + si+1−s
si+1−si

N(si, t), s ∈ [si, si+1], t ∈ R, i ∈ Z

(Lt(N))(s, t) =
t−t j

t j+1−t j
N(s, t j+1) +

t j+1−t
t j+1−t j

N(s, t j), s ∈ R, t ∈ [t j, t j+1], j ∈ Z,

(Ls(Lt(N))(s, t) = s−si
si+1−si

(
t−t j

t j+1−t j
N(si+1, t j+1) +

t j+1−t
t j+1−t j

N(si+1, t j)
)

+ si+1−s
si+1−si

(
t−t j

t j+1−t j
N(si, t j+1) +

t j+1−t
t j+1−t j

N(si, t j)
)
, s ∈ [si, si+1], t ∈ [t j, t j+1], i ∈ Z, j ∈ Z.

Note thatLs(Lt(N)) is the piecewise bilinear function on the rectangles of T , interpolating the data {(si, t j),N(si, t j)}i, j∈Z.
It follows from (3.1) and the definition of C(N) that

C(N) = Ls(N) +Lt(N) − Ls(Lt(N)). (3.6)
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Next we show that the three functions in the right-hand side of the above equation have the BMSDD property with
constant L in R2. By Lemma 3.18 and Remark 3.19 bothLs(N) andLt(N) have the BMSDD property with constant L
in each rectangle of T since by assumption N(T ) has the BMSDD property with constant L. Moreover, alsoLs(Lt(N))
has the BMSDD property with constant L in each rectangle of T because for σ1, σ2 ∈ [si, si+1] and τ1, τ2 ∈ [t j, t j+1]

[σ1, σ2; τ1, τ2]Ls(Lt(N)) = [si, si+1; t j, t j+1]N.

Now, by Lemma 3.17 the three functions have the BMSDD property with constant L in R2. Thus Lemma 3.16, in
view of (3.6), implies that C(N) has the BMSDD property with constant 3L in R2.

A direct consequence of Theorem 3.21 and Remark 3.20 is

Corollary 3.22. If N(T ) has the BMSDD property with constant L, then BCγ[s],γ[t] (C(N)) (defined after Algorithm
3.12) with γ[s],γ[t] ∈W, has the BMSDD property with constant 3L.

Corollary 3.22 leads to our second key result.

Corollary 3.23. Let {N[k]}k∈N be the nets generated by Algorithm 3.12 from N[0]. If N[0] has the BMSDD property
with constant L then N[k] has the BMSDD property with constant 3kL, for k ≥ 0.

We are now ready to prove the third key result.

Theorem 3.24. In the notation of Algorithm 3.12, if N[0] has the BMSDD property with constant L then

‖C(N[k+1]) − C(N[k])‖∞ ≤ 3k+1L
h[k+1]

s h[k+1]
t

4
(3.7)

where
h[k+1]

s = supi∈Z(s[k+1]
i+1 − s[k+1]

i ), h[k+1]
t = supi∈Z(t[k+1]

i+1 − t[k+1]
i ).

Proof. In view of Corollary 3.23 and Theorem 3.21, C(N[k]) has the BMSDD property with constant 3k+1L, and
therefore by Remark 3.20, also N[k+1] = C(N[k])|T [k+1] has this property. Regarding C(N[k+1]) as the piecewise Coons
patch interpolating C(N[k])|T [k+1] , we conclude (3.7) from Corollary 3.8.

We are now ready to prove Theorem 3.14.

Proof of Theorem 3.14. By the way T [k+1] is constructed from T [k] in steps 1-3 of Algorithm 3.12, we see that

h[k+1]
s ≤ µ(γ[s],[k])h[k]

s and h[k+1]
t ≤ µ(γ[t],[k])h[k]

t ,

with µ(γ[s],[k]) and µ(γ[t],[k]) defined as in (2.2). Defining µ∗ = supk≥0 max{µ(γ[s],[k]), µ(γ[t],[k])} we get from (3.7)

‖C(N[k+1]) − C(N[k])‖∞ ≤
3k+1LH

4
(µ∗)2k =

3LH
4

(3(µ∗)2)k,

with H = h[0]
s h[0]

t . Thus, if 3(µ∗)2 < 1, the sequence {C(N[k]}k∈N is a Cauchy sequence and therefore convergent. To
conclude, the convergence of Algorithm 3.12 is guaranteed in case

µ∗ = sup
k≥0

max{µ(γ[s],[k]), µ(γ[t],[k])} <

√
3

3
.

Remark 3.25. The condition (3.4) in Theorem 3.14 can be relaxed to
∞∑

k=0

3kµ(γ[s],[k]), µ(γ[t],[k]) < ∞.
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4. Conclusions

This short paper proposes a corner cutting algorithm for nets of functions and uses some simple but powerful
approximation arguments to show its convergence. Even if we considered only convergence analysis, the proposed
corner cutting generalization enriches the class of subdivision schemes for nets, currently consisting of few examples
(see, e.g., [7, 8, 10, 18, 23]). In a future work we plan to study the smoothness of the limits in the case of nets, and to
derive conditions on the corner cutting weights which guarantee C1 limit functions as done in the univariate case in
[3] and in [17].

Acknowledgements. The authors thank the reviewers for their useful comments. C. Conti and L. Romani are mem-
bers of the INdAM Research group GNCS, which has partially supported this work.
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