

Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

Marek's disease viruses circulating in commercial poultry in Italy in the years 2015–2018 are closely related by their meq gene phylogeny

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:

Mescolini G., Lupini C., Davidson I., Massi P., Tosi G., Catelli E. (2020). Marek's disease viruses circulating in commercial poultry in Italy in the years 2015–2018 are closely related by their meq gene phylogeny. TRANSBOUNDARY AND EMERGING DISEASES, 67(1), 98-107 [10.1111/tbed.13327].

Availability:

This version is available at: https://hdl.handle.net/11585/726003 since: 2020-02-14

Published:

DOI: http://doi.org/10.1111/tbed.13327

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/). When citing, please refer to the published version.

(Article begins on next page)

This is the final peer-reviewed accepted manuscript of:

Mescolini G, Lupini C, Davidson I, Massi P, Tosi G, Catelli E. Marek's disease viruses circulating in commercial poultry in Italy in the years 2015-2018 are closely related by their meq gene phylogeny. Transbound Emerg Dis. 2020 Jan;67(1):98-107.

The final published version is available online at: https://doi.org/10.1111/tbed.13327

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (<u>https://cris.unibo.it/</u>)

When citing, please refer to the published version.

1	Title
2	Marek's disease viruses circulating in commercial poultry in Italy in the years 2015-2018 are
3	closely related by their <i>meq</i> gene phylogeny.
4	
5	Running Title
6	Virulence of GaHV-2 strains circulating in Italian commercial chickens
7	
8	Giulia Mescolini ^{1, *} , Caterina Lupini ¹ , Irit Davidson ² , Paola Massi ³ , Giovanni Tosi ³ , Elena Catelli ¹
9	
10	¹ Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50,
11	40064, Ozzano dell'Emilia (BO), Italy
12	
13	² Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan P.O. Box 12 5025001, Israel
14	
15	³ Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Sezione
16	Diagnostica di Forlì, Via don Eugenio Servadei 3/E-3/F, 47122, Forlì (FC), Italy
17	
18	*Corresponding author: Giulia Mescolini, Department of Veterinary Medical Sciences -University
19	of Bologna, Via Tolara di Sopra, 50; 40064 – Ozzano dell'Emilia (BO) Italy; Phone +39 051
20	2097560; e-mail: giulia.mescolini3@unibo.it
21	
22	
23	

25 Summary

Marek's disease (MD) is a lymphoproliferative disease important to the poultry industry worldwide; 26 it is caused by Gallid alphaherpesvirus 2 (GaHV-2). The virulence of the GaHV-2 isolate has 27 shifted over the years from mild to virulent, very virulent and very virulent +. Nowadays the disease 28 is controlled by vaccination, but field strains of increased virulence are emerging worldwide. 29 Economic losses due to MD are mostly associated with its acute form, characterised by visceral 30 lymphomas. The present study aimed to molecularly classify a group of 13 GaHV-2 strains detected 31 in vaccinated Italian commercial chicken flocks during acute MD outbreaks, and to scrutinise the 32 ability of predicting GaHV-2 virulence, according to the *meg* gene sequence. The full-length *meg* 33 34 genes were amplified and the obtained amino acid (aa) sequences were analysed, focusing mainly on the number of stretches of four proline molecules (PPPP) within the transactivation domain. 35 Phylogenetic analysis was carried out with the Maximum Likelihood method using the obtained aa 36 sequences and the sequences of Italian strains detected in backyard flocks and of selected strains 37 retrieved from GenBank. All the analysed strains showed 100% sequence identity in the meg gene, 38 which encodes a Meq protein of 339 aa. The Meq protein includes four PPPP motifs in the 39 transactivation domain and an interruption of a PPPP motif due to a proline-to-serine substitution at 40 position 218. These features are typically encountered in highly virulent isolates. Phylogenetic 41 analysis revealed that the analysed strains belonged to a cluster that includes high-virulence GaHV-42 2 strains detected in Italian backyard flocks and a hypervirulent Polish strain. Our results support 43 the hypothesis that the virulence of field isolates can be suggested by *meg* as sequence analysis. 44

46	Keywords: co	mmercial cl	hickens;]	Italy;	GaHV-2;	meq gene	; strain	virulence

- 47
- 48

49 Introduction

50

industry worldwide due to its capacity to cause clinical disease, increased mortality and reduced 51 52 growth, as well as sub-clinical immunosuppression, causing the exacerbation of other diseases and decreased vaccinal immunity (Schat & Nair, 2013). The virus belongs to the genus Mardivirus, 53 subfamily Alphaherpesvirinae. According to the most recent nomenclature, it consists of three viral 54 55 species: Gallid alphaherpesvirus 2 (GaHV-2) (aetiological agent of MD), Gallid alphaherpesvirus 3 (GaHV-3), and *Meleagrid alphaherpesvirus* 1 (MeHV-1) or Herpesvirus of turkeys (HVT) 56 (International Committee on Taxonomy of Viruses, 2017). GaHV-3 and HVT are antigenically 57 58 related to GaHV-2 and are widely used as vaccines, usually in association with live attenuated GaHV-2 strains (e.g. CVI988/Rispens). In the field, economic losses due to MD are mostly 59 associated with the acute form of the disease, characterised by visceral lymphomas, however virus-60 induced immunosuppression might be relevant too, even if its impact is very difficult to assess 61 (Gimeno, 2014; Gimeno & Schat, 2018). 62

Marek's disease (MD) is an economically-important lymphoproliferative disease to the poultry

63 The virulence of GaHV-2 isolates has shifted over the years from mild (m) to virulent (v), very virulent (vv) and very virulent + (vv+) (Witter, 1997; Witter et al., 2005). The disease is controlled 64 by vaccination, but field GaHV-2 strains with increased virulence and greater fitness are emerging 65 worldwide (Trimpert et al., 2017; Nair, 2018). Complex factors might be involved in the occurrence 66 of MD outbreaks in vaccinated chicken flocks, such as: the increased virulence of GaHV-2 over 67 time (Witter, 1997); the inability of the vaccine to offer protection; non-optimal vaccine application, 68 due to its labile cell-associated form (Davidson et al., 2018; Davidson, Natour-Altory, & Shimshon, 69 2018); co-infection with immunosuppressive viruses (Schat & van Santen, 2013); and other factors. 70

71 The GaHV-2 genome encodes more than 200 genes, including the *meq* gene, which was the first

discovered GaHV-2 oncogene (Jones et al., 1992). The meq gene encodes a protein with homology

73 to the leucine-zipper class nuclear oncogenes, which is composed of a trans-activation N-terminal

basic-leucine zipper (bZIP) domain and a C-terminal proline-rich trans-repression domain (Qian et 74 al., 1995; Liu et al., 1999; Ross, 1999). The oncogenic activities of the Meq protein are mediated by 75 its dimerisation, through the bZIP domain, with itself, as well as with c-Jun-like proteins, such as 76 JunB, c-Jun and c-Fos. Meg also binds to cellular transcription factors such as ATF, CREB and 77 C/EBP (Deng et al., 2010) and interacts with cellular proteins without a bZIP domain, such as the 78 cellular tumour suppressors p53, the retinoblastoma protein (pRb) and the cyclin-dependent kinase 79 2 (CDK-2) or the heat shock protein Hsp70 (Deng et al., 2010; Gennart et al., 2015). The meg 80 oncogene encodes a 339 amino acid unspliced open reading frame in vv and in vv+ GaHV-2 81 pathotypes and a larger form of 398 amino acids in low virulence strains, having amplifications in 82 the C-terminal proline-rich repeat region (Shamblin et al., 2004). 83 Concurrently with the stepwise evolution of the virulence of GaHV-2 (Schat & Baranowski, 2007), 84 an increased pattern of genetic polymorphism at the C-terminus domain of the meg-encoded 85 oncoprotein has been described (Shamblin et al., 2004). High genetic diversity has been reported for 86 the *meq* gene in spite of the relatively low evolutionary rates of change thought to commonly 87 characterise dsDNA viruses (Duffy, Shackelton, & Holmes, 2008; Firth et al., 2010). Findings by 88 Padhi & Parcells (2016) and Trimpert et al. (2017) reveal that the meg gene sequence evolves at a 89 much faster rate than most dsDNA viruses, and is comparable with the evolutionary rate of RNA 90 viruses. By analysing the complete *meq* gene sequence of 84 GaHV-2 strains, Padhi & Parcells 91 (2016) estimated the mean evolutionary rate, beginning from the year 1935, to be greater than other 92 dsDNA viruses, namely 1.02×10^{-4} substitutions per site per year, as compared to the range of 10^{-7} 93 to 10⁻⁵ for other DNA viruses. Trimpert et al. (2017) analysed 18 complete GaHV-2 genomes and 94 calculated that the GaHV-2 had a mean evolutionary rate of 1.58 x 10⁻⁵ substitutions per site per 95 year, in which the meq open reading frame (MDV076) was identified as one of the loci harbouring 96 97 the highest number of point mutations over time. The meg gene is evolving under positive selection, 98 most likely imposed by vaccination, reflecting viral adaptation against the host immune responses.

Shamblin et al. (2004) and Renz et al. (2012) demonstrated that the number of the four-proline 99 stretches (PPPP) in the meq gene transactivation domain are an indicative marker for the 100 pathogenicity of GaHV-2 strains isolated from chickens; the most virulent isolates showed the 101 102 lowest number of PPPP repeats, unlike the attenuated and the low pathogenicity isolates, which showed a highest number of repeats. The determination of GaHV-2 virulence by molecular 103 sequencing could be valuable compared to the *in vivo* pathotyping assays, which require complex 104 experimental infection trials of specific genetic lines of chickens (Witter et al., 2005; Dudnikova et 105 al., 2007). At the moment in vivo studies are mandatory for an accurate inclusion of GaHV-2 strains 106 into one of the known pathotypes. The meq gene polymorphism is also useful to create 107 108 epidemiological molecular linkages between various GaHV-2 strains, according to the numerous studies that have been recently published from various countries: China (Tian et al., 2011; Zhang et 109 al., 2011; Yu et al., 2013), Poland (Woźniakowski & Samorek-Salamonowicz, 2014), U.S.A. (Padhi 110 111 & Parcell, 2016), Colombia (Lòpez-Osorio et al., 2017), Egypt (Hassanin, Abdallah, & El-Araby, 2013; Abdallah et al., 2018), India (Gupta, Deka, & Ramneek, 2016; Suresh et al., 2017; Prathibha, 112 113 Sreedevi, Vinod Kumar, & Srilatha, 2018) and Japan (Abd-Ellatieff et al., 2018). In the present study, we aimed to molecularly classify a group of 13 GaHV-2 strains, detected 114 during acute MD outbreaks in vaccinated Italian commercial flocks, according to the meg gene 115 116 sequence. We also aimed to scrutinise the ability of suggesting GaHV-2 virulence according to the *meq* gene sequence.

118

117

Materials and Methods 119

120 **Commercial flocks and sampling**

MD outbreaks occurred between 2015 and 2018 in 13 commercial chicken flocks located in 6 121 different Italian regions; flock specifics are reported in Table 1. The chicken flocks were different in 122

terms of production type, genetic line and age. MD vaccination status was known for 10 out of 13
flocks. Flocks were vaccinated with the association of CVI988/Rispens and HVT vaccines. The
vaccination of broiler breeders was performed *in ovo* and repeated at 1 or 7 days of age. Cockerels
were vaccinated with the association of CVI988/Rispens +HVT at 1 day old. All the examined
flocks experienced acute MD with an increased mortality rate due to visceral lymphomas. At
necropsy, portions of the spleen, liver or ovary, showing gross lymphomatous lesions, were
sampled and stored at -20 °C until analysis.

130 Genomic DNA extraction

131 Genomic DNA was extracted separately from lymphomatous liver, spleen or ovary using the

132 commercial kit "NucleoSpin® Tissue" (MACHEREY-NAGEL GmbH & Co. KG, Düren,

133 Germany), following the manufacturer's instructions.

134 Amplification and sequencing of the *meq* gene

135 The entire *meq* gene was amplified and sequenced as previously described (Mescolini et al., 2019).

136 Sequence and phylogenetic analysis of the *meq* gene

137 The obtained nucleotide (nt) sequences were edited using BioEdit Sequence Alignment Editor

138 Version 7.0.5.3 (Tom Hall, Ibis Therapeutics, Carlsbad, California, USA). Similarities between

139 Italian sequences and *meq* gene sequences available in the NCBI database were investigated

140 through the Basic Local Alignment Search Tool (BLAST).

141 The obtained sequences were aligned against and compared with previously published complete

142 *meq* gene sequences of Italian strains detected in backyard flocks and with 57 selected complete

- 143 meq gene sequences retrieved from GenBank (Table 2), using Clustal W software (Thompson,
- 144 Higgins, & Gibson, 1994). Deduced amino acid (aa) sequences were analysed focusing on the
- number of PPPPs within the proline-rich repeats (PRRs) of the transactivation domain and on the
- 146 presence of aa substitutions. A phylogenetic tree, based on *meq* gene aa sequences, was built using

the Maximum Likelihood method under the Jones–Taylor–Thornton model in MEGA version X
(Kumar et al., 2018). Nodal supports were estimated with 1000 bootstrap replicates and considered

significant when equal to or greater than 70.

150

151 Results

- 152 Thirteen GaHV-2 strains were detected by the specific PCR protocol in as many investigated
- 153 chicken flocks. The *meq* genes of the detected strains were genetically identical, being 1020 bp in
- 154 length; the obtained sequences were deposited into GenBank under the following names and
- accession numbers: GaHV-2/Italy/Ck/456/15 MK855054; GaHV-2/Italy/Ck/498/15 MK855055;
- 156 GaHV-2/Italy/Ck/513/15 MK855056; GaHV-2/Italy/Ck/515/15 MK855057; GaHV-
- 157 2/Italy/Ck/559/15 MK855058; GaHV-2/Italy/Ck/561/15 MK855059; GaHV-2/Italy/Ck/565/15 -
- 158 MK855060; GaHV-2/Italy/Ck/567/15 MK855061; GaHV-2/Italy/Ck/757/17 MK855062; GaHV-
- 159 2/Italy/Ck/875/18 MK855063; GaHV-2/Italy/Ck/876/18 MK855064; GaHV-2/Italy/Ck/921/18 -
- 160 MK855065; GaHV-2/Italy/Ck/1083/18 MK855066.
- 161 The molecular characteristics of the deduced Meq protein, compared to prototype strains CVI988,
- 162 CU-2, JM/102W, Md5 and 648A, are presented in Table 3. All the currently-detected-strains
- showed a Meq protein of 339 aa that contained, in the transactivation domain, four PPPP motifs
- and, at position 218, a proline-to-serine substitution, interrupting a hypothetical PPPP sequence at
- 165 the third position (PPPP \rightarrow PPSP). Distinctive as substitutions were found in the Italian GaHV-2
- strains at positions 110 (C110S) and 218 (P218S).
- 167 The BLAST search showed 100% homology of the currently detected *meq* gene sequences with
- those of the 8 Italian GaHV-2 strains (GaHV-2/Italy/Ck/625/16; GaHV-2/Italy/Ck/689/16; GaHV-
- 169 2/Italy/Ck/722/16; GaHV-2/Italy/Ck/801/17; GaHV-2/Italy/Ck/810/17; GaHV-2/Italy/Ck/852/17;
- 170 GaHV-2/Italy/Ck/853/17; GaHV-2/Italy/Ck/854/17) detected between 2016 and 2017 in Italian

backyard flocks that experienced acute MD, transient paralysis or sudden death, and with one of a
Polish strain named Polen5 (Table 2). The phylogenetic tree (Figure 1) confirmed the previously
reported findings, revealing that the strains detected in the present study clustered together with the
Italian strains detected in backyard chickens, and with the Polish strain.

175

176 Discussion

The present study reports the sequence analysis of the meq gene of 13 GaHV-2 strains detected in 177 several cases of MD-related visceral tumours that occurred in Italian vaccinated commercial 178 chicken flocks collected during the years 2015–2018. Surprisingly, all the meg gene sequences of 179 the analysed strains were identical, despite the fact that viruses were detected in flocks differing in 180 terms of production type (broiler breeders, layers or cockerels), geographical location and 181 ownership. The viruses coded for Meq proteins of 339 aa possessing features typically encountered 182 in highly virulent isolates (Shamblin et al., 2004; Renz et al., 2012) and were phylogenetically 183 related to the GaHV-2 strains currently circulating in Italian backyard flocks (Mescolini et al., 184 2019) and with a hypervirulent strain isolated in Poland in 2010 (Trimpert et al., 2017). Common 185 trade routes may have hypothetically served as a source of dissemination for GaHV-2 between 186 European countries and between industrial and rural compartments, where biosecurity breaches may 187 have also occurred. 188

189 Our findings are in accordance with previous studies that reported the geographically-restricted

evolution of field GaHV-2 strains in China (Yu et al., 2013), India (Suresh et al., 2017), Egypt

191 (Abdallah et al., 2018) and Poland (Woźniakowski & Samorek-Salamonowicz, 2014). Recently, a

192 comprehensive time-scaled phylogeny study, performed on complete genomes, revealed evidence

193 of the geographical structuring of GaHV-2 strains, supporting the emergence of virulent viruses

independently in North America and Eurasia (Trimpert et al., 2017).

Although GaVH-2, as a dsDNA virus, was foreseen to possess high genetic stability to mutations, 195 unexpectedly, its *meq* gene sequence is mutating at a high evolutionary rate, namely 10^{-4} 196 substitutions per site per year (Padhi & Parcells, 2016). The GaHV-2 meg gene evolutionary rate is 197 typical for highly mutating RNA viruses, ranging between 10^{-2} to 10^{-5} substitutions per site per 198 year; the avian influenza virus, subgroup H9N2 mutate as an example, with a value of 6.1×10^{-3} 199 substitutions per site per year (Davidson et al., 2014). High evolutionary rates reflect the strong 200 positive selection that exists for GaHV-2 in commercial flocks, probably resulting from the 201 202 vaccination with highly effective, but imperfect vaccines that are increasing viral diversity (Padhi & Parcells, 2016). The fitness and replication of highly virulent strains seems to be favoured in 203 204 vaccinated flocks (Read et al., 2015), in which strains able to avoid vaccine-induced protection could be selected. 205

There is a growing need for new MD vaccines that are efficacious against currently circulating viruses, due to the occurrence of breaks in vaccine immunity. Since vaccine failures are occurring worldwide (López-Osorio et al., 2017; Sun et al., 2017; Abdallah et al., 2018; Abd-Ellatieff et al., 2018), more studies must be conducted to evaluate the protection conferred by Rispens-type vaccines against more recent, and not yet pathotyped, field strains with a history of high virulence. Naturally circulating low virulence strains could represent a solution if they offer improved protection over CVI988/Rispens vaccine.

The rapid increase in the sequencing activities of the *meq* gene of field GaHV-2 strains all over the world has made possible to epidemiologically correlate a significant number of molecular data. The *meq* gene aa sequence has been correlated to GaHV-2 strains virulence (Shamblin et al., 2004; Renz et al., 2012). Our data support this last finding, having our strains molecular features of high virulence and having been detected during severe MD outbreaks in vaccinated chickens.

218 *Meq* gene sequencing alone is known to be an insufficient method to include field strains into
219 defined pathotypes, therefore, recently, the research is focusing on finding other genetic predictors

220	of GaHV-2 virulence using complete or targeted DNA sequencing (Dunn et al., 2019). This will
221	provide a highly advantageous alternative to the classical "gold standard" method of in vivo
222	pathotyping (Witter et al., 2005), which requires the experimental infection of a large number of a
223	specific type of chickens with standard GaHV-2 prototype strains. As that pathotype classification
224	assay is difficult and not feasible worldwide, Dudnikova et al. (2007) developed an alternative "best
225	fit" pathotyping assay. Although the "best fit" pathotyping assay is simplified, it also employs long-
226	term trials using specific pathogen free chicks. In vivo pathotyping assays are not generally
227	accessible, as those experimental infections require the use of chicks vaccinated at 1 day of age,
228	challenged with virulent isolates and housed in poultry isolation units for 56 days post challenge.
229	As <i>in vivo</i> pathotyping is not easily achievable, the <i>meq</i> gene molecular characterisation would be
230	the most rapid and accessible way to suggest virulence of field strains. However, the molecular
231	findings should be supported by clinical observations, necropsy findings and vaccination status.
232	
233	Conflict of Interest Statement
234	The authors declare no conflict of interest.
235	
236	Ethical Statement
237	Ethical statement is not applicable.
238	
239	References
240	Abd-Ellatieff, H. A., Abou Rawash, A. A., Ellakany, H. F., Goda, W. M., Suzuki, T., & Yanai, T.
241	(2018). Molecular characterization and phylogenetic analysis of a virulent Marek's disease
242	virus field strain in broiler chickens in Japan. Avian Pathology, 47(1), 47–57.

- Abdallah, F., Hassanin, O., Attar, E., Ali, H., Megahed, M., & Nair, V. (2018). Marek's Disease
 Virus in Egypt: Historical Overview and Current Research Based on the Major MDV-Encoded
- Oncogene Meq. Hosts and Viruses, 5, 35–43.
- 247 http://dx.doi.org/10.17582/journal.hv/2018/5.3.35.43
- Davidson, I., Fusaro, A., Heidari, A., Monne, I., & Cattoli, G. (2014). Molecular evolution of H9N2
 avian influenza viruses in Israel. Virus Genes, 48(3), 457–463. https://doi.org/10.1007/s11262014-1037-0
- 251 Davidson, I., Natour-Altory, A., Raibstein, I., Kin, E., Dahan, Y., Krispin, H., & Elkin, N. (2018).
- Monitoring the uptake of live avian vaccines by their detection in feathers. Vaccine, 36, 637–
 643. https://doi.org/10.1016/j.vaccine.2017.12.052
- Davidson, I., Natour-Altory, N., & Shimshon Y. (2018). Evaluation of Live Vaccine Application in
 Commercial Poultry Flocks Using Feathers In Practice. Israel Journal of Veterinary
 Medicine, 73, 8–13.
- 257 Deng, X., Li, X., Shen, Y., Qiu, Y., Shi, Z., Shao, D., Jin, Y., Chen, H., Ding, C., LiLi, Chen, P., &
- Ma, Z. (2010). The Meq oncoprotein of Marek's disease virus interacts with p53 and inhibits
 its transcriptional and apoptotic activities. Virology Journal, 7: 348.
- 260 https://doi.org/10.1186/1743-422X-7-348
- 261 Dudnikova, E., Norkina, S., Vlasov, A., Slobodchuk, A., Lee, L. F., & Witter, R. L. (2007).
- Evaluation of Marek's disease field isolates by the "best fit" pathotyping assay. Avian
- 263 Pathology, 36(2), 135–143. https://doi.org/10.1080/03079450701209857
- 264 Duffy, S., Shackelton, L. A., & Holmes, E. C. (2008). Rates of evolutionary change in viruses:
- Patterns and determinants. Nature Reviews Genetics, 9, 267–276.
- 266 https://doi.org/10.1038/nrg2323

267	Dunn, J.R., Black Pyrkosz, A., Steep, A. & Cheng, H.H. (2019). Identification of Marek's disease
268	virus genes associated with virulence of US strains. Journal of General Virology, 100, 1132-
269	1139. https://doi.org/10.1099/jgv.0.001288

- Firth, C., Kitchen, A., Shapiro, B., Suchard, M. A., Holmes, E. C., & Rambaut, A. (2010). Using
- time-structured data to estimate evolutionary rates of double-stranded DNA viruses. Molecular

272 Biology and Evolution, 27(9), 2038–2051. https://doi.org/10.1093/molbev/msq088

273 Gennart, I., Coupeau, D., Pejaković, S., Laurent, S., Rasschaert, D., & Muylkens, B. (2015).

274 Marek's disease: Genetic regulation of gallid herpesvirus 2 infection and latency. Veterinary

- 275 Journal, 205, 339–348. https://doi.org/10.1016/j.tvjl.2015.04.038
- 276 Gimeno, I. M. (2014). Marek's Disease and Differential Diagnosis with Other Tumor Viral

277 Diseases of Poultry. In *Encyclopedia of Agriculture and Food Systems* (pp. 156–171).

278 https://doi.org/https://doi.org/10.1016/B978-0-444-52512-3.00193-5

- Gimeno, I.M., & Schat K.A. (2018). Virus-Induced Immunosuppression in Chickens. Avian
 Diseases, 62, 272–285. https://doi.org/10.1637/11841-041318-Review.1
- 281 Gupta, M., Deka, D., & Ramneek. (2016). Sequence analysis of Meq oncogene among Indian

isolates of Marek's disease herpesvirus. Meta Gene, 9, 230–236.

283 https://doi.org/10.1016/j.mgene.2016.07.009

Hassanin, O., Abdallah, F., & El-Araby, I. E. (2013). Molecular characterization and phylogenetic

analysis of Marek's disease virus from clinical cases of Marek's disease in Egypt. Avian

286 Diseases, 57(Suppl 2), 555–561. https://doi.org/10.1637/10337-082912-Reg.1

287 International Committee on Taxonomy of Viruses, 2017. Master Species List 2017 [WWW

288 Document]. ICTV. Retrieved from https://talk.ictvonline.org/files/master-species-

289 lists/m/msl/7185

Jones, D., Lee, L., Liu, J.L., Kung H. J., & Tillotson, J. K. (1992). Marek's disease virus encodes a

- basic-leucine zipper gene resembling the fos/jun oncogenes that is highly expressed in
- lymphoblastoid tumors. Proceedings of the National Academy of Sciences, 89, 4042–4046.

293 https://doi.org/10.1073/pnas.89.9.4042

294 Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary

295 genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–

296 1549. https://doi.org/10.1093/molbev/msy096

- Liu, J. L., Lin, S. F., Xia, L., Brunovskis, P., Li, D., Davidson, I., Lee, L.F., & Kung, H. J. (1999).
 Meq and V-IL8: Cellular genes in disguise? Acta Virologica, 43, 94–101.
- 299 López-Osorio, S., Piedrahita, D., Espinal-Restrepo, M. A., Ramírez-Nieto, G. C., Nair, V.,
- 300 Williams, S. M., Baigent, S., Ventura-Polite, C., Aranzazu-Taborda, D.A., & Chaparro-
- 301 Gutiérrez, J. J. (2017). Molecular characterization of Marek's disease virus in a poultry layer
- farm from Colombia. Poultry Science, 96(6), 1598–1608.
- 303 https://doi.org/https://doi.org/10.3382/ps/pew464
- 304 Mescolini, G., Lupini, C., Felice, V., Guerrini, A., Silveira, F., Cecchinato, M., & Catelli, E. (2019).
- 305 Molecular characterization of the meq gene of Marek's disease viruses detected in
- 306 unvaccinated backyard chickens reveals the circulation of low- and high-virulence strains.
- Poultry Science, pii: pez095. doi: 10.3382/ps/pez095. [Epub ahead of print]
- Nair, V. (2018). Spotlight on avian pathology: Marek's disease. Avian Pathology, 47, 440–442.
- 309 https://doi.org/10.1080/03079457.2018.1484073
- Padhi, A., & Parcells, M. S. (2016). Positive selection drives rapid evolution of the meq oncogene
- of Marek's disease virus. PLoS ONE, 11(9). https://doi.org/10.1371/journal.pone.0162180
- 312 Prathibha, Y., Sreedevi, B., Vinod Kumar, N., & Srilatha, C. (2018). Molecular characterization and
- 313 phylogenetic analysis of oncogenes from virulent serotype-1 Marek's disease virus in India.
- 314 Acta Virologica, 62(3), 277–286. https://doi.org/10.4149/av_2018_221

315	Qian, Z., Brunovskis, P., Rauscher 3rd, F., Lee, L., & Kung, H. J. (1995). Transactivation activity
316	of Meq, a Marek's disease herpesvirus bZIP protein persistently expressed in latently infected
317	transformed T cells. Journal of Virology, 69(7), 4037–4044.
318	http://www.ncbi.nlm.nih.gov/pubmed/7769661
319	Read, A. F., Baigent, S. J., Powers, C., Kgosana, L. B., Blackwell, L., Smith, L. P., Kennedy, D.A.,
320	Walkden-Brown, S.W., & Nair, V. K. (2015). Imperfect Vaccination Can Enhance the
321	Transmission of Highly Virulent Pathogens. PLOS Biology, 13(7), e1002198.
322	https://doi.org/10.1371/journal.pbio.1002198
323	Renz, K. G., Cooke, J., Clarke, N., Cheetham, B. F., Hussain, Z., Fakhrul Islam, A. F. M., Tannock,
324	G.A., & Walkden-Brown, S. W. (2012). Pathotyping of Australian isolates of Marek's disease
325	virus and association of pathogenicity with meq gene polymorphism. Avian Pathology, 41(2),
326	161-176. https://doi.org/10.1080/03079457.2012.656077

- Ross, N. L. J. (1999). T-cell transformation by Marek's disease virus. Trends in Microbiology, 7,
 22–29. https://doi.org/10.1016/S0966-842X(98)01427-9
- Schat, K. A., & Baranowski, E. (2007). Animal vaccination and the evolution of viral pathogens.
 Revue Scientifique Et Technique-Office International Des Epizooties, 26(2), 327–338.
- 331 Schat, K.A., & Nair V. (2013). Neoplastic diseases: Marek's disease. In D. E. Swayne, J. R.
- 332 Glisson, L. R. McDougald, L. K. Nolan, D. L. Suarez, V. L. Nair, (Eds.) *Diseases of Poultry*
- 333 (13th ed., pp. 515–552). Ames, Iowa, USA: Wiley-Blackwell Hoboken.
- 334 Schat, K.A., & van Santen, V.L. (2013). Chicken infectious anemia. In D. E. Swayne, J. R. Glisson,
- 335 L. R. McDougald, L. K. Nolan, D. L. Suarez, V. L. Nair (Eds.) Diseases of Poultry (13th ed.,
- pp. 248–275). Ames, Iowa, USA: Wiley-Blackwell Hoboken.
- 337 Shamblin, C. E., Greene, N., Arumugaswami, V., Dienglewicz, R. L., & Parcells, M. S. (2004).
- 338 Comparative analysis of Marek's disease virus (MDV) glycoprotein-, lytic antigen pp38- and

- transformation antigen Meq-encoding genes: Association of meq mutations with MDVs of
- high virulence. Veterinary Microbiology, 102(3–4), 147–167.
- 341 https://doi.org/10.1016/j.vetmic.2004.06.007
- 342 Spatz, S. J., Petherbridge, L., Zhao, Y., & Nair, V. (2007). Comparative full-length sequence
- 343 analysis of oncogenic and vaccine (Rispens) strains of Marek's disease virus. Journal of
- General Virology, 88(4), 1080–1096. https://doi.org/10.1099/vir.0.82600-0
- 345 Spatz, S.J., & Silva, R.F. (2007). Polymorphisms in the repeat long regions of oncogenic and
- attenuated pathotypes of Marek's disease virus 1. Virus Genes, 35, 41–53.
- 347 doi:10.1007/s11262-006-0024-5
- 348 Spatz, S.J., Smith, L.P., Baigent, S.J., Petherbridge, L., & Nair, V. (2011). Genotypic
- 349 characterization of two bacterial artificial chromosome clones derived from a single DNA
- source of the very virulent gallid herpesvirus-2 strain C12/130. Journal of General Virology,
- 351 92, 1500–1507. doi:10.1099/vir.0.027706-0
- 352 Sun, G. R., Zhang, Y. P., Lv, H. C., Zhou, L. Y., Cui, H. Y., Gao, Y. L., Qi, X. Le, Wang, Y. Q., Li,
- 353 K., Gao, L., Pan, Q., Wang, X. M., & Liu, C. J. (2017). A Chinese variant Marek's disease
- virus strain with divergence between virulence and vaccine resistance. Viruses 9, 71.
 https://doi.org/10.3390/v9040071
- Suresh, P., Johnson Rajeswar, J., Sukumar, K., Harikrishnan, T. J., & Srinivasan, P. (2017).
- 357 Complete nucleotide sequence analysis of the oncogene "Meq" from serotype 1 Marek's
- disease virus isolates from India. British Poultry Science, 58, 111–115.
- 359 https://doi.org/10.1080/00071668.2016.1257780
- Teng, L. Q., Wei, P., Song, Z. B., He, J. J., & Cui, Z. Z. (2011). Molecular epidemiological
- 361 investigation of Marek's disease virus from Guangxi, China. Archives of Virology, 156, 203–
- 362 206. doi:10.1007/s00705-010-0840-8

363	Thompson, J.D., Higgins, D.G., & Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of
364	progressive multiple sequence alignment through sequence weighting, position-specific gap
365	penalties and weight matrix choice. Nucleic Acids Research, 22, 4673-4680. doi:
366	10.1093/nar/22.22.4673
367	Tian, M., Zhao, Y., Lin, Y., Zou, N., Liu, C., Liu, P., Cao, S., Wen, X., & Huang, Y. (2011).
368	Comparative analysis of oncogenic genes revealed unique evolutionary features of field
369	Marek's disease virus prevalent in recent years in China. Virology Journal, 8, 121.
370	https://doi.org/10.1186/1743-422X-8-121
371	Trimpert, J., Groenke, N., Jenckel, M., He, S., Kunec, D., Szpara, M. L., Spatz, S. J., Osterrieder,
372	N., & McMahon, D. P. (2017). A phylogenomic analysis of Marek's disease virus reveals
373	independent paths to virulence in Eurasia and North America. Evolutionary Applications,
374	10(10), 1091–1101. https://doi.org/10.1111/eva.12515
375	Tulman, E. R., Afonso, C. L., Lu, Z., Zsak, L., Rock, D. L., & Kutish, G. F. (2000). The Genome of
376	a Very Virulent Marek's Disease Virus. Journal of Virology, 74, 7980–7988.
377	doi:10.1128/jvi.74.17.7980-7988.2000
378	Witter, R. L. (1997). Increased Virulence of Marek's Disease Virus Field Isolates. Avian Diseases,
379	41(1), 149. https://doi.org/10.2307/1592455
380	Witter, R. L., Calnek, B. W., Buscaglia, C., Gimeno, I. M., & Schat, K. A. (2005). Classification of
381	Marek's disease viruses according to pathotype: Philosophy and methodology. Avian
382	Pathology, 34, 75-90. https://doi.org/10.1080/03079450500059255
383	Woźniakowski, G., & Samorek-Salamonowicz, E. (2014). Molecular Evolution of Marek's Disease
384	Virus (MDV) Field Strains in a 40-Year Time Period. Avian Diseases, 58(4), 550–557.
385	https://doi.org/10.1637/10812-030614-Reg.1

386 Yu, Z.-H., Man, T., Lou, J., Wang, X.-W., Ding, K., Yu, L-L, Su, J-W, Chi, J.-Q., Zhao, P., Hu, B.,

387	Zhang, GP., & Liu, JX. (2013). Molecular characteristics and evolutionary analysis of field
388	Marek's disease virus prevalent in vaccinated chicken flocks in recent years in China. Virus
389	Genes, 47, 282–291. doi: 10.1007/s11262-013-0942-y

- 390 Zhang, F., Liu, C. J., Zhang, Y. P., Li, Z. J., Liu, A. L., Yan, F. H., Cong, F., & Cheng, Y. (2012).
- 391 Comparative full-length sequence analysis of Marek's disease virus vaccine strain 814.
- 392 Archives of Virology, 157, 177–183. doi:10.1007/s00705-011-1131-8
- Zhang, Y. P., Liu, C. J., Zhang, F., Shi, W., & Li, J. (2011). Sequence analysis of the meq gene in
- the predominant Marek's disease virus strains isolated in China during 2006-2008. Virus
- Genes, 43(3), 353–357. https://doi.org/10.1007/s11262-011-0645-1

Flock ID	Region of origin	Year	Production type	Genetic line	Age (weeks)	Vaccine strain	1 st vaccination	2 nd vaccination	MD form
456/15	Emilia-Romagna	2015	Broiler breeders	Ross 708	NA^{\dagger}	CVI988+HVT	In ovo	1 day	Acute
498/15	Emilia-Romagna	2015	Broiler breeders	NA	NA	NA	NA	NA	Acute
513/15	Emilia-Romagna	2015	Layers	Hy-Line	31	NA	NA	NA	Acute
515/15	Emilia-Romagna	2015	Layers	NA	NA	NA	NA	NA	Acute
559/15	Veneto	2015	Broiler breeders	Ross 308	41	CVI988+HVT	In ovo	1 day	Acute
561/15	Friuli-Venezia Giulia	2015	Broiler breeders	Ross 708	56	CVI988+HVT	In ovo	1 day	Acute
565/15	Veneto	2015	Broiler breeders	Ross 708	36	CVI988+HVT	In ovo	1 day	Acute
567/15	Marche	2015	Cockerels	Hy-Line	11	CVI988+HVT	1 day	_ ‡	Acute
757/17	Emilia-Romagna	2017	Broiler breeders	Ross 308	51	CVI988+HVT	In ovo	1 day	Acute
875/18	Emilia-Romagna	2018	Broiler breeders	Ross 308	40	CVI988+HVT	In ovo	7 days	Acute
876/18	Emilia-Romagna	2018	Broiler breeders	Ross 308	31	CVI988+HVT	In ovo	7 days	Acute
921/18	Abruzzo	2018	Broiler breeders	Ross 308	27	CVI988+HVT	In ovo	1 day	Acute
1083/18	Tuscany	2018	Cockerels	Hy-Line	10	CVI988+HVT	1 day	-	Acute

Table 1. Description of Italian commercial flocks affected by acute Marek's Disease and their vaccination status.

[†]Not available [‡]Not performed

GAHV-2 strain	Country	Year	Pathotype	Size of Meq (aa)	PPPPs (N°)	GenBank Accession N°	Reference
CVI988	Netherlands	1969	att	398	7	DQ530348	Spatz et al., 2007
814	China	1986	att	398	7	JF742597	Zhang et al., 2012
3004	Russia	NA^{\dagger}	att	398	7	EU032468	NA
CU-2	USA	1970s	m	398	7	AY362708	Shamblin et al., 2004
MD70/13	Hungary	1970	v	339	5	MF431495	Trimpert et al., 2017
571	USA	1989	v	339	3	AY362710	Shamblin et al., 2004
617A	USA	1993	v	339	4	AY362712	Shamblin et al., 2004
MPF57	Australia	1994	v	398	5	EF523774	Renz et al., 2012
04CRE	Australia	2004	v	398	5	EF523773	Renz et al., 2012
573	USA	NA	v	339	4	AY362711	Shamblin et al., 2004
567	USA	NA	v	339	4	AY362709	Shamblin et al., 2004
637	USA	NA	v	339	4	AY362713	Shamblin et al., 2004
BC-1	USA	NA	v	398	7	AY362707	Shamblin et al., 2004
JM	USA	NA	v	398	7	AY243331	Shamblin et al., 2004
JM/102W	USA	NA	v	399	7	DQ534539	Spatz & Silva, 2007
Md5	USA	1977	VV	339	4	AF243438	Tulman et al., 2000
549	USA	1987	VV	339	2	AY362714	Shamblin et al., 2004
595	USA	1991	VV	339	2	AY362715	Shamblin et al., 2004
C12/130	UK	1992	VV	339	5	FJ436096	Spatz et al., 2011
Woodlands1	Australia	1992	VV	399	5	EF523775	Renz et al., 2012
643P	USA	1994	vv	339	2	AY362716	Shamblin et al., 2004
02LAR	Australia	2002	VV	398	5	EF523772	Renz et al., 2012
FT158	Australia	2002	VV	398	5	EF523771	Renz et al., 2012
RB1B	USA	NA	VV	339	5	AY243332	Shamblin et al., 2004
648A	USA	1994	$\mathbf{v}\mathbf{v}$ +	339	2	AY362725	Shamblin et al., 2004
New	USA	1999	vv+	339	2	AY362719	Shamblin et al., 2004

Table 2. Details of the GaHV-2 strains, retrieved from GenBank, which were used for the phylogenetic analysis.

W	USA	1999	vv+	339	4	AY362723	Shamblin et al., 2004
ATE2539	Hungary	2000	vv+	339	5	MF431493	Trimpert et al., 2017
660-A	USA	NA	vv+	339	2	AY362726	Shamblin et al., 2004
686	USA	NA	vv+	339	2	AY362727	Shamblin et al., 2004
L	USA	NA	vv+	339	2	AY362717	Shamblin et al., 2004
Ν	USA	NA	vv+	339	2	AY362718	Shamblin et al., 2004
RL	USA	NA	vv+	339	2	AY362720	Shamblin et al., 2004
ТК	USA	NA	vv+	339	2	AY362721	Shamblin et al., 2004
U	USA	NA	vv+	339	2	AY362722	Shamblin et al., 2004
Х	USA	NA	vv+	339	2	AY362724	Shamblin et al., 2004
EU-1	Italy	1992	NA	339	5	MF431494	Trimpert et al., 2017
0093	China	2002	NA	339	3	AF493550	NA
0095	China	2002	NA	339	3	AF493552	NA
0297	China	2002	NA	339	3	AF493553	NA
0304	China	2002	NA	339	2	AF493554	NA
G2	China	2002	NA	339	4	AF493556	NA
YLO40920	China	2005	NA	339	3	DQ174459	Teng et al., 2011
GXY2	China	2007	NA	339	3	EF546430	Teng et al., 2011
GX070060	China	2008	NA	339	3	EU427303	Teng et al., 2011
GX070079	China	2008	NA	339	3	EU427304	Teng et al., 2011
Polen5	Poland	2010	NA	339	4	MF431496	Trimpert et al., 2017
tn-n1	India	2010	NA	339	5	HM749324	NA
tn-n2	India	2010	NA	339	4	HM749325	NA
UDEACO-04/13	Colombia	2013	NA	339	2	KU058701	López-Osorio et al., 2017
UDEACO-06/13	Colombia	2013	NA	339	2	KU058696	López-Osorio et al., 2017
UDEACO-07/13	Colombia	2013	NA	339	3	KU058697	López-Osorio et al., 2017
bd2	USA	2015	NA	339	2	KU173119	Trimpert et al., 2017
bf1	USA	2015	NA	339	2	KU173117	Trimpert et al., 2017
bf2	USA	2015	NA	339	2	KU173118	Trimpert et al., 2017
sd1	USA	2015	NA	339	2	KU173116	Trimpert et al., 2017
sd2	USA	2015	NA	339	2	KU173115	Trimpert et al., 2017

GaHV-2/Italy/Ck/487/15	Italy	2015	NA	339	5	MK139660	Mescolini et al., 2019
GaHV-2/Italy/Ck/507/15	Italy	2015	NA	418	9	MK139661	Mescolini et al., 2019
GaHV-2/Italy/Ck/509/15	Italy	2015	NA	418	9	MK139662	Mescolini et al., 2019
GaHV-2/Italy/Ck/510/15	Italy	2015	NA	418	9	MK139663	Mescolini et al., 2019
GaHV-2/Italy/Ck/562/15	Italy	2015	NA	418	9	MK139664	Mescolini et al., 2019
GaHV-2/Italy/Ck/599/16	Italy	2016	NA	418	9	MK139665	Mescolini et al., 2019
GaHV-2/Italy/Ck/625/16	Italy	2016	NA	339	4	MK139666	Mescolini et al., 2019
GaHV-2/Italy/Ck/674/16	Italy	2016	NA	339	4	MK139667	Mescolini et al., 2019
GaHV-2/Italy/Ck/689/16	Italy	2016	NA	339	4	MK139668	Mescolini et al., 2019
GaHV-2/Italy/Ck/722/16	Italy	2016	NA	339	4	MK139669	Mescolini et al., 2019
GaHV-2/Italy/Ck/801/17	Italy	2017	NA	339	4	MK139670	Mescolini et al., 2019
GaHV-2/Italy/Ck/810/17	Italy	2017	NA	339	4	MK139671	Mescolini et al., 2019
GaHV-2/Italy/Ck/847/17	Italy	2017	NA	418	10	MK139672	Mescolini et al., 2019
GaHV-2/Italy/Ck/848/17	Italy	2017	NA	418	9	MK139673	Mescolini et al., 2019
GaHV-2/Italy/Ck/850/17	Italy	2017	NA	339	5	MK139674	Mescolini et al., 2019
GaHV-2/Italy/Ck/852/17	Italy	2017	NA	339	4	MK139675	Mescolini et al., 2019
GaHV-2/Italy/Ck/853/17	Italy	2017	NA	339	4	MK139676	Mescolini et al., 2019
GaHV-2/Italy/Ck/854/17	Italy	2017	NA	339	4	MK139677	Mescolini et al., 2019
GaHV-2/Italy/Ck/855/17	Italy	2017	NA	298	2	MK139678	Mescolini et al., 2019

[†] Not available

	Meq length (aa)	PPPPs							Amin	o acid s	substitu	tions					
Strain		(n°)	71	77	80	110	119	153	176	180	216 [†]	217	218	277	283	320	326
CVI988	398	7	S	Е	D	С	С	Р	Р	Т	Р	Р	Р	L	А	Ι	Ι
CU-2	398	7	S	Е	D	С	С	Р	Р	Т	Р	Р	Р	L	А	Ι	Т
JM/102W	399	7	А	Е	D	С	С	Р	Р	Т	S	Р	Р	L	А	Ι	Т
Md5	339	4	А	Κ	D	С	С	Р	Р	Т	P	<u>A</u>	Р	L	V	Т	Т
648A	339	2	А	Κ	D	С	R	Q	<u>A</u>	А	Р	A	Р	Р	А	Ι	Т
GaHV-2/Italy/Ck/456/15	339	4	А	Е	Y	S	C	Р	P	Т	Р	Р	<u>S</u>	L	А	Ι	Т
GaHV-2/Italy/Ck/498/15	339	4	А	Е	Y	S	C	Р	Р	Т	Р	Р	<u>S</u>	L	А	Ι	Т
GaHV-2/Italy/Ck/513/15	339	4	А	Е	Y	S	C	Р	Р	Т	Р	Р	<u>S</u>	L	А	Ι	Т
GaHV-2/Italy/Ck/515/15	339	4	А	Е	Y	S	C	Р	Р	Т	Р	Р	<u>S</u>	L	А	Ι	Т
GaHV-2/Italy/Ck/559/15	339	4	А	E	Y	S	C	Р	Р	Т	Р	Р	<u>S</u>	L	А	Ι	Т
GaHV-2/Italy/Ck/561/15	339	4	А	Е	Y	S	C	Р	Р	Т	Р	Р	S	L	А	Ι	Т
GaHV-2/Italy/Ck/565/15	339	4	А	Е	Y	S	C	Р	Р	Т	Р	Р	<u>S</u>	L	А	Ι	Т
GaHV-2/Italy/Ck/567/15	339	4	А	Е	Y	S	C	Р	Р	Т	Р	Р	<u>S</u>	L	А	Ι	Т
GaHV-2/Italy/Ck/757/17	339	4	А	Е	Y	S	C	Р	Р	Т	Р	Р	<u>S</u>	L	А	Ι	Т
GaHV-2/Italy/Ck/875/18	339	4	А	Е	Y	S	C	Р	Р	Т	Р	Р	<u>S</u>	L	А	Ι	Т
GaHV-2/Italy/Ck/876/18	339	4	А	Е	Y	S	C	Р	Р	Т	Р	Р	<u>S</u>	L	А	Ι	Т
GaHV-2/Italy/Ck/921/18	339	4	А	Е	Y	S	C	Р	Р	Т	Р	Р	S	L	А	Ι	Т
GaHV-2/Italy/Ck/1083/18	339	4	А	Е	Y	S	C	Р	Р	Т	Р	Р	S	L	А	Ι	Т

Table 3. Molecular characteristics of the deduced Meq protein, compared to prototype strains. Amino acid substitutions interrupting PPPPs are underlined. Distinctive aa substitutions of Italian GaHV-2 strains are framed.

[†] Amino acid position according to the 339 aa-long Meq isoform

405 Figure legend

- **Figure 1.** Phylogenetic tree based on *meq* gene complete amino acid sequences of the 13 GaHV-2
- strains detected in Italian commercial flocks (marked with a black dot, •) and of the 76 strains
- 408 retrieved from GenBank.