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Second Order Approximation of Extended

Thermodynamics of a Monatomic Gas and

Hyperbolicity Region.

Francesca Brini∗ Tommaso Ruggeri†

Abstract

The Rational Extended Thermodynamics theory describes non-equilibrium
phenomena for rarefied gases and it is usually approximated in the neigh-
borhood of an equilibrium state. Consequently, the hyperbolicity of its
differential system holds only in some domain of the state-variables (called
hyperbolicity region). In this paper, we present a second order approxima-
tion with respect to non-equilibrium variables, in the case of a monatomic
gas theory with 13 fields. We verify that, in the case of one-dimensional
space, the radius of the hyperbolicity region is larger than the correspond-
ing radius of the first order approximation. Moreover, when the model
involves three-dimensional field variables, we prove that the equilibrium
state for differential systems with quadratic approximation is inside the
hyperbolicity region. This fact is in contrast with the first order mod-
els that, in some cases of three-dimensional field variables, present the
equilibrium point at the boundary of the hyperbolicity region.

1 Introduction

Rational Extended Thermodynamics (RET) is a well-known phenomenological
field theory, that is able to describe non-equilibrium phenomena of rarefied gases
[1, 2, 3]. The macroscopic RET theory is closed through the requirement of uni-
versal principles for constitutive equations, such as the objectivity principle,
the entropy principle and the convexity of entropy (thermodynamical stability).
This gives to the theory a particularly elegant and robust structure, both from
the mathematical and the physical points of view. In fact, the RET models
are expected to be hyperbolic PDE systems with a convex extension and can
be put in a symmetric form using the main field as set of variables [4, 5], so
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that the well-posedness of the Cauchy problem is guaranteed. The relation be-
tween Hamiltonian structure and hyperbolic structure of the equation systems
is investigated in [6]. The hyperbolicity property is very important for a re-
alistic physical description of non-stationary phenomena, since it is associated
to finite speeds of disturbances, in contrast to the infinite speed predicted by
the parabolic models typical of which is the Thermodynamics of Irreversible
Processes (TIP), like Navier-Stokes-Fourier ones.

Usually, the RET systems are linearized with respect to the non-equilibrium
variables and therefore the validity of the theory is restricted only to a neigh-
borhood of an equilibrium state [1, 2, 3]. The closure obtained via RET in the
case of the 13-field theory of monatomic gases is the same as the one obtained
via kinetic considerations by Grad [7]. Also the hyperbolicity condition remains
valid only in a neighborhood of the equilibrium state, which is called region of
hyperbolicity.

The analysis on the determination of the region of hyperbolicity started more
than 25 years ago by Müller and Ruggeri [1] in the case of 13 moments. The
studies were carried on for a one-dimensional system with linear expansion and
extended to the corresponding one-dimensional 14-moment monatomic theory
by Brini [8] and to the 13-moment model for monatomic degenerate gases by
Ruggeri and Trovato [9], both for linear and quadratic expansions.

A new relevant question arises from the work by Cai, Fan and Li [10], who
showed that the thermodynamic equilibrium belongs to the boundary of the hy-
perbolicity region when the heat flux and velocity vectors are no longer parallel
to a fixed direction. Under such an assumption, the authors concluded that the
equilibrium state is unstable, since an arbitrary small perturbation of the equi-
librium can bring out of the hyperbolicity region. The same authors suggested
in a very ingenious mathematical way different tools to overcome the problem
[10, 11], modifying the system ad hoc in order to ’make’ the equilibrium point
interior to the hyperbolicity region or introducing a new globally hyperbolic
system. Unfortunately, as the only system of balance laws compatible with the
entropy principle in the first order approximation is the Grad one, we conclude
that the new system cannot be put in a balance form and there cannot be any
entropy principle for the modified model. This means that the system is not
usable in the case of weak solutions (in particular for shock waves) and, further-
more, it loses physical meaning, since an entropy principle is mandatory in all
continuum theories!

Moreover, the global hyperbolicity is an excessively stringent requirement
and only ideal cases (e.g. Euler fluid with ideal gas assumption) fulfill this
requirement for all possible values of the field variables. The lack of hyperbolicity
could also be associated to physical effects (phase transition, instability, etc..)
as, for example, in van der Waals fluids (see e.g. [12]), in Born-Infield non-
linear electrodynamics [13], in non-linear elasticity (see e.g. [14]) and in the
Boltzmann-Vlasov Equation [15].

The structure of the differential RET system is justified by the kinetic the-
ory. Nevertheless in the phenomenological RET the field components are not
seen as moments of a distribution function and, therefore, no integrability con-
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ditions are necessary. Unfortunately, the procedure for the construction of the
phenomenological RET becomes complicated when we want to consider a the-
ory far from equilibrium, taking into account successive approximations or an
increasing number of fields (in this framework some formal attempts were done
by Pennisi and co-workers see e.g [16, 17]).

On the other hand, in the case of a rarefied gas another method to close
the differential system is to recall that the field variables are moments of a
distribution function, so that the closure of the moment balance equations,
truncated at some level, can be obtained using the so-called Maximum Entropy
Principle (MEP).

The theory derived through this approach was called by Müller and Ruggeri
Molecular Extended Thermodynamics [1]. The principle of maximum entropy
has its roots in statistical mechanics. It was developed by Jaynes [18] in the
context of the theory of information starting from the Shannon entropy. MEP
states that the probability distribution that represents the current state of knowl-
edge in the best way is the one with the largest entropy.

Concerning the applicability of MEP to non-equilibrium thermodynamics,
the idea was originally introduced by Kogan [19], who demonstrated that the
Grad’s distribution function maximizes the entropy. Afterwards, in 1987, Dreyer
showed for the first time in [20] that the MEP closure is equivalent to closure
of the phenomenological RET.

In 1993 the MEP procedure was generalized to the case of any number of mo-
ments by Müller and Ruggeri in the first edition of their book [1], proving that
the PDE system is symmetric hyperbolic if the Lagrange multipliers are cho-
sen as field variables. The complete equivalence between the entropy principle
closure and the MEP ones in Molecular Extended Thermodynamics was finally
proved in 1997 by Boillat and Ruggeri [21]. In fact, they demonstrated that the
Lagrange multipliers coincide with the so-called main field that symmetrize any
hyperbolic system compatible with an entropy principle and a convex entropy
law [4, 5].

All the results recalled above are valid also for phenomena far from equi-
librium, provided that the integrals are convergent. Actually, the problem of
the convergence of the moments remains still one of the main questions in a
far-from-equilibrium theory. In particular, the index of truncation N must be
even [19, 21, 22]. This implies, for example, that a theory with 13 moments
corresponding to N = 3 is not allowed far from equilibrium!

The question about convergence is not the only one in the full non-linear
case. Indeed, Junk and co-workers have shown [23, 24] that even the complete
RET theory, obtained through the maximum entropy principle (MEP), without
any approximation, presents problems, since there are moment states, physically
admissible, that correspond to singularities.

The integrability conditions and the Junk problem do not arise if the dis-
tribution function obtained as solution of the variational problem is considered
only in the neighborhood of a local equilibrium state, and is formally expanded
as the perturbation of an equilibrium distribution f (E). In the case of 13 mo-
ments for a monatomic gas, if the approximation is stopped at the first order,
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the closure gives again the same results as the phenomenological RET and the
Grad approach [20]. The same holds also in the recent theory of 14 fields for a
polyatomic gas [3, 25]. Thus, the closure of the moment system at first order
expansion can be obtained in three different ways: RET, Grad, and MEP. A
remarkable point is that all closures are equivalent to each others!

Brini and Ruggeri [26], considered for the first time the expansion of the
distribution function that maximizes the entropy until a generic order α, intro-
ducing the notation ETαM that represents a RET theory with M moments and
an α expansion order for the distribution function. An alternative approxima-
tion was proposed in [27].

We recall that in the non-linear case the hyperbolicity is guaranteed for
any value of field variables, while the problem of the hyperbolicity region arises
when we introduce the approximation. On the other hand, using the approxi-
mation we can invert the map between the main field and the densities that are
physical variables, since, in general, such an inversion cannot be done analyti-
cally. Therefore, we expect that the domain of hyperbolicity increases with the
approximation order more than increasing the number of moments.

The aim of this paper is to construct a RET model with quadratic expansion
with respect to the non-equilibrium variables, using the technique indicated in
[26]. In such a way, we can verify that in the one-dimensional variables the
radius of the domain of hyperbolicity increases. Moreover, in the case of three-
dimensional variables, we avoid the troubles related to the instability of the
equilibrium state, by dealing with a local-hyperbolic model that can be written
in the balance form and is compatible with the entropy principle.

To better contextualize the problem in the next sections we will start from
the well-known case of a monatomic gas described by the 13-moment Grad sys-
tem. Then, we will pass to the quadratic expansion of the 13-moment theory
both for one-dimensional and three-dimensional field variables. To our knowl-
edge, the ET2

13 differential system and the corresponding hyperbolicity region
are presented here for the first time.

The paper is organized as follows. Section 2 contains a review of the Ex-
tended Thermodynamics theories for monatomic gases and their approxima-
tions; in Section 3 we present the ET2

13 system. A new approach to identify
the hyperbolicity region is introduced in Section 4. The study of the domain
of hyperbolicity in the one-dimensional case is available in Section 5, while the
case of three-dimensional field variables is analyzed in Section 6. Finally, in
Section 7 one can find some conclusions and final remarks.

2 ETα
M of rarefied monatomic gases

According to the kinetic theory, the state of a rarefied gas is described by
the phase density f(x, t, c), where f(x, t, c)dc is the number density of the
monatomic molecules at point x and time t that present velocities between c
and c + dc. The time evolution of the phase density is governed by the well-
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known Boltzmann equation

∂tf + ci∂if = Q, (1)

where ∂t denotes the partial derivative with respect to the time t, ∂i = ∂/∂xi
(i = 1, 2, 3) is the partial derivative with respect to xi, c ≡ (c1, c2, c3) denotes
the microscopic velocity, Q is the term related to the particle collisions and, as
usual, we will always omit the symbol of sum for repeated indices. A common
procedure provides an infinite hierarchy of balance laws, called moment system,
starting from (1). We define the moments as (m is the atomic mass)

F = m

∫
R3

f(x, t, c) dc,

Fk1k2k3...kj = m

∫
R3

f(x, t, c) ck1ck2ck3 . . . ckj dc, j = 1, 2, . . . , kj = 1, 2, 3

(2)

and the production terms as

Pk1k2...kj = m

∫
R3

Qck1ck2ck3 . . . ckj dc, j = 2, 3, . . .

where Pk1k2 is a deviatoric tensor (traceless). So, the infinite hierarchy presents
a peculiarly elegant form, since the flux component of one equations becomes
the density component of the following one:

∂tF + ∂iFi = 0

↙
∂tFk1 + ∂iFik1 = 0

↙
∂tFk1k2 + ∂iFik1k2 = P<k1k2>

↙
∂tFk1k2k3 + ∂iFik1k2k3 = Pk1k2k3
...

∂tFk1k2...kj + ∂iFik1k2...kj = Pk1k2...kj
...

(3)

The first 5 scalar equations (3)1,2 and the trace of (3)3 are conservation laws
and represents respectively the conservation of mass, momentum and energy
respectively. In RET, this set of balance laws is truncated at some finite ten-
sorial order N . Denoting with F, Fi and P respectively the density, flux and
production vectors:

F ≡ (F, Fk1 , Fk1k2 . . . . Fk1k2...kN )T , Fi ≡ (Fi, Fik1 , Fik1k2 . . . Fik1k2...kN )T ,
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P ≡ (0, 0k1 , Pk1k2 , . . . Pk1k2...kN )T ,

(the 0k1 denotes the zero vector), the system of truncated balance laws can be
written as

∂tF + ∂iF
i = P. (4)

The truncation at tensorial order N entails a problem of closure of the sys-
tem, as already described in the introduction. The first procedure of RET to
close the moment system, [1, 2] considers the remaining quantities (last flux
and production terms) as local constitutive functions of the the densities field
F. The restriction on the constitutive equations are obtained through the va-
lidity requirement of the universal principles such as the Galilean invariance
of the balance laws, the entropy principle and the requirement of convexity of
the entropy density [1, 2, 3]. A different approach (already described in the
introduction) is provided by MEP and it is possible to show [2] that the phase
density that maximizes the entropy h

h = −kB
∫
R3

f ln fdc

is given by

fN = exp(−1−mχN/kB) with χN = u′A(x, t) · cA, (5)

where kB denotes the Boltzmann constant, the symbol sum
∑N
A=0 in (5)2 is

omitted and will be omitted also in the following formulas. Moreover, the main
field components u′A (Lagrange multipliers) and the quantity cA are respectively:

u′A =

{
u′ if A = 0
u′k1...kA if 1 ≤ A ≤ N , cA =

{
1 if A = 0
ck1 . . . ckA if 1 ≤ A ≤ N.

At equilibrium all the main field components vanish, except the first five [2] and
the phase density (5) reduces to the equilibrium Maxwellian one, fM:

f (E) = fM =
ρ

m

(
m

2πkBT

)3/2

exp

[
−mC

2

2kBT

]
,

where ρ denotes the gas density, T the temperature, v the velocity and C =
c− v is the peculiar velocity (C2 = CiCi). For processes sufficiently close to an

equilibrium state the phase density fN could be approximated by f
(β)
N through

a Taylor’s expansion of order β > 0 (β ∈ N)

f
(β)
N = fM

(
1 + ΛA1

cA1
+

1

2
ΛA1

ΛA2
cA1

cA2
+ · · ·+

+
1

β!
ΛA1

ΛA2
. . .ΛAβcA1

cA2
. . . cAβ

)
,

where ΛA is proportional to the non equilibrium part of the main field compo-
nents:

ΛA = −m
kB

(u′A − u′A|E).

6



In this way also the components Fik1k2k3...kN that are not in the list of the
densities are approximated as

F
(β)
ik1k2k3...kN

= m

∫
R3

f
(β)
N (x, t, c)cick1ck2ck3 . . . ckNdc, (6)

and in general the procedure gives rise to a RET theory with M moments and an
expansion order β, ETβM . In particular, if we focus on the 13-moment models,
ET1

13 corresponds to the usual Grad system [7].
Unfortunately, the approximation of the phase density entails a local validity

of the convexity of the entropy and of the hyperbolicity property, that turn out
to hold only in a neighborhood of the equilibrium point.

The previous calculations are often done at zero velocity (v = 0), since the
corresponding expression for a generic velocity is easily determined thanks to the
Galilean invariance. Usually, one solves the previous relations substituting the
microscopic velocity c with the corresponding peculiar velocity C, and deriving
the so called non-convective part of densities, fluxes, productions and main field,
evaluated at zero velocity, that we will denote with a hat (F̂,F̂i, P̂, û′). Then,
the dependence on v is obtained through the theorem proved in [28], for which
there exists a matrix X(v) such that

F = X(v)F̂, Fi = X(v)
(
F̂i + viF̂

)
, P = X(v)P̂.

while for the main field components we have

u′ = û′X−1(v).

The matrix X(v) is an exponential matrix that becomes polynomial in the
velocity components in the case of moments structure (see [28] for details).

In order to determine the non-convective expression of main field, density
and flux vectors for a certain RET theory obtained truncating at the N tensorial
order and with an expansion order β, we have to proceed as follows (see also the
Appendix of [26], where the problem was already considered). We first rewrite
the truncated system (4) using the multi-index:

∂tFA + ∂iFiA = PA, A = 0, 1, . . . , N

with

FA =

{
F if A = 0
Fk1...kA if 1 ≤ A ≤ N , FiA =

{
Fi if A = 0
Fik1...kA if 1 ≤ A ≤ N

and
PA = Pk1...kA 2 ≤ A ≤ N, with Pkk = 0.

7



We introduce the notation ∆F̂A = F̂A − F̂ |E and we have

∆F̂A =

∫
R3

CA(f
(β)
N − fM)dC =

=

∫
R3

fMCA

[
ΛB1

CB1
+

1

2
ΛB1

ΛB2
CB1

CB2
+ · · ·

+
1

β!
ΛB1

ΛB2
· · ·ΛBβCB1

CB2
. . . CBβ

]
dC.

(7)

The previous relations constitute a set of M equations for the M components of
ΛA. To solve them we start with expansion of the main field components where
the up index indicates the order of approximation of ΛA:

ΛA = Λ
(1)
A + Λ

(2)
A + Λ

(3)
A + . . .Λ

(β)
A . (8)

In this way the values of Λ
(a)
A are determined through a recursive procedure.

Let define

JAB1B2...Ba =

∫
R3

fMCACB1
CB2

. . . CBa dC, (a = 1, . . . , β).

At the first order we have the linear system

JABΛ
(1)
B = ∆F̂A. (9)

Taking into account that JAB is symmetric and positive definite, the values of

Λ
(1)
A are determined in terms of the densities FA. Then, the second order terms

are the solution of the equations for the second order expansion:

JABΛ
(2)
B = −1

2
Λ
(1)
B1

Λ
(1)
B2
JAB1B2

, (10)

where Λ
(2)
A are the roots of a linear system containing the same matrix JAB as

for (9). The third order of expansion is treated in a similar way:

JABΛ
(3)
B = −1

2

(
Λ
(1)
B1

Λ
(2)
B2

+ Λ
(2)
B1

Λ
(1)
B2

)
JAB1B2 −

1

6
Λ
(1)
B1

Λ
(1)
B2

Λ
(1)
B3
JAB1B2B3 . (11)

The procedure has to be iterated up to the β order and, since the matrix JAB is
not singular, we have a unique solution. If one employs an algebraic manipulator
or a numerical algorithm in order to automate it, the multi-index notation turns
out to be complicated, although very elegant.

For this reason we report here also the three-index notation introduced as
first by Boillat and Ruggeri in [21]. The idea is that we can rewrite moments
and Lagrange multipliers using only a 3-index tensor taking into account that
the components of c (or C) can be only c1, c2 or c3 and therefore there exists a
correspondence one to one between for example the moments given by (2) and

Fpqr =

∫
fcp1c

q
2c
r
3dc,

8



where the power integer index p, q, r satisfy p + q + r = 0, 1, 2, . . . N ; so, for
example, F = F000, F1 = F100, F2 = F010, F3 = F001.

Referring to this representation, the expression of (7), becomes

∆F̂pqr =

∫
R3

fM [Λn1m1s1C
n1
1 Cm1

2 Cs13 +

+
1

2
Λn1m1s1Λn2m2s2C

n1+n2
1 Cm1+m2

2 Cs1+s23 + . . .

]
dC.

If we consider the integrals (no sum on the index k)

Jjk =

∫
R

(
1

2πθ

)1/2

exp

[
−C

2
k

2θ

]
CjkdCk = (2θ)n/2

(1 + (−1)n)

π
Γ

(
j + 1

2

)
where Γ is the gamma function and θ = kBT/m, and we introduce the quantities

Yp,q,r =
ρ

m
Jp1J

q
2J

r
3

assuming that

p+ q + r = 0, . . . , N,

the linear systems (9), (10), (11) can be rewritten respectively as

N∑
n1+m1+s1=0

Yn1+p,m1+q,s1+r Λ(1)
n1m1s1 = ∆F̂pqr,

N∑
n1+m1+s1=0

Yn1+p,m1+q,s1+r Λ(2)
n1m1s1 =

= −1

2

N∑
n1+m1+s1=0

N∑
n2+m2+s2=0

Yp+n1+n2,q+m1+m2,r+s1+s2 Λ(1)
n1m1s1Λ(1)

n2m2s2 ,

N∑
n1+m1+s1=0

Yn1+p,m1+q,s1+r Λ(3)
n1m1s1 =

= −1

2

N∑
n1+m1+s1=0

N∑
n2+m2+s2=0

Yp+n1+n2,q+m1+m2,r+s1+s2(
Λ(1)

n1m1s1Λ(2)
n2m2s2 + Λ(2)

n1m1s1Λ(1)
n2m2s2

)
−

− 1

6

N∑
n1+m1+s1=0

N∑
n2+m2+s2=0

N∑
n3+m3+s3=0

Yp+n1+n2+n2,q+m1+m2+m3,r+s1+s2+s3 ,

Λ(1)
n1m1s1Λ(1)

n2m2s2Λ(1)
n3m3s3
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and so on.
Referring to the definition introduced in [3], we call an N–system a RET

system obtained imposing that the truncation index is equal to N and keeping
all tensors FA = Fk1k2...kA with 1 ≤ A ≤ N . The N−–system is a RET system
with the same truncation order N , but where for the last balance equation we
consider only the trace with respect to the last two indexes (Fk1k2...kN−2ll).

3 The ET2
13 system of monatomic gas

In this paper we will consider the 13-moment theory, that is to say the 3−–
system. The first 13 components of the non-convective density vector read

F̂ ≡
(
F̂ , F̂k, F̂jk, F̂kll

)
= (ρ, 0, pδjk − σjk, 2qk) j, k = 1, 2, 3,

where p is the pressure, σjk denotes the jk-component of the deviatoric part of
the viscous tensor (that for monatomic gases coincide with the viscous tensor
itself), while qk is the k-component of the heat flux. In this case the triangular
matrix necessary to determine the convective parts reads [28]

X(v) =


1
vk δik
vjvk δikvj + δijvk δijδhk
v2vk v2δik + 2vivk 2δikvh + δihvk δik

 . (12)

Following the previous procedures, after some cumbersome calculations, the
form of the ET2

13 is determined as:

∂tρ+ ∂kρvk = 0,

∂tρvi + ∂k(ρvivk + pδik − σik) = 0

∂t(ρvivj + pδij − σij)+∂k {ρvivjvk + p(viδjk + vjδik + vkδij) − σijvk−

− σjkvi − σikvj +
2

5
(qiδjk + qjδik + qkδij) +

[ 8

25p
(σilqlδjk +

+σjlqlδik + σklqlδij)−
4

5p
(qiσjk + qjσik + qkσij)

]}
= P<ij>,

∂t(ρv
2vi + 2(ρε+ p)vi − 2σilvl + 2qi)+∂k

{
ρv2vivk + 2ρεvivk +

+ p(v2δik + 4vivk)− σikv2 − 2σilvlvk − 2σklvivl+

+
4

5
qlvlδik +

14

5
qivk +

14

5
qkvi + 5

p2

ρ
δik − 7

p

ρ
σik +

[2

ρ
σilσkl+

+
1

25p
(112qiqk + 36q2δik + 16(σilqlvk + σklqlvi + σlmqlvmδik)−

−40(σilqkvl + σklqivl + σikqlvl))
]}

= Pill,

(13)
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where the underlined terms are the quadratic ones and the conservation law
of energy is given by the trace of equation (13)3. We consider here a rarefied
monatomic gas, so that p = kBρT and ε = (3/2)kBT .

3.1 Dimensionless variables

For convenience, in the next sections we will use dimensionless quantities refer-
ring to the velocity c0 =

√
kBT/m =

√
θ. In particular, we will introduce the

dimensionless1 viscous tensor and heat flux as

σ̃ij =
σij
ρc20

, q̃i =
qi
ρc30

, (14)

for i, j = 1, 2, 3, while the dimensionless non-convective characteristic velocity,
is denoted with λ̃:

λ̃ =
λ− v1
c0

.

4 The hyperbolicity region

In this section we suggest a general way to determine the hyperbolicity region
and its boundaries, starting from the knowledge of the characteristic polynomial
associated to the PDE system.

We denote the generic vector of the field variables as u. Moreover, in the
next sections we will deal with one-dimensional or with three-dimensional field
variables but we assume anyway that such variables depend only on t and on
x1:

∂tF + ∂1F
1 = P =⇒ A(u)∂tu + B(u)∂1u = P, (15)

where A(u) = ∂uF and B(u) = ∂uF
1 are square matrix. The hyperbolicity

of system (15) is guaranteed if A is a non-singular matrix and the generalized
eigenvalue problem (B − λA) r = 0 presents all real characteristic velocities λ
and a complete set of eigenvectors. The characteristic polynomial associated to
the system (15) has the form

P(λ) =

n∑
k=0

akλ
k, with ak = ak(u), (16)

and the hyperbolicity region corresponds to the values of u for which equation
P(λ) = 0 presents all real roots and the right eigenvectors form a basis.

For many models the grade of the characteristic polynomial does not allow
an analytical study of the roots and different approaches can be employed to
overcome these difficulties.

The simplest method is the numerical procedure that identifies the hyper-
bolicity region starting from a grid of points in the u-space, checking if the

1We remark that here the dimensionless quantities are different with respect to those in
[1, 2], since in the past c =

√
(5/3)c0 was used in place of c0.
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hyperbolicity property is satisfied for each point. This method can be used also
a posteriori to validate the results obtained in a different manner.

Here, we suggest the following procedure, that can be seen as a generaliza-
tion of that proposed in [1] and is capable of identifying the boundaries of the
hyperbolicity region. Such boundaries are the set of the values of u = uB that
correspond to at least a pair of real coincident eigenvalues. In fact, by continu-
ity arguments, the transition from real to complex conjugate roots takes place
when at least two real eigenvalues coincide. In order to determine uB we require
that when u = uB the characteristic polynomial with n ≥ 2, can be factorized
as

P(λ) = (λ− λ∗)2
n−2∑
j=0

bjλ
j , (17)

if λ∗ denotes the double root and bj are suitable coefficients that can be deter-
mined imposing the equivalence between (16) and (17). The requirement that
there exists a double root implies two constraints for the coefficients ak in terms
of the parameter λ∗ (see (17)):

P(λ∗) = 0, ⇔
n∑
k=0

ak λ
k
∗ = 0,

P ′(λ∗) = 0, ⇔
n∑
k=0

k ak λ
k−1
∗ = 0.

(18)

It is possible to verify that the coefficients bj , (0 ≤ j ≤ n− 2) can be expressed
in terms of λ∗ and ak (0 ≤ k ≤ n):

bj =

n∑
l=j+2

(l − j − 1)λl−j−2∗ al, 0 ≤ j ≤ n− 2. (19)

As the ak are functions of the field u, the conditions (18) constitute the para-
metric equations for the boundaries of the hyperbolicity region in terms of the
parameter λ∗. Just to better clarify the procedure, we consider here the case of
n = 5. In that case, the following compatibility conditions are deduced (18):{

λ5∗a5 + λ4∗a4 + λ3∗a3 + λ2∗a2 + λ∗a1 + a0 = 0,

5λ4∗a5 + 4λ3∗a4 + 3λ2∗a3 + 2λ∗a2 + a1 = 0,
(20)

with the following bj (see (19)) :

b3 = a5, b2 = 2λ∗a5 + a4, b1 = 3λ2∗a5 + 2λ∗a4 + a3,

b0 = 4λ3∗a5 + 3λ2∗a4 + 2λ∗a3 + a2.

12



5 The hyperbolicity region of ET13 in the one-
dimensional field variables

In this section we will focus on the model that describes one-dimensional physical
phenomena dependent only on one spatial variable (that we will call x1), under
the assumption that the velocity and the heat flux vectors are both parallel
to the x1-direction, i.e. v = (v1, 0, 0), q = (q1, 0, 0). We assume also that
σ12 = σ13 = σ23 = 0 and σ22 = σ33 = −σ11/2 (the viscous tensor is traceless).
Thus, we will deal with five field variables u = (ρ, v1, T, σ11, q1) and the set of
the corresponding five PDE’s of the form (15), that can be deduced from (13)
neglecting the quadratic terms and supposing ∂k = δk1∂x1 .

The structure of the hyperbolicity region for a monatomic gas described by
the one-dimensional ET1

13 (i.e. the well-known Grad system) was studied in
the literature [1, 2]. We reconstruct here the model and the results to create a
comparison benchmark for the next cases.

First of all, the explicit expressions of matrices A and B are easily de-
duced; A turns out to be non-singular (det(A) = −6kBρ

2/m) and referring to
the dimensionless ”non-convective” characteristic velocities λ̃ and to the dimen-
sionless quantities introduced in (14), one gets the characteristic polynomial
(already determined in [1]):

P(1)
1D(λ̃) =

kB
m
θ1/2p2λ̃

[
a
(1)
4 λ̃4 + a

(1)
2 λ̃2 + a

(1)
1 λ̃+ a

(1)
0

]
,

with
a
(1)
4 = 6, a

(1)
2 = − 4

5 (39− 31σ̃11),

a
(1)
1 = − 576q̃1

25 , a
(1)
0 = 18

5 (5− 10σ̃11 + 7σ̃2
11),

(21)

and where the subscript 1D stands for the case of one-dimensional field variables
and the index (1) is associated to the first order expansion of the theory. At
equilibrium the values of λ̃ are all real and distinct [1, 2]

λ̃1

∣∣∣
E

= 0, λ̃2,3

∣∣∣
E

= ±

√
13−

√
94

5
, λ̃4,5

∣∣∣
E

= ±

√
13 +

√
94

5
, (22)

and this fact guarantees the existence of a basis of eigenvectors and the hy-
perbolicity property at the equilibrium state. By continuity arguments, such
a property has to be valid in a neighborhood of the equilibrium. The analytic
equations for the boundaries of the hyperbolicity region could be deduced ([1, 2])
through the procedure described in Section 3 for n = 4, obtaining from (21) and
(18), the parametric equations for the hyperbolic region:

9λ4∗ + 2
5 (−39 + 31σ̃11)λ2∗ − 9

5 (5− 10σ11 + 7σ̃2
11) = 0,

3λ3∗ +
1

5
(−39 + 31σ̃11)λ∗ −

72q̃1
25

= 0,

13



that can be made explicit as

q̃1 = ±
√

5

648

√
γ1 +

√
γ2 (−2γ1 +

√
γ2),

where γ1 = 39− 31σ̃11, γ2 = 3546 + 4σ̃11(−1617 + 949σ̃11).

The corresponding hyperbolicity region is the domain enclosed in the two curves
for σ11 ≤ 3(89 −

√
7545)/8, as shown in Figure 1 and coincide with the one

deduced in [2], except for different dimensionless variables.

Figure 1: The boundaries of the hyperbolicity region for the one-dimensional
ET1

13 model in the (q̃1, σ̃11) space. The hyperbolicity region is denoted by ’I’,
while the zones that do not satisfy hyperbolicity property is labeled with ’II’.
The Grey circle represents the circle with the maximum radius, centered in the
equilibrium point and inscribed within the hyperbolicity region.

We move now to the second order of expansion ET2
13, still in the case of

one-dimensional field variables. In that case, the characteristic polynomial as-
sociated with the system (13) with ∂k = δk1∂x1 , becomes

P(2)
1D(λ̃) =

kB
m
θ1/2p2

[
a
(2)
5 λ̃5 + a

(2)
4 λ̃4 + +a

(2)
3 λ̃3 + a

(2)
2 λ̃2 + a

(2)
1 λ̃+ a

(2)
0

]
, (23)

where the index (2) corresponds to the second order approximation theory, and

a
(2)
5 = 6, a

(2)
4 = −1104q̃1

25
,

a
(2)
3 = − 2

625
(150(σ̃11 − 1)(18σ̃11 − 65)− 19684q̃21),

a
(2)
2 = −72q̃1

625
(148q̃21 + 8σ̃2

11 + 945σ̃11 − 975),

a
(2)
1 =

2

625
(5625(−1 + σ̃11)2 − 36q̃21(76σ̃2

11 − 619σ̃11 + 580)),

a
(2)
0 =

72

25
q̃1(σ̃11 − 1)2(2σ̃11 − 5).

(24)

Obviously, at equilibrium the roots of P(2)
13,1D = 0 coincide with those of the first

order expansion and the same considerations about hyperbolicity remain valid.
Beyond the equilibrium point, we deal with the fifth degree polynomial (23), that
cannot be factorized analytically. However, one can refer to Section 3 in order
to determine the parametric equations of the boundaries, that turn out to be
exactly the ones presented as an example in (20). In Figure 2 such boundaries
are plotted in the (q̃1, σ̃11)-plane. The hyperbolicity region is composed by

14
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Figure 2: The boundaries of the hyperbolicity region in the (q̃1, σ̃11) for the
ET2

13 model,when one-dimensional variables are taken into account. The hyper-
bolicity region is denoted by ’I’, while the zones that do not satisfy hyperbolicity
property is labeled with ’II’. A zoom is also presented to show the details of the
structure of the hyperbolicity region.

different zones that we have denoted with the symbol ’I’, bounded by the line
described by the parametric equations (20) with the coefficients (24).

We stress that the results presented in Figure 2 are compatible with those
obtained with a different approach in [9], if one considers the limit of non-
degeneracy of the gas.

The hyperbolicity regions corresponding to ET1
13 and ET2

13 present com-
pletely different structures, so that it is hard to compare them quantitatively.
For this reason, we construct the maximum circles centered in the equilibrium
state and inscribed in the regions and compare their radius. In Figure 1 and
in Figure 3 one can find the maximum circle for ET1

13 and ET2
13. The region

corresponding to the quadratic expansion turns out to be larger in the neigh-
borhood of the equilibrium state, that is to say where the expansion is valid. In
fact, for the Grad system the maximum radius2 is r̃(1) ' 0.5432, while for the
second order expansion the radius is r̃(2) ' 0.8220.

Figure 3: The maximum radius circle with the center in the equilibrium point,
inscribed in the hyperbolicity region for ET2

13 in the (q̃1, σ̃11)-plane.

2The values of the dimensionless radius r̃(1) calculated in [1, 2] is different with respect to
the present one, since different dimensionless variables are used, as already remarked.
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6 The hyperbolicity region of ET13 for three-
dimensional field variables

In this section following [10], we will consider all the 13 field components u =

(ρ, vj , T, σjk, qj) for j, k = 1, 2, 3 (with
∑3
l=1 σll = 0) assuming that the variables

still depend on t and only on one space variable x1. The corresponding equations
system has the structure of (15) and is formed by 13 equations.

The hyperbolicity region is now a manifold in a multi-dimensional space,
difficult to visualize. Just to get an idea of the structure of the region, in
what follows we will refer to its two-dimensional sections obtained under the
assumptions that all the non-equilibrium variables vanish except two of them.
Unfortunately, for three-dimensional field variables the results cannot be ob-
tained in a completely analytical way, even for the linearized model: all the
results presented in this section were achieved through some numerical steps.

Referring to ET1
13, calculating the corresponding matrices A and B and tak-

ing into account the dimensionless ”non-convective” characteristic velocities λ̃
and the dimensionless quantities (14), it is possible to determine the character-

istic polynomial P(λ̃) =
(

det
[
B− (λ̃c0 + v1)A

])
and, in particular, to verify

that matrix A is non-singular (det(A) = −24kBρ
4/m). The analytic expression

of the complete characteristic polynomial is very cumbersome and we will not
report it here in its general form. At equilibrium the eigenvalues are all real:

λ̃1,2,3,4,5

∣∣∣
E

= 0, λ̃6,7

∣∣∣
E

=

√
7

5
, λ̃8,9

∣∣∣
E

= −
√

7

5
,

λ̃10,11

∣∣∣
E

= ±

√
13−

√
94

5
, λ̃12,13

∣∣∣
E

= ±

√
13 +

√
94

5
,

and there exists a basis of independent eigenvectors, so that the hyperbolicity
property is guaranteed at equilibrium. The hyperbolicity region of the three-
dimensional ET13 would be a manifold in a space in 8 dimensions, since 8 is
the number of the non-equilibrium field components. To get an idea of its
structure we have focused on its 28 two-dimensional sections (obtained under
the assumption that only two non-equilibrium variables are different from zero).
Here we will present only two of them. We remark, also, that if all the non-
equilibrium variables vanish except q1 and σ11, the solutions of the 1D case
(Figure 1) is obviously achieved.

For the ET1
13 theory, the section of the hyperbolicity region in the plane

(q̃1, σ̃12) presents a singularity due to the fact that the equilibrium point belongs
to the boundary of the region, as already predicted by Cai, Fan and Li [10, 11].
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In fact, the corresponding characteristic polynomial is factorized as

P(1)
3D(λ̃) |q1,σ12

=
24kBp

4θ7/2

15625m
λ̃2
(
25λ̃3 − 35λ̃− 14q̃1

) (
c
(1)
8 λ̃8 + c

(1)
6 λ̃6 + c

(1)
5 λ̃5+

+ c
(1)
4 λ̃4 + c

(1)
3 λ̃3 + c

(1)
2 λ̃2 + c

(1)
1 λ̃1 + c

(1)
0

)
,

and referring to the dimensionless variables (14), we have

c
(1)
8 = 625, c

(1)
6 = −4125, c

(1)
5 = −2750q̃1, c

(1)
4 = 1200σ̃2

12 + 6425,

c
(1)
3 = 5180q̃1, c

(1)
2 = 200σ̃2

12 + 1344q̃21 − 2625,

c
(1)
1 = 2240q̃1σ̃12 − 1050q̃1, c

(1)
0 = −700σ̃2

12.

(25)

From (25) it is evident that when q1 vanishes, the last eighth grade polynomial
assumes a quadratic form with at least a couple of imaginary roots, inasmuch

as c
(1)
8 = 0 and c

(1)
0 < 0. The complete structure of the hyperbolicity region

presented in Figure 4 was obtained applying the method introduced in Section
3 to the eighth grade polynomial, since it is easily shown that the third grade

polynomial presents always real roots for |q̃1| ≤ 5
3

√
7
15 .

To consider a simple case that can be studied in a completely analytic way
we focus, then, on the section in (σ̃12, σ̃13)–plane. If all the non-equilibrium
variables vanish except σ̃12 and σ̃13 and we pose σ̃2 = σ̃2

12+σ̃2
13, the characteristic

polynomial reduces to

P(1)
3D

∣∣∣σ12,σ13(λ̃) =
24kBθ

5/2p4

(125m)
λ̃3(−7 + 5λ̃2)

[
dI8λ̃

8+

+d
(1)
6 λ̃6 + d

(1)
4 λ̃4 + d

(1)
4 λ̃4 + d

(1)
2 λ̃2 + d

(1)
0

]
,

with
d
(1)
8 = 25, d

(1)
6 = −165, d

(1)
4 = 257 + 48σ̃2,

d
(1)
2 = −105 + 8σ̃2, d

(1)
0 = −28σ̃2.

The square brackets contain a quadratic eighth grade polynomial with a

positive coefficient d
(1)
8 and a non-positive term d

(1)
0 that is proportional to σ̃2.

Thus, the roots of the eighth polynomial are all real if and only if σ = σ̃12 =
σ̃13 = 0. Thus, the section of the hyperbolicity region in the plane (σ̃12, σ̃13)
reduces only to the equilibrium point, implying the instability of the equation
system [10, 11].

We pass now to the second order expansion model ET2
13, that is studied here

for the first time under the assumption of three-dimensional field variables. The
determinant of matrix A remains the same as for ET1

13 and the hyperbolicity of
the PDE system is guaranteed if the generalized eigenvalues problem presents
all real eigenvalues and a basis of eigenvectors. Also for the quadratic theory
the thirteenth grade characteristic polynomial is not easy to ’handle’ ! We have

17



1.0 0.5 0.5 1.0

0.4

0.2

0.2

0.4

- -

-

-

q
1

~

σ
∼
12

I

I

II

II

Figure 4: Section of the hyperbolicity region in the (q̃1, σ̃12)-plane for the ET1
13

theory. The equilibrium state is on the boundary of the region [11]. The hyper-
bolicity region is denoted by ’I’, while the zones that do not satisfy hyperbolicity
property is labeled with ’II’.

studied the 28 two-dimensional sections in the 8 dimension space discovering
that there exists a neighborhood of the equilibrium point completely contained
in the hyperbolicity region. Here we analyse the same sections as for the linear
theory. If we assume that the only non-vanishing non-equilibrium variables are
q̃1 and σ̃12, the characteristic polynomial reduces to

P(2)
3D

∣∣∣σ12,σ13
(λ̃) =

8kBθ
5/2p4

(6103515625m)
P4(λ̃)P9(λ̃),

where

P4(λ̃) =3125λ̃4 − 13500q̃1λ̃
3 − (4375− 17760q̃21 + 2500σ̃2

12)λ̃2+

+ (8750q̃1 − 7168q̃31 + 3200q̃1σ̃
2
12)λ̃− 4200q̃21 + 1250σ̃2

12

and

P9(λ̃) =

9∑
k=0

c
(2)
k λ̃k (26)
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with

c
(2)
9 =5859375, c

(2)
8 = −68437500q̃1,

c
(2)
7 =− 38671875 + 281112500q̃21 − 15000000σ̃2

12

c
(2)
6 =318093750q̃1 − 540912000q̃31 + 104200000q̃1σ̃

2
12,

c
(2)
5 =60234375− 927002500q̃21 + 520434240q̃41 + 70481250σ̃2

12−
− 250496000q̃21 σ̃

2
12 + 9600000σ̃4

12,

c
(2)
4 =− 328875000q̃1 + 1228649000q̃31 − 235720192q̃51−

− 268515000q̃1σ̃
2
12 + 274594560q̃31 σ̃

2
12 − 21248000q̃1σ̃

4
12

c
(2)
3 =− 24609375 + 600075000q̃21 − 751718400q̃41 + 38191104q̃61−

− 38906250σ̃2
12 + 246656000q̃21 σ̃

2
12 − 148789248q̃41 σ̃

2
12+

+ 45825000σ̃4
12 + 19230720q̃21 σ̃

4
12),

c
(2)
2 =68906250q̃1 − 450360000q̃31 + 172045440q̃51 + 37237500q̃1σ̃

2
12+

+ 13531200q̃31 σ̃
2
12 + 36225024q̃51 σ̃

2
12 − 192540000q̃1σ̃

4
12−

− 23617536q̃31 σ̃
4
12

c
(2)
1 =(−63000000q̃21 + 119952000q̃41 + 11250000σ̃2

12 + 66345000q̃21 σ̃
2
12−

− 56605440q̃41 σ̃
2
12 − 20362500σ̃4

12 + 159264000q̃21 σ̃
4
12+

+ 8257536q̃41 σ̃
4
12 − 21600000σ̃6

12)

c
(2)
0 =18900000q̃31 − 9000000q̃1σ̃

2
12 − 56028000q̃31 σ̃

2
12 + 16290000q̃1σ̃

4
12−

− 30105600q̃31 σ̃
4
12 + 17280000q̃1σ̃

6
12.

First of all we remark that there exists a complete symmetry if the signs of q̃1 and
or σ̃12 are changed, as also evident in Figure 5. Moreover, it is possible to verify
that P4(λ̃) presents always real roots, so that the boundaries of the hyperbolicity
region section are determined studying the properties of polynomial (26). In
this regard, we have applied the method introduced in Section 3, analyzing
the compatibility equations in (18) of the ninth grade polynomial. The two-
dimensional section of the hyperbolicity region is shown in Figure 5, where it
is clear that there exists a neighborhood of the equilibrium state completely
enclosed in the region.

The differences between the hyperbolicity region for the first and the sec-
ond order expansion are unequivocal also when σ̃12 and σ̃13 are the only non-
vanishing non-equilibrium variables. In that case, the characteristic polynomial
reduces to:

P(2)
3D

∣∣∣σ12,σ13
(λ̃) =

24kBp
4θ5/2

3125m
λ̃(5λ̃4 − (7 + 4σ̃2)λ̃2 + 2σ̃2)P8(λ̃),

with

P8(λ̃) =
[
d
(2)
8 λ̃8 + d

(2)
6 λ̃6 + d

(2)
4 λ̃4 + d

(2)
2 λ̃2 + d

(2)
0

]
, (27)
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Figure 5: The section of the hyperbolicity region in the (q̃1, σ̃12)–plane for the
ET2

13 three-dimensional theory, on the left the zoom of some details. The hyper-
bolicity region is denoted by ’I’, while the zones that do not satisfy hyperbolicity
property is labeled with ’II’.

σ̃2 = σ̃2
12 + σ̃2

13 and, moreover,

d
(2)
8 = 625, d

(2)
6 = (−4125− 1600σ̃2), d

(2)
4 = (6425 + 7518σ̃2 + 1024σ̃4),

d
(2)
2 = (−2625− 4150σ̃2 + 4888σ̃4) d

(2)
0 = 1200σ̃2 − 2172σ̃4 − 2304σ6.

We notice that P(2)
3D |σ12,σ13

(λ̃) contains the product of a fourth grade quadratic
polynomial (with real roots for any value of σ̃2) and the eighth grade quadratic
polynomial P8(λ̃). It is proven that such last polynomial (27) presents real

roots if σ̃2 ≤ 25/64 (i.e. d
(2)
0 ≥ 0). In fact if we write the polynomial in µ = λ̃2,

(27) becomes a fourth grade polynomial that at equilibrium presents 3 positive

and a null roots, Moreover, since d
(2)
0 > 0, there exists a neighborhood of the

equilibrium state for which all the roots µ are real and positive. In this way the
reality of the eigenvalues λ̃ = ±√µ is guaranteed at least in a neighborhood of
the equilibrium. Hence, we conclude that in the quadratic approximation there
exists a neighborhood of the equilibrium point within the hyperbolicity region,
overcoming the instability problem.

7 Conclusions

In this paper, we have presented the second order RET model for a monatomic
gas described by 13 moments and we have studied its hyperbolicity properties,
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comparing the results with those for the corresponding linearized model, already
known in the literature. We have verified that the radius of the hyperbolicity
regions for ET2

13 is in general, larger than those for ET1
13. This fact suggests the

idea that the hyperbolicity region grows together with the approximation order.
Moreover, there exists a neighborhood of the equilibrium state enclosed in the
region, in contrast to the three-dimensional first-order theory. This fact sug-
gests a way to overcome the problems already studied by Cai, Fan Li [10, 11],
without loss of validity of the entropy principle and keeping the balance law
structure of the PDE system. The extension of these results to Extended Ther-
modynamics of polyatomic gases will be soon submitted and also comparisons
with experimental data will be carried on to test the second order theory.
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