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REGULARITY OF QUASI-MINIMIZERS

FOR NON-UNIFORMLY ELLIPTIC INTEGRALS

STEFANO BIAGI, GIOVANNI CUPINI, ELVIRA MASCOLO

Abstract. In this paper we consider a class of non-uniformly elliptic integral
functionals and we prove the local boundedness of the quasi-minimizers. Our

approach is based on a suitable adaptation of the celebrated De Giorgi proof,

and it relies on an appropriate Caccioppoli-type inequality.

1. Introduction

In the present paper we shall be concerned with a class of non-uniformly elliptic
functionals F of the Calculus of Variations taking the following form

F : W 1,1
loc (Ω)→ [0,∞], F(u) :=

∫
Ω

f(x, u,∇u) dx, (1.1)

where Ω ⊆ Rn is a bounded open set and f is a real-valued Carathéodory function
on Ω× R× Rn satisfying the non-uniform growth assumption

λ(x) |ξ|p ≤ f(x, u, ξ) ≤ µ(x) (|ξ|p + |u|q) + a(x). (1.2)

In the above (1.2), p, q are positive real numbers such that q ≥ p > 1 and λ, µ, a are
non-negative measurable functions fulfilling suitable integrability assumptions (see,
precisely, Theorem 1.1 below and Theorem 2.2 in Section 2).

Our main aim is to prove the (local) boundedness of any quasi-minimizer of F. By

quasi-minimizer of F we mean a function u ∈ W 1,1
loc (Ω) with f(x, u,∇u) ∈ L1

loc(Ω)
and for which there exists some Q ≥ 1 such that∫

suppϕ

f(x, u,∇u) dx ≤ Q
∫

suppϕ

f(x, u+ ϕ,∇(u+ ϕ)) dx, (1.3)

for every ϕ ∈W 1,1(Ω) with suppϕ b Ω (see also Definition 2.1 in Section 2).

As is well-known, the development of the theory of regularity for single equations
and scalar integrals is strictly connected with the pioneering result established by
De Giorgi [8] in 1957. Indeed, De Giorgi considered a linear elliptic equation (with
associated quadratic functional) of the form

n∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj
(x)

)
= 0 (x ∈ Ω ⊆ Rn); (1.4)
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where the functions aij ’s are measurable and bounded in Ω, and the n × n matrix
A(x) = (aij(x))ij is symmetric (for all x ∈ Ω). Assuming that, for some λ > 0,

n∑
i,j=1

aij(x)ξiξj ≥ λ|ξ|2 for all ξ ∈ Rn, a.e. x ∈ Ω,

De Giorgi proved that any weak solution u of (1.4) is locally bounded and, further,
locally Hölder continuous. One of the crucial points in the De Giorgi’s proof is the
following Caccioppoli inequality on the super-level sets of u:∫

Aβ,ρ

|∇u|2 dx ≤ c

(R− ρ)p

∫
Aβ,R

(u− β)2 dx (valid for all 0 < ρ < R), (1.5)

where R > 0 is such that B(x0, R) b Ω and, for any β ∈ R, where

Aβ,R := {x ∈ B(x0, R) : u(x) > β}.
It is out of doubts that De Giorgi’s regularity result [8], together with the subsequent
results by Moser [20] and Stampacchia [22], produced a decisive progress in the theory
of regularity. Starting from these seminal works, several improvements (regarding the
scalar case) have been achieved: for example, Giaquinta and Giusti in the series of
papers [11, 12, 13] proved the Hölder regularity for the quasi-minimizers of a class of
non-differentiable scalar functionals as in (1.1) assuming that the integrand function
f satisfies the following p-growth conditions:

|∇u|p ≤ f(x, u,∇u) ≤ C(1 + |∇u|)p (with p > 1).

We refer the reader to [14] for a comprehensive treatment of this topic.

In [23], Trudinger started the study of the regularity for non-uniformly elliptic
equations. More precisely, he considered equations as in (1.4) assuming that

λ(x)|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ n2µ(x)|ξ|2 (1.6)

for a.e.x ∈ Ω and any ξ ∈ Rn. Here, λ(x) is the minimum eigenvalue of the symmetric
matrix A(x) = (aij(x)) and µ := supij |aij |. The main novelty in Trudinger’s result
(which also highlights the non-uniformity of (1.6)) relies in the assumption that

λ−1 ∈ Lrloc(Ω) and µ1 = λ−1µ2 ∈ Lσloc(Ω) with
1

r
+

1

σ
<

2

n
, (1.7)

hence the ratio µ/λ is not necessarily bounded in Ω. Under conditions (1.6) and (1.7),
Trudinger proved that any weak solution of (1.4) is locally bounded in Ω.

As is well-known, the equation (1.4) is usually called degenerate when the aij ’s
fulfill (1.6) but λ−1 /∈ L∞(Ω), whereas it is called singular when µ /∈ L∞(Ω). It is
worth emphasizing that the theory of regularity for (1.4) under assumption (1.6) is
significantly complicated by the x-dependence of λ and µ; in fact the problem of find-
ing optimal additional conditions on λ and µ which guarantee the Hölder continuity
of the solutions of (1.4) is still an open problem.

The result by Trudinger previously described was extended in many settings and
directions throughout the years: firstly by Trudinger himself in [24], where more gene-
ral equations are considered; later on, among several other authors, by Fabes, Kenig
and Serapioni in [10]. In this paper, the authors establish the local regularity for
the solutions of degenerate equations satisfying (1.6) with λ = µ belonging to the
Muckenhoupt class (see [21]).

Clearly, the literature concerning non-uniformly elliptic problems is quite extensive,
and it is beyond our scopes to give an exhaustive list of references; here, we limit
ourselves to mention the most recent papers [1, 5, 6, 7, 9, 15, 17, 18, 19, 25], and we
refer the interested reader to the bibliography therein.
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We now turn to describe the main result of this paper. As already said, we aim at
proving the (local) boundedness of any quasi-minimizer of F in (1.1). In our context,
we require the integrand function f to satisfy the generalized version of Trudinger’s
assumptions, namely we assume that

• f is a Carathédory function on Ω× R× Rn (where Ω ⊆ Rn is open);

• f(x, ·, ·) is convex on R× Rn for every fixed x ∈ Ω;

• f satisfies the growth condition (1.2), where q ≥ p > 1 and λ, µ, a : Ω→ R are
non-negative measurable functions such that, for a suitable positive constant
k, one has λ(x) ≤ k µ(x) for a.e.x ∈ Ω.

While we postpone to Section 2 the statement of our result in its full generality, we
now give the statement in the particular case when (1.2) holds with q = p.

Theorem 1.1. Assume that f satisfies (1.2) with q = p, and

λ−1 ∈ Lrloc(Ω), µ ∈ Lσloc(Ω), a ∈ Lτloc(Ω), (1.8)

for some r ∈ [1,∞], σ ∈ (1,∞] and τ ∈ (1,∞] fulfilling

1

r
+ max

{
1

σ
,

1

τ

}
<
p

n
and r ≥ 1

p− 1
if p ∈ (1, 2). (1.9)

If u ∈ W 1,1
loc (Ω) is a quasi-minimizer for the functional F in (1.1), then u is locally

bounded in Ω.

We refer to Theorem 2.2 for the general case 1 < p ≤ q, and for a quantitative
estimate of the L∞-norm of the quasi-minimizers. We explicitly point out that a
crucial assumption in Theorem 2.2 is the following

qσ′ < ν∗, where ν =
pr

r + 1
, (1.10)

(with the convention ν := p if r = +∞), ν∗ is the Sobolev exponent of ν and σ′ is the
conjugate exponent of σ. When λ = 1 and µ ∈ L∞(Ω), the above (1.10) gives back
the classical bound q < p∗ (see, e.g., [14]).

Although being inspired by Trudinger’s result, the result in Theorem 1.1 is signi-
ficantly more general if compared with the previous ones: firstly, we consider quasi-
minimizers of integral functionals F, so that no Euler-Lagrange equation is available;
secondly, the function f defining F is assumed to satisfy a p-growth condition with
a general p > 1, and an explicit dependence of u is allowed. We explicitly point out
that our integrability assumptions (1.8)-(1.9) on λ, µ and a reduce to those which
have been considered for less general cases: for example, when p = 2 or when λ and
µ are positive constants (for more details see Remark 2.4).

We now spend a few words about the proof of Theorem 2.2 (of which Theorem
1.1 is a particular case). Broadly speaking, our approach is based on a suitable
adaptation of De Giorgi’s iterative method, which needs to take into account both
the (possible) degeneracy of the ‘weights’ λ, µ and the different exponents p, q in (1.2).
These facts make the proof definitely more involved than in the classical cases. The
key ingredients of our approach are, essentially, the following:

(1) First of all, we prove a Caccioppoli-type inequality for any quasi-minimizer u
of F: more precisely, fixed x0 ∈ Ω and a ball B(x0, R0) b Ω we have that there exists
Λ > 0 such that, for every 0 < ρ < R ≤ R0 and every β ∈ R with β ≥ 1, we have∫

Aβ,ρ

f(x, u,∇u) dx ≤ Λ

{
1

(R− ρ)p

∫
Aβ,R

µ(x)
(

(u− β)p + βq
)

dx

+ ‖a‖Lτ (B(x0,R)) ·
∣∣Aβ,R∣∣1− 1

τ

}
.

(1.11)
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(2) With the Caccioppoli-type inequality (1.11) at hand, the second ingredient is
a decay estimate of the “excess” on the superlevel sets of u. Fixed a suitable level
β ≥ 1, we define a sequence ρh of radii starting from R0 and decreasing to R0

2 and

another sequence βh of levels starting from β
2 and increasing to β. We then define

the “excess” on the superlevel set as follows

Jh :=

∫
Aβh,ρh

(u− βh)
pσ′

dx. (1.12)

Using the Caccioppoli-type inequality (1.11) and the Sobolev-type Embedding in
Lemma 4.2, we are able to show that

Jh+1 ≤ C
(
1 + ‖u‖(q−p)σ

′

Lν∗ (B(x0,R0))

)
ζhJ1+α

h , (1.13)

where C, ζ > 1 are suitable constants depending on the data and

α := min
{

1− qσ′

ν∗
, σ′
(

1− 1

τ
− p

ν∗

)}
.

(3) Having established (1.13), the local (upper) boundedness of u follows by a
standard iteration argument: choosing β > 1 large enough, and using the fact that
α > 0 (which is a consequence of assumptions (1.9) and (1.10)), one gets

lim
h→+∞

Jh = 0; (1.14)

in its turn, the above (1.14) readily implies that

u ≤ β a.e. in B(x0, R0/2). (1.15)

Lower bounds for u can be obtained by showing that −u is a quasi-minimizer for a
similar functional, so that −u is bounded from above.

We conclude this Introduction by explicitly highlighting that our result applies to
several energy integrals which are nowadays receiving great attention in the literature;
this is the case, e.g., of the double phase energy integral

F(v) =

∫
Ω

(
h1(x)|∇v(x)|s + h2(x)|∇v(x)|p

)
dx 1 < s < p, (1.16)

with non-negative functions h1 and h2. A deep study of such functionals was recently
carried out under many different aspects in the framework of p, q-growth conditions,
see e.g. [2, 3, 4]. It is straightforward to check that the integrand function

f(x, ξ) := h1(x) |ξ|s + h2(x)|ξ|p

fulfills the growth condition (1.2) with

λ(x) := h2(x), µ(x) := (h1(x) + h2(x)), a(x) := h1(x).

As a consequence, if we assume that

h−1
2 ∈ Lrloc(Ω), (h1 + h2) ∈ Lσloc(Ω) and h1 ∈ Lτloc(Ω)

for some r ∈ [1,∞), σ ∈ (1,∞), τ ∈ (1,∞) satisfying the relations (1.9), we infer
from Theorem 1.1 that any quasi-minimizer of F is locally bounded, without any
relationship between the exponents p and s.

Another application of Theorem 1.1 is the following (see also the more general
Example 2.3 in Section 2): consider the functional

F(v) =

∫
Ω

h(x)
(
|∇v(x)|p + |u(x)|p

)
dx, (1.17)
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where p > 1 and h is non-negative on Ω. If we assume that

h−1 ∈ Lrloc(Ω) and h ∈ Lσloc(Ω)

for some r ∈ [1,∞), σ ∈ (1,∞) satisfying

1

r
+

1

σ
<
p

n
and r ≥ max

{
1,

1

p− 1

}
,

then the quasi-minimizers of F are locally bounded.

Plan of the paper. A short plan of the paper is now in order.

• In Section 2 we shall give the needed preliminary definitions, the statement
of our result in its full generality, Theorem 2.2, together with some remarks
concerning our main assumptions.
• In Section 3 we shall prove a Caccioppoli-type inequality for the quasi-mini-

mizers of F, which is the fundamental tool for the proof of Theorem 2.2.
• In Section 4 we shall set up the De Giorgi’s iterative method, by means of

which we shall be able to provide the proof of Theorem 2.2.

2. Preliminary definitions and statement of the main result

As anticipated in the Introduction, throughout this paper we shall be concerned
with integral functionals of the following form

F : W 1,1
loc (Ω) −→ [0,∞], F(u) :=

∫
Ω

f(x, u,∇u) dx, (2.1)

where Ω ⊆ Rn is a fixed open set and f : Ω×R×Rn → R is a Carathéodory function
satisfying the following assumptions (already presented in the Introduction):

f(x, ·, ·) is convex on R× Rn for every fixed x ∈ Ω; (2.2)

and, for every x ∈ Ω and every (u, ξ) ∈ R× Rn, one has

λ(x) |ξ|p ≤ f(t, u, ξ) ≤ µ(x)
(
|ξ|p + |u|q

)
+ a(x), (2.3)

where q ≥ p > 1 and a, λ, µ : Ω→ (0,∞) are measurable functions such that

λ(x) ≤ k µ(x) a.e. in Ω, (2.4)

for a suitable constant k > 0. Furthermore, we require that

λ−1 ∈ Lrloc(Ω), µ ∈ Lσloc(Ω), a ∈ Lτloc(Ω), (2.5)

for some r ∈ [1,∞], σ ∈ (1,∞] and τ ∈ (1,∞] fulfilling the relations

1

r
+ max

{
1

σ
,

1

τ

}
<
p

n
, and r ≥ 1

p− 1
if p ∈ (1, 2). (2.6)

Since we aim at proving the local boundedness of the quasi-minimizers of the functio-
nal F, we remind their precise definition.

Definition 2.1. We say that a function u ∈ W 1,1
loc (Ω) is a quasi-minimizer of F in

(2.1) if x 7→ f(x, u,∇u) ∈ L1
loc(Ω) and there exists a real Q ≥ 1 such that∫

suppϕ

f(x, u,∇u) dx ≤ Q
∫

suppϕ

f(x, u+ ϕ,∇(u+ ϕ)) dx, (2.7)

for every ϕ ∈W 1,1(Ω) with suppϕ b Ω. In the particular case when (2.7) holds with
Q = 1, we say that u is a local minimizer of F.
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With simple computations (see e.g. Proposition 3.1 in [7]), for every open set Ω′

compactly contained in Ω we deduce that

‖λ−1‖−1
Lr(Ω′) ‖∇v‖

p

L
pr
r+1 (Ω′;Rn)

≤
∫

Ω′
f(x, v,∇v) dx. (2.8)

From (2.8) and the classical Sobolev embedding theorem, we then get

W 1, prr+1 (Ω′) ⊃W 1,F(Ω′) (2.9)

where W 1,F(Ω′) denotes the set of maps u with finite F-energy on Ω′, that is,

W 1,F(Ω′) := {u ∈W 1,1(Ω′) : F(u; Ω′) <∞}.
It is clear that if we impose appropriate conditions at the boundary of a fixed open
set Ω′ b Ω, then from standard direct methods of the Calculus of Variations we derive
the existence of minimizers in the Sobolev space

W
1, prr+1

loc (Ω′),

provided that pr > r + 1. Furthermore, if u ∈ W 1,1
loc (Ω) is a quasi-minimizer of F, it

follows from (2.9) that

u ∈W 1, prr+1

loc (Ω).

For the sake of simplicity, we will explicitly assume this in our statements and we also
introduce the following notation:

ν :=
pr

r + 1
, (2.10)

with the convention ν := p if r = +∞. It should be noticed that, from our assumptions
on r (that is, r ≥ 1 and r ≥ 1/(p− 1) if 1 < p < 2), we easily infer that

ν =
pr

r + 1
≥ 1. (2.11)

Throughout the sequel, given any ϑ ∈ [1,∞], we shall adopt the following notation:
we indicate by ϑ′ the conjugate exponent of ϑ, that is,

ϑ′ :=


ϑ

ϑ− 1
, if ϑ ∈ (1,∞);

∞, if ϑ = 1;

1, if ϑ =∞.
Moreover, we denote by ϑ∗ the Sobolev exponent of ϑ, that is,

ϑ∗ :=


nϑ

n− ϑ
, if ϑ < n,

any number t > ϑ, if ϑ ≥ n.
Our main result is contained in the following theorem.

Theorem 2.2. Let us consider the functional F in (2.1), and let us suppose that its
integrand function f satisfies (2.2), (2.3), (2.4), (2.5) and (2.6), with

qσ′ < ν∗. (2.12)

Let u ∈W 1, prr+1

loc (Ω) be a quasi-minimizer of F.

Then u is locally bounded in Ω. Furthermore, it is possible to find a constant c > 0,
only depending on n, p, q, r, σ, τ and on k and Q, with the following property: for every
fixed x0 ∈ Ω and every R0 ∈ (0, 1] satisfying B(x0, R0) b Ω, one has

‖u‖L∞(BR0/2
(x0)) ≤ c

(
H

R0

) ν∗
ν∗−qσ′

(1 + ‖u‖Lν∗ (BR0
))
ν∗(q−p+pα)

p(ν∗−qσ′) , (2.13)



REGULARITY OF QUASI-MINIMIZERS FOR NON-UNIFORMLY ELLIPTIC INTEGRALS 7

where

H :=
(
1 + ‖λ−1‖1/pLr(B(x0,R0))

)(
1 + ‖a‖1/pLτ (B(x0,R0))

)(
1 + ‖µ‖1/pLσ(B(x0,R0))

)
(2.14)

and

α := min
{

1− qσ′

ν∗
, σ′
(

1− 1

τ
− p

ν∗

)}
. (2.15)

We observe that, in the particular case when q = p, Theorem 2.2 reduces to Theo-
rem 1.1 stated in the Introduction.

Example 2.3. Let us consider the functional

F(v) =

∫
Ω

h(x)
(
|∇v(x)|p + |u(x)|q

)
dx, (2.16)

where 1 < p ≤ q are real and h is non-negative on Ω. If we assume that

(i) h−1 ∈ Lrloc(Ω) and h ∈ Lσloc(Ω), with

1

r
+

1

σ
<
p

n
and r ≥ max

{
1,

1

p− 1

}
;

(ii) q < ν∗/σ′ (remind that ν = pr/(r + 1) and ν∗ is Sobolev exponent of ν),

we infer from Theorem 2.2 that the quasi-minimizer of F are locally bounded.

Remark 2.4. Here, we list a few consequences of (2.6) and (2.12) which are of general
interest.

(1) The first inequality in (2.6) implies

pσ′ < ν∗ and 1− 1

τ
− p

ν∗
> 0. (2.17)

(2) The assumption on q, see (2.12), together with the last inequality in (2.17),
implies α > 0.

(3) If the function a in the growth condition (2.3) is a locally bounded function,
i.e., τ = +∞, we obtain

1

r
+

1

σ
<
p

n
. (2.18)

It should be noticed that, in the particular case p = 2, the above (2.18) is
precisely the assumption made by Trudinger in [23] (see indeed (1.7)).

(4) From the first inequality in (2.6) we get τ > n/p. This bound from below for
τ coincides with the condition in order to gain regularity for the minimizer in
the standard case when λ, µ are constants.

(5) We notice that if r = σ = +∞, i.e., λ−1, µ ∈ L∞, then (2.12) reduces to the
well-known assumption q < p∗ (see for example Giusti [14]).

(6) If r = σ = τ = +∞ and p = q, then

ν∗(q − p+ pα)

p(ν∗ − qσ′)
= 1

and the estimate (2.13) becomes

‖u‖L∞(BR0/2
(x0)) ≤ c

(
H

R0

) p∗
p∗−p

(1 + ‖u‖Lp∗ (BR0
)).
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3. Caccioppoli-type inequality

Throughout the sequel, we shall make use of the following notation: given any
function u in W 1,1

loc (Ω), if x0 ∈ Ω and R > 0 are such that B(x0, R) b Ω we set

Aβ,R = Aβ,R(u) :=
{
x ∈ B(x0, R) : u(x) > β

}
, β ∈ R. (3.1)

A fundamental tool for proving the local boundedness of the quasi-minimizers of F is
the Caccioppoli-type inequality contained in the next Proposition 3.1. In the proof
of this proposition we shall exploit a very classical lemma, see Lemma 3.2 below.

Proposition 3.1. Let u ∈ W
1, prr+1

loc (Ω) be a quasi-minimizer of the functional F in
(2.1); moreover, let x0 ∈ Ω and R ∈ (0, 1] be such that B(x0, R) b Ω. Then, for every
ρ ∈ (0, R) and every β ∈ R with β ≥ 1 we have∫

Aβ,ρ

f(x, u,∇u) dx ≤ Λ

{
1

(R− ρ)p

∫
Aβ,R

µ(x)
(

(u− β)p + βq
)

dx

+ ‖a‖Lτ (B(x0,R)) ·
∣∣Aβ,R∣∣1− 1

τ

}
,

(3.2)

where Λ > 0 is a constant only depending on p and Q.

Proof. Let ρ, β be as in the statement of the proposition, and let s, t ∈ (0, R) be such
that ρ ≤ s < t. Moreover, let η ∈ C∞c (Rn,R) be a cut-off function satisfying the
following properties:

(i) 0 ≤ η ≤ 1 on Rn;
(ii) supp η b B(x0, t) and η ≡ 1 on B(x0, s);
(iii) |∇η(x)| ≤ 2/(t− s) for every x ∈ Rn.

Setting w := (u− β)+ = max{u− β, 0}, we finally define

ϕ : Ω→ R, ϕ(x) := −ηp(x)w(x).

It is easy to check that

ϕ ∈W 1,1(Ω) and Aβ,s ⊆ suppϕ ⊆ Aβ,t b Ω; (3.3)

furthermore, we have

∇w = ∇u on suppϕ. (3.4)

Since u is a quasi-minimizer of F with constant Q ≥ 1, and since f ≥ 0, one has∫
Aβ,s

f(x, u,∇u) dx ≤
∫

suppϕ

f(x, u,∇u) dx

≤ Q
∫

suppϕ

f(x, u+ ϕ,∇(u+ ϕ)) dx

(3.4)
= Q

∫
suppϕ

f
(
x, (1− ηp)u+ ηpβ, (1− ηp)∇u+ ηp

(
pwη−1∇η

))
dx

(2.2)

≤ Q

∫
suppϕ

{
(1− ηp) f(x, u,∇u) + ηp f

(
x, β, pwη−1∇η

)}
dx.

We now introduce the notation

I1 :=

∫
suppϕ

(1− ηp) f(x, u,∇u) dx,

I2 :=

∫
suppϕ

ηp f
(
x, β, pwη−1∇η

)
dx,

and we proceed by giving an estimate of them.
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As regards I1, since η ≡ 1 on B(x0, s) and since 0 ≤ η ≤ 1 on the whole of Rn, we
immediately obtain

I1

(3.3)

≤
∫
Aβ,t

(1− ηp) f(x, u,∇u) dx

=

∫
Aβ,t\Aβ,s

(1− ηp) f(x, u,∇u) dx

≤
∫
Aβ,t\Aβ,s

f(x, u,∇u) dx. (3.5)

We then turn our attention to I2. On account of (2.3), one has

I2 ≤
∫

suppϕ

ηp
{
µ(x)

(
pwη−1

)p |∇η|p + βq
)

+ a(x)

}
dx

≤
∫

suppϕ

µ(x)
((
pw
)p |∇η|p + βq

)
dx+

∫
suppϕ

a(x) dx =: (?);

moreover, by using the estimate for |∇η| in (iii) and since 0 < t − s ≤ R ≤ 1 and
p > 1, we get

(?) ≤
∫

suppϕ

µ(x)

(
(2p)p

(t− s)p
wp + βq

)
dx+

∫
suppϕ

a(x) dx

≤ (2p)p

(t− s)p

∫
suppϕ

µ(x)
(
wp + βq

)
dx+

∫
suppϕ

a(x) dx =: (2?).

By applying Hölder’s inequality, using (3.3), (2.5) and noting that w = (u− β)+, we
finally get

(2?) ≤ (2p)p

(t− s)p

∫
Aβ,t

µ(x)
(
wp + βq

)
dx+

∫
Aβ,t

a(x) dx

≤ (2p)p

(t− s)p

∫
Aβ,t

µ(x)
(
wp + βq

)
dx+ ‖a‖Lτ (B(x0,R))

∣∣Aβ,R∣∣1− 1
τ

=
(2p)p

(t− s)p

∫
Aβ,R

µ(x)
(

(u− β)p + βq
)

dx+ ‖a‖Lτ (B(x0,R))

∣∣Aβ,R∣∣1− 1
τ . (3.6)

Gathering together (3.5) and (3.6), we then obtain∫
Aβ,s

f(x, u,∇u) dx ≤ Q
∫
Aβ,t\Aβ,s

f(x, u,∇u) dx

+Q

(
(2p)p

(t− s)p

∫
Aβ,R

µ(x)
(
|u− β|p + βq

)
dx

+ ‖a‖Lτ (B(x0,R))

∣∣Aβ,R∣∣1− 1
τ

)
.

By the hole-filling method, this last estimate clearly implies that∫
Aβ,s

f(x, u,∇u) dx ≤ Q

Q+ 1

∫
Aβ,t

f(x, u,∇u) dx

+

(
(2p)p

(t− s)p

∫
Aβ,R

µ(x)
(

(u− β)p + βq
)

dx

+ ‖a‖Lτ (B(x0,R))

∣∣Aβ,R∣∣1− 1
τ

)
.

(3.7)
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We are now entitled to apply Lemma 3.2 below, with

ω : [ρ,R]→ R, ω(t) :=

∫
Aβ,t

f(x, u,∇u) dx,

and the constants ϑ, κ,A and B given, respectively, by

ϑ =
Q

Q+ 1
, κ = p, A := (2p)p

∫
Aβ,R

µ(x)
(

(u− β)p + βq
)

dx,

and B := ‖a‖Lτ (B(x0,R))

∣∣Aβ,R∣∣1− 1
τ .

Thus, we find a constant Λ > 0, only depending on κ = p and on Q, such that

ω(ρ) =

∫
Aβ,ρ

f(x, u,∇u) dx

≤ Λ

{
1

(R− ρ)p

∫
Aβ,R

µ(x)
(

(u− β)p + βq
)

dx

+ ‖a‖Lτ (B(x0,R))

∣∣Aβ,R∣∣1− 1
τ

}
.

The proof is complete. �

We now state the classical lemma used in the proof above. We refer, e.g., to [14,
Lemma 6.1] for a demonstration of this result.

Lemma 3.2. Let [a, b] ⊆ R and let ω : [a, b] → R be non-negative and bounded. We
assume that there exist constants κ,A,B > 0 and ϑ ∈ (0, 1) such that

ω(s) ≤ ϑω(t) +
A

(t− s)κ
+B, for every a ≤ s ≤ t ≤ b.

It is then possible to find a constant C = C(ϑ, κ) > 0 such that

ω(ρ) ≤ C
{

A

(R− ρ)κ
+B

}
, for every a ≤ ρ ≤ R ≤ b.

4. Proof of Theorem 2.2

Now we proceed towards the proof of our Theorem 2.2 by setting up the celebrated
De Giorgi’s iterative method. In what follows, we tacitly understand that all the
assumptions and the notation introduced in the previous sections do apply.

Let u ∈W 1, prr+1

loc (Ω) be a quasi-minimizer of F in (2.1). Taking into account Remark
2.4, we fix a point x0 ∈ Ω and a real R0 ∈ (0, 1] in such a way that

B(x0, R0) b Ω and

∫
B(x0,R0)

|u|pσ
′
dx ≤ 1. (4.1)

For every fixed R ∈ (0, R0], we then define the following (decreasing) sequences:

ρh :=
R

2

(
1 +

1

2h

)
and ρh :=

ρh+1 + ρh
2

, h ∈ N ∪ {0}. (4.2)

Moreover, given any real number β ≥ 1, we consider the (increasing) sequence

βh := β

(
1− 1

2h+1

)
, h ∈ N ∪ {0}. (4.3)

Finally, we define a sequence (Jh)h≥0 of non-negative numbers as follows:

Jh :=

∫
Aβh,ρh

(u− βh)pσ
′
dx. (4.4)



REGULARITY OF QUASI-MINIMIZERS FOR NON-UNIFORMLY ELLIPTIC INTEGRALS 11

We explicitly observe that, since (ρh)h is decreasing and (βh)h is increasing, the
sequence (Jh)h is decreasing: in fact, we have

Jh+1 =

∫
Aβh+1,ρh+1

(u− βh+1)pσ
′
dx ≤

∫
Aβh+1,ρh

(u− βh+1)pσ
′
dx

≤
∫
Aβh+1,ρh

(u− βh)pσ
′
dx ≤

∫
Aβh,ρh

(u− βh)pσ
′
dx = Jh.

(4.5)

Moreover, on account of (4.1) (and since ρh ≤ R ≤ R0), we have

Jh =

∫
Aβh,ρh

(u− βh)pσ
′
dx ≤

∫
Aβh,ρh

|u|pσ
′
dx

≤
∫
B(x0,R0)

|u|pσ
′
dx ≤ 1.

(4.6)

Finally, by taking into account the definitions of Jh, βh and ρh, we have

Jh =

∫
Aβh,ρh

(u− βh)pσ
′
dx ≥

∫
Aβh+1,ρh

(u− βh)pσ
′
dx

≥ (βh+1 − βh)pσ
′ ∣∣Aβh+1,ρh

∣∣ =

(
β

2h+2

)pσ′ ∣∣Aβh+1,ρh

∣∣, (4.7)

The following proposition is the key tool for the proof of Theorem 2.2.

Proposition 4.1. Let the above assumptions and notation do apply. Then, there
exists a constant C > 0 such that, for every R ∈ (0, R0] and every β ≥ 1, one has

Jh+1 ≤ C
(
1 + ‖u‖(q−p)σ

′

Lν∗ (B(x0,R))

)
· 8pσ

′2h

Rpσ′βpσ
′(1− qσ′

ν∗ )
J1+α
h ∀ h ∈ N ∪ {0}, (4.8)

where ν is as in (2.10) and α is as in (2.15). Furthermore, the dependence of C with
respect to λ, µ, a can be explicated as follows:

C = c
{
‖λ−1‖Lr(B(x0,R0)) ·

(
1 + ‖a‖Lτ (B(x0,R0))

)
·
(
1 + ‖µ‖Lσ(B(x0,R0))

)}σ′
, (4.9)

where c > 0 is constant depending on n, p, q, r, σ, τ , on k in (2.4) and on Q.

Before proving Proposition 4.1 we need a preliminary lemma (for a proof see, e.g.,
[7], Lemma 3.2).

Lemma 4.2. Let p > 1 be fixed and let r ≥ max{1, 1
p−1}. As usual, we set

ν :=
pr

r + 1
.

Then, there exists a constant cS > 0 such that(∫
B

|v|ν
∗

dx

)p/ν∗
≤ cS ‖λ−1‖Lr(B)

∫
B

λ(x) |∇v|p dx, (4.10)

for every ball B b Ω and every function v ∈W 1, prr+1

0 (B).

Now, we can provide the proof of Proposition 4.1.

Proof of Proposition 4.1. Let (ηh)h≥0 be a sequence in C∞c (Rn) such that

(i) 0 ≤ ηh ≤ 1 on Rn;

(ii) supp ηh ⊆ B(x0, ρh) and ηh ≡ 1 on B(x0, ρh+1);

(iii) |∇ηh| ≤
2h+4

R
.
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We remind here that

ν :=
pr

r + 1
.

Since pσ′ < ν∗ (see Remark 2.4-(1)), and reminding that

ηh ≡ 1 on Aβh+1,ρh+1
and supp ηh ⊆ B(x0, ρh)

we have

Jh+1 =

∫
Aβh+1,ρh+1

(u− βh+1)pσ
′
dx

≤
∣∣Aβh+1,ρh+1

∣∣1− pσ′ν∗ (∫
Aβh+1,ρh+1

(u− βh+1)ν
∗

dx

) pσ′
ν∗

=
∣∣Aβh+1,ρh+1

∣∣1− pσ′ν∗ (∫
Aβh+1,ρh+1

ηh(u− βh+1)ν
∗

dx

) pσ′
ν∗

≤
∣∣Aβh+1,ρh+1

∣∣1− pσ′ν∗ (∫
B(x0,ρh)

ηh(u− βh+1)ν
∗

+ dx

) pσ′
ν∗

=: (?).

To proceed further we observe that, by the fact that ηh ∈ C∞c (B(x0, ρh)) (see (ii)),

we certainly have v := ηh(u − βh+1)+ ∈ W 1,ν
0

(
B(x0, ρh)

)
. We are then entitled to

apply Lemma 4.2, with Ω′ := B(x0, ρh) b B(x0, R). If we denote

K := ‖λ−1‖σ
′

Lr(B(x0,R0)),

we have (here cS is the embedding constant in Lemma 4.2)

(?) ≤ cσ
′

S K
∣∣Aβh+1,ρh+1

∣∣1− pσ′ν∗ (∫
B(x0,ρh)

λ(x)
∣∣∇(ηh(u− βh+1)+

)∣∣p dx

)σ′

≤ cσ
′

S K
∣∣Aβh+1,ρh+1

∣∣1− pσ′ν∗ ×
×
(∫

B(x0,ρh)

λ(x)
{
|∇ηh| (u− βh+1)+ + ηh |∇u|χAβh+1,ρh

}p
dx

)σ′
=: (2?).

By the estimate for |∇ηh| in (iii), using ηh ≤ 1 and inequality (2.3) we get (here and
throughout, we indicate by c1, c2, . . . different positive constants only depending on
the Sobolev constant cS , on n, p, q, r, σ, τ , on k in (2.4) and on Q)∫

B(x0,ρh)

λ(x)
{
|∇ηh| (u− βh+1)+ + ηh |∇u|χAβh+1,ρh

}p
dx

≤ c1
{(

2h+4

R

)p ∫
Aβh+1,ρh

λ(x) (u− βh+1)p dx+

∫
Aβh+1,ρh

λ(x) |∇u|p dx

}

≤ c1
{(

2h+4

R

)p ∫
Aβh+1,ρh

λ(x) (u− βh+1)p dx+

∫
Aβh+1,ρh

f(x, u,∇u) dx

}
.
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Collecting the above inequalities and by exploiting the Caccioppoli-type inequality
(3.2) established in Section 3, we then obtain

(2?)
(2.3)

≤ c1K
∣∣Aβh+1,ρh+1

∣∣1− pσ′ν∗ [(2h+4

R

)p ∫
Aβh+1,ρh

λ(x) (u− βh+1)p dx

+

∫
Aβh+1,ρh

f(x, u,∇u) dx

]σ′
(by (3.2), with ρ = ρh and R = ρh)

≤ c1K
∣∣Aβh+1,ρh+1

∣∣1− pσ′ν∗ {(2h+4

R

)p ∫
Aβh+1,ρh

λ(x) (u− βh+1)p dx

+ Λ

[(
2h+3

R

)p ∫
Aβh+1,ρh

µ(x)
(

(u− βh+1)p + βqh+1

)
dx

+ ‖a‖Lτ (B(x0,R))

∣∣Aβh+1,ρh

∣∣1− 1
τ

]}σ′
=: (3?).

Let us now recall that (2.4) holds and R ≤ 1. Therefore, setting

K1 := K ·
(
1 + ‖a‖Lτ (B(x0,R0))

)σ′
and K2 := K1 ·

(
1 + ‖µ‖Lσ(B(x0,R0))

)σ′
,

by Hölder’s inequality we obtain

(3?) ≤ c2 K1

∣∣Aβh+1,ρh+1

∣∣1− pσ′ν∗ (2h

R

)pσ′
×

×
[ ∫

Aβh+1,ρh

µ(x)
(

(u− βh+1)p + βqh+1

)
dx +

∣∣Aβh+1,ρh

∣∣1− 1
τ

]σ′

≤ c2K1

∣∣Aβh+1,ρh+1

∣∣1− pσ′ν∗ (2h

R

)pσ′
×

×
[
‖µ‖Lσ(B(x0,R))

(∫
Aβh+1,ρh

(
(u− βh+1)p + βqh+1

)σ′
dx

) 1
σ′

+
∣∣Aβh+1,ρh

∣∣1− 1
τ

]σ′

≤ c3K2

∣∣Aβh+1,ρh+1

∣∣1− pσ′ν∗ (2h

R

)pσ′
×{∫

Aβh+1,ρh

(
(u− βh+1)p + βqh+1

)σ′
dx+

∣∣Aβh+1,ρh

∣∣σ′(1− 1
τ )
}

=: (4?)

It holds that∫
Aβh+1,ρh

(
(u− βh+1)p + βqh+1

)σ′
dx ≤ cσ′

{∫
Aβh+1,ρh

(u− βh+1)pσ
′
dx

+

∫
Aβh+1,ρh

βqσ
′

h+1 dx

}
.

Let us now estimate the last integral. Since

βν
∗

h+1|Aβh+1,ρh | ≤
∫
Aβh+1,ρh

|u|ν
∗
dx ≤ ‖u‖ν

∗

Lν∗ (B(x0,R)),
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we have (remind that βh ≤ β for any h ≥ 0)∫
Aβh+1,ρh

βqσ
′

h+1 dx =
(
βν
∗

h+1|Aβh+1,ρh |
) (q−p)σ′

ν∗
βpσ

′

h+1|Aβh+1,ρh |1−
(q−p)σ′
ν∗

≤ ‖u‖(q−p)σ
′

Lν∗ (B(x0,R))
βpσ

′
|Aβh+1,ρh |1−

(q−p)σ′
ν∗ .

Therefore∫
Aβh+1,ρh

(
(u− βh+1)p + βqh+1

)σ′
dx

≤ cσ′
∫
Aβh+1,ρh

(u− βh+1)pσ
′
dx+ cσ′‖u‖(q−p)σ

′

Lν∗ (B(x0,R))
βpσ

′
|Aβh+1,ρh |1−

(q−p)σ′
ν∗

≤ cσ′Jh + cσ′‖u‖(q−p)σ
′

Lν∗ (B(x0,R))
βpσ

′
|Aβh+1,ρh |1−

(q−p)σ′
ν∗ , (4.11)

where in the last inequality we used (4.5). Now, owing to (4.7) we get∣∣Aβh+1,ρh+1

∣∣ ≤ ∣∣Aβh+1,ρh

∣∣ ≤ (2h+2

β

)pσ′
Jh = 4pσ

′
(

2h

β

)pσ′
Jh; (4.12)

this, together with (4.11) and the assumptions q ≥ p and Jh ≤ 1, implies∫
Aβh+1,ρh

(
(u− βh+1)p + βqh+1

)σ′
dx+

∣∣Aβh+1,ρh

∣∣σ′(1− 1
τ )

≤ c4
(
1 + ‖u‖(q−p)σ

′

Lν∗ (B(x0,R))

){
Jh + 2

hpσ′
(

1− (q−p)σ′
ν∗

)
β
pσ′−pσ′

(
1− (q−p)σ′

ν∗

)
J

1− (q−p)σ′
ν∗

h

+

(
2h

β

)pσ′2(1− 1
τ )

J
σ′(1− 1

τ )

h

}
≤ c4

(
1 + ‖u‖(q−p)σ

′

Lν∗ (B(x0,R))

)
2hpσ

′2
β
p(q−p)σ′2

ν∗ Jθh,

where we have introduced the constant

θ := min

{
1− (q − p)σ′

ν∗
, σ′
(

1− 1

τ

)}
.

Thus, we get

(4?) ≤ c5K2

(
1 + ‖u‖(q−p)σ

′

Lν∗ (B(x0,R))

)
· 22pσ′2h

Rpσ′
∣∣Aβh+1,ρh+1

∣∣1− pσ′ν∗ β p(q−p)σ′2ν∗ Jθh

(4.12)

≤ c6K2

(
1 + ‖u‖(q−p)σ

′

Lν∗ (B(x0,R))

)
· 23pσ′2h

Rpσ′
β
p(q−p)σ′2

ν∗

βpσ
′(1− pσ′

ν∗ )
J

1+θ− pσ
′

ν∗
h

≤ c6K2

(
1 + ‖u‖(q−p)σ

′

Lν∗ (B(x0,R))

)
· 8pσ

′2h

Rpσ′
1

βpσ
′(1− qσ′

ν∗ )
J

1+θ− pσ
′

ν∗
h .

Since, by the very definition of θ, we have

α = θ − pσ′

ν∗
= min

{
1− (q − p)σ′

ν∗
− pσ′

ν∗
, σ′
(

1− 1

τ

)
− pσ′

ν∗

}
,

by collecting the previous chain of inequalities we get (4.8) with

C = c6K2

= c6

{
‖λ−1‖Lr(B(x0,R0)) ·

(
1 + ‖a‖Lτ (B(x0,R0))

)
·
(
1 + ‖µ‖Lσ(B(x0,R0))

)}σ′
.
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This ends the demonstration. �

With Proposition 4.1 at hand, we are ready to provide the proof of our main result,
namely Theorem 2.2. Before doing this, we remind the following very classical lemma
of Real Analysis (see, e.g., [14, Lemma 7.1]).

Lemma 4.3. Let (zh)h≥0 be a sequence of positive real numbers satisfying the follow-
ing recursive relation

zh+1 ≤ Lζhz1+γ
h (h ∈ N ∪ {0}), (4.13)

where L, γ > 0 and ζ > 1. If z0 ≤ L−
1
γ ζ
− 1
γ2 , then

zh ≤ ζ−
h
γ z0 for every h ≥ 0.

In particular, zh → 0 as h→∞.

We now prove Theorem 2.2.

Proof of Theorem 2.2. Let u ∈ W 1, prr+1

loc (Ω) be a quasi-minimizer of the functional F
in (2.1), let x0 ∈ Ω be fixed and let R0 ∈ (0, 1] be such that B(x0, R0) b Ω. Moreover,
let β ≥ 1 (to be chosen later on) and let (Jh)h≥0 be the sequence defined in (4.4).
Owing to Proposition 4.1 (with R = R0), we have the estimate

Jh+1 ≤ L (8pσ
′2

)h J1+α
h (h ∈ N ∪ {0}), (4.14)

where α is as in (2.15), that is,

α := min
{

1− qσ′

ν∗
, σ′
(

1− 1

τ
− p

ν∗

)}
,

and the constant L is given by

L := C ′
1

βpσ
′(1− qσ′

ν∗ )

(
1

R0

)pσ′
.

We remind that, in its turn, we have

C ′ = C
(
1 + ‖u‖(q−p)σ

′

Lν∗ (B(x0,R0))

)
= c

{
‖λ−1‖Lr(B(x0,R0)) ·

(
1 + ‖a‖Lτ (B(x0,R0))

)
·
(
1 + ‖µ‖Lσ(B(x0,R0))

)}σ′
×

×
(
1 + ‖u‖(q−p)σ

′

Lν∗ (B(x0,R0))

)
,

where c > 0 only depends on n, p, q, r, σ, τ and on k and Q. We now claim that it is

possible to choose β ≥ 1 in such a way that J0 ≤ L−1/α (8pσ
′2

)−1/α2

, that is,

J0 =

∫
A β

2
,R0

(
u− β

2

)pσ′
dx

≤
{
C
(
1 + ‖u‖(q−p)σ

′

Lν∗ (B(x0,R0))

)
· 1

βpσ
′(1− qσ′

ν∗ )

(
1

R0

)pσ′}−1/α

(8pσ
′2

)−1/α2

.

(4.15)

In fact, by definition of J0 (and since u ∈ Lpσ
′

loc (Ω), see Remark 2.4), we have

J0 ≤
∫
B(x0,R0)

|u|pσ
′
dx = ‖u‖pσ

′

Lpσ′ (B(x0,R0))
<∞;



16 STEFANO BIAGI, GIOVANNI CUPINI, ELVIRA MASCOLO

thus, reminding that R0 ≤ 1, the claimed (4.15) is clearly fulfilled if we choose

β :=

{
1 +

C

Rpσ
′

0

(8pσ
′2

)1/α
(
1 + ‖u‖(q−p)σ

′

Lν∗ (B(x0,R0))

)
· ‖u‖pσ

′α

Lpσ′ (B(x0,R0))

} 1

pσ′(1− qσ
′

ν∗ )

.

(4.16)

With (4.15) at hand and β ≥ 1 as in (4.16), we are entitled to apply Lemma 4.3. As
a consequence, we obtain

lim
h→∞

Jh = lim
h→∞

∫
Aβh,ρh

(u− βh)pσ
′
dx =

∫
Aβ,R0/2

(u− β)pσ
′
dx = 0. (4.17)

Since, by definition, u− β > 0 on Aβ,R0/2, from (4.17) we then conclude that∣∣Aβ,R0/2

∣∣ = 0, whence u ≤ β for a.e.x ∈ B(x0, R0/2).

To prove that u is also bounded from below by −β it suffices to observe that, setting
v := −u, then v ∈W 1,1

loc (Ω) is a quasi-minimizer of the functional

G(w) :=

∫
Ω

g(x,w,∇w) dx,

where g : Ω× R× Rn → R is the function defined by

g(x,w, ξ) := f(x,−w,−ξ).
As a consequence, since g clearly satisfies assumptions (H1) and (H2) (with the same
functions λ, µ), by the above argument we deduce that∣∣Aβ,R0/2(v)

∣∣ = 0, whence −u ≤ β for a.e.x ∈ B(x0, R0/2).

Summing up, we have proved that, if β ≥ 1 is as in (4.16), one has

|u(x)| ≤ β, for a.e.x ∈ B(x0, R0/2). (4.18)

We now observe that, by Hölder’s inequality (since pσ′ < ν∗), we have

(1 + ‖u‖(q−p)σ
′

Lν∗ (BR0
)
)‖u‖pσ

′α

Lpσ′ (B(x0,R0))
≤ c (1 + ‖u‖Lν∗ (BR0

))
σ′(q−p+pα),

with c > 0 independent of u. This, together with (4.16), R0 ≤ 1, %1/α ≥ 1, allows us
to conclude that there exists a constant c > 0, depending on n, p, q, r, σ, τ and on k
and Q, such that (here, H is as in (2.14))

β ≤ c
(
H

R0

) ν∗
ν∗−qσ′

(1 + ‖u‖Lν∗ (BR0
))

q−p+pα

p(1− qσ
′

ν∗ ) .

This inequality and (4.18) give exactly estimate (2.13). �
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