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ABSTRACT
Cosmic voids are large underdense regions that, together with galaxy clusters, filaments and
walls, build-up the large-scale structure of the Universe. The void size function provides a
powerful probe to test the cosmological framework. However, to fully exploit this statistics,
the void sample has to be properly cleaned from spurious objects. Furthermore, the bias of
the mass tracers used to detect these regions has to be taken into account in the size function
model. In our work, we test a cleaning algorithm and a new void size function model on a
set of simulated dark matter halo catalogues, with different mass and redshift selections, to
investigate the statistics of voids identified in a biased mass density field. We then investigate
how the density field tracers’ bias affects the detected size of voids. The main result of this
analysis is a new model of the size function, parametrized in terms of the linear effective
bias of the tracers used, which is straightforwardly inferred from the large-scale two-point
correlation function. This method is a crucial step in exploiting real surveys. The proposed
size function model has been accurately calibrated on halo catalogues, and used to validate the
possibility to provide forecasts on the cosmological constraints, namely on the matter density
contrast, �M, and on the normalization of the linear matter power spectrum, σ 8, at different
redshifts.
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1 I N T RO D U C T I O N

Cosmic voids are large underdense regions from which matter is
evacuated as a result of the collapse of the matter in between their
boundaries and the repulsive action of dark energy (DE). They
originate from the evolution of underdensities in the primordial
density field. Voids constitute a major component of the Universe,
while galaxy clusters enclose most of the mass, voids are the
dominant spatial elements, accounting for about 90 per cent of the
entire volume of the Universe (Platen, van de Weygaert & Jones
2007). Their sizes span over a wide range of scales, from diameters
of few Mpc (minivoids) to about 200 Mpc (supervoids) (Tikhonov &
Karachentsev 2006; Szapudi et al. 2015). Voids are only mildly non-
linear objects, and tend to become more spherical as they evolve
(Icke 1984; van de Weygaert & van Kampen 1993; Sheth & van
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de Weygaert 2004), which suggests that their isolated evolution
should be easier to reconstruct than that of positive perturbations,
despite their sphericity can be compromised during their growth
and merging.

Thanks to their relatively simple structure and shape, voids
represent the ideal environment to test a variety of cosmologi-
cal parameters. They represent a population of statistically ideal
spheres with a uniform distribution in a homogeneous and isotropic
universe, so that their observed shape can be used to probe the
assumed cosmological model by means of the Alcock–Paczyński
test (Alcock & Paczynski 1979, see e.g. Lavaux & Wandelt 2012;
Sutter et al. 2012, 2014; Hamaus et al. 2014, 2016). Moreover,
being almost completely devoid of matter by definition, voids are
extremely sensitive to diffuse components and have indeed been
shown to possess great potential for constraining the DE properties
(Lee & Park 2009; Pisani et al. 2015), in particular for scalar field
DE models (Bos et al. 2012; Adermann et al. 2017, 2018), and the
mass of neutrinos (Massara et al. 2015; Kreisch et al. 2018; Sahlén
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2019). Thanks to their intrinsic low-density environment, cosmic
voids have also proved to be promising objects to study modified
gravity theories, since the effects of these scenarios, alternative to
the general relativity (GR), are expected to be more prominent in
voids (Clampitt, Cai & Li 2013; Cai, Padilla & Li 2015; Barreira
et al. 2015; Zivick et al. 2015; Falck et al. 2018; Sahlén & Silk 2018).
Deviations from GR can be observed also measuring the matter den-
sity profile of cosmic voids, which can be reconstructed exploiting
voids as weak gravitational (anti-)lenses to infer their projected
surface mass density (see e.g. Melchior et al. 2014; Clampitt & Jain
2015; Sánchez et al. 2017; Davies, Cautun & Li 2018). Modified
gravity also causes a faster expansion around these objects, that can
be revealed measuring the redshift-space distortions (RSD) in the
cross-correlation of galaxies and void centres (Hamaus et al. 2015;
Cai et al. 2016; Hamaus et al. 2017; Achitouv 2017; Hawken et al.
2017). One of the possible advantages of studying RSD around
cosmic voids is that, in these regions, galaxy velocities are domi-
nated by coherent bulk flows. Therefore the non-linear contributions
can be in principle neglected and the RDS can be modelled using
linear theory only (Nadathur, Carter & Percival 2019; Nadathur &
Percival 2019).

To exploit cosmic voids as cosmological probes, their statistical
properties have to be modelled reliably (Nadathur & Hotchkiss
2015a,b; Pollina et al. 2016). In this wor,k we focus on void
abundances. The same excursion-set approach used for the mass
function of dark matter (DM) haloes can be used also to model
the size function of cosmic voids (Sheth & van de Weygaert
2004). However, this model cannot accurately reproduce the number
function of voids identified in cosmological simulations. Therefore,
many studies have been conducted to better understand the evolution
of voids over cosmic time and their statistics (Jennings, Li & Hu
2013; Pisani et al. 2015; Achitouv, Neyrinck & Paranjape 2015;
Pycke & Russell 2016; Wojtak, Powell & Abel 2016). Moreover,
the distribution of luminous tracers, such as e.g. galaxies and galaxy
clusters, that are used to identify the voids, is biased with respect to
the distribution of the underlying DM. It has been shown that the
tracer bias plays a crucial role in determining the void profiles
and size distributions. Having a reliable model to account for
the effect of the tracer bias is thus mandatory to extract robust
cosmological constraints from void statistics (Pollina et al. 2017,
2018; Nadathur & Percival 2019).

Recently, Ronconi et al. (2019) tested the void size function
model developed by Sheth & van de Weygaert (2004), as revisited
by Jennings et al. (2013), on a series of unbiased simulated tracer
catalogues, and extended the model to the case of voids identified in
the distribution of DM haloes. In this work, we further validate the
model on a larger set of catalogues with different mass and redshift
selections. Moreover, we provide a new parametrization of the void
size function model as a function of the large-scale effective linear
bias of the tracers. This represents a crucial ingredient to extract
cosmological constraints from the statistical distribution of voids
detected from real galaxy or cluster catalogues, when no direct
information on the DM field is available. Finally, we investigate
the cosmological constraints that can be inferred from the void size
function at different redshifts.

Our work is organized as follows. In Section 2, we outline the
methods employed for the identification of voids and the procedure
of data reduction. In Section 3.1, we present the theoretical defi-
nition of cosmic voids and some of the existing models developed
for the void size function, then we describe the method adopted
to rescale the abundances of voids identified in the mass tracer
distribution as a function of the tracer bias. In Section 4, we apply

the techniques previously described to simulated halo catalogues
with different redshift and mass selections. We provide a relation
between the effective linear bias of all the tracers and the one
estimated inside voids, which is the one we use to rescale the void
size function model. Then, we measure the void size function in all
our halo catalogues, and compare it to the new theoretical model,
exploiting the void abundances to test the possibility of deriving
constraints on the main cosmological parameters. Finally, in Sec-
tion 5, we summarize our results and discuss future developments of
this work.

2 VO I D C ATA L O G U E S

In this section, we present the set of � cold dark matter (�CDM) N-
body simulations used in our work, and the methods applied to build
and clean the catalogues of cosmic voids. With the cleaning algo-
rithm, we aim at aligning the objects included in the void catalogue
with the adopted definition of cosmic void, which is fundamental
to derive measured void size functions in agreement with theory
predictions.

2.1 Simulated halo catalogues

In this work, we make use of simulated halo catalogues extracted
from a set of high resolution N-body simulations (Baldi 2012) of
the standard �CDM cosmology, performed with the C-GADGET

module (Baldi et al. 2010). We adopt a model consistent with
WMAP7 constraints (Komatsu et al. 2011), with σ 8 = 0.809, h0 =
0.703, �λ = 0.7289, �M = 0.2711, �b = 0.0451, and a power
spectrum with an initial scalar amplitude of As = 2.194 × 10−9

and a primordial spectral index of ns = 0.96. The simulations
followed the dynamical evolution of 2 ×10243 particles: half of
them are DM particles, while the other half is composed by non-
collisional gas particles. Specifically, the catalogue covers a volume
of (1 Gpc h−1)3, with a mass resolution of ∼ 6 × 1010 M� h−1 for
the DM particles. To test the procedure described in Section 3.2,
we built a set of DM halo catalogues with a friends-of-friends
(FoF) algorithm,1 applying five different mass selection cuts: {2 ×
1012 , 2.5 × 1012 , 5 × 1012 , 7.5 × 1012 , 1013 M� h−1}, at three dif-
ferent redshifts {z = 0 , 0.55 , 1}. These mass cuts are applied to
the FoF mass in order to inspect a sufficiently wide range of
values for tracers’ bias.2 The redshifts are chosen instead to span
a significant fraction of cosmic time over which FoF haloes with
masses greater than 1012 M� h−1 are resolved. This range allows
to test our methodology on haloes corresponding to common
density peaks (low redshifts and low masses) and on newly forming
haloes corresponding to rare density peaks. The results obtained
for the halo catalogues with Mmin = 2.5 and 7.5 × 1012 M� h−1

are consistent with the ones of the other catalogues, and do not
add any relevant information to the overall outcome of the paper.
Thus, we will not show them in the figures, with the only exception
of Fig. 4.

1The algorithm makes use of a linking length � = 0.2 · d, where d is
the mean interparticle separation, gathering the CDM particles as primary
tracers of the local mass density, and then attaching baryonic particles to the
FoF group of their nearest neighbour.
2Other methods to measure halo masses were applicable in this case, e.g.
using spherical overdensity masses. Anyway, the mass-cut criterion, as well
as the redshift selection, are not relevant in our work and do not influence
the outcomes of the manuscript.
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2.2 Building and cleaning the void catalogues

Many different void finders have been developed over the last
decades due to the non-general concordance in the definition of
voids (see e.g. Colberg et al. 2008; Micheletti et al. 2014; Elyiv
et al. 2015). In this paper, we make use of the Void IDentification
and Examination toolkit (VIDE, Sutter et al. 2015) to construct
our void catalogues. VIDE belongs to the class of algorithms
based on geometrical criteria. It implements an enhanced version of
the ZOnes Bordering On Voidness (ZOBOV) algorithm (Neyrinck
2008). ZOBOV is a popular publicly available code that finds
density depressions in a 3D set of points, without any free parameter
or assumption about the void shape. The algorithm is based on
a procedure called Voronoi tessellation, which associates to each
tracer a cell of volume that is closer to it than to any other tracer. Then
the local density minima are found, and the watershed technique
is performed. Specifically, the shallower zones are merged together
starting from the minima, forming a hierarchical tree of voids and
subvoids. The process of rising the density threshold goes on until
a deeper zone is encountered. The effective radius of voids is
defined as the radius of a sphere containing the same volume as
the watershed region, and the void centre is defined as the volume-
weighted barycentre, X, of the N Voronoi cells that define the void,

X =
∑N

i=1 x iVi∑N

i=1 Vi

, (1)

where x i are the coordinates of the ith tracer of that void, and Vi

the volume of its associated Voronoi cell. Therefore, the void centre
does not necessarily coincide with the position of a tracer.

Once a candidate void catalogue is built, we apply the pipeline
introduced in Ronconi & Marulli (2017), which has been recently
implemented in the COSMOBOLOGNALIB.3 The procedure standard-
izes the outcome of void finders so as to make them directly
comparable to model predictions. The cleaning algorithm is totally
independent of the void finder employed since it makes use of the
positions of void centres only. The goal is to take a candidate list of
void centres and produce a catalogue of non-overlapping spherical
underdensities, ‘void’. Our cleaning algorithm can be divided in
three main steps:

(i) The underdense regions that do not satisfy the following
criteria are rejected from the catalogue: (i) the effective radii have
to be to greater than a given scale, Rmin, which is chosen to remove
objects that are under a certain resolution threshold; (ii) the central
density has to be lower than (1 + δNL

v )ρ, where δNL
v is a given non-

linear underdensity threshold (see Section 3.2), and ρ is the mean
density of the tracers. In this way, we are rejecting voids that are not
relevant for our analysis, that is those regions that cannot be defined
as cosmic voids according to our definition.

(ii) The effective void radii are rescaled: the algorithm recon-
structs the density profile of each void and the value of the radius
is increased until the sphere reaches a specific density contrast
threshold, δNL

v . This value is not universal, any other threshold

3The COSMOBOLOGNALIB (Marulli, Veropalumbo & Moresco 2016) is a
large set of free software C+ + /PYTHON libraries that provide an efficient
numerical environment for cosmological investigations of the large-scale
structure of the Universe. Thanks to the large amount of classes and functions
recently implemented, these libraries offer the necessary tools to analyse
cosmic void catalogues and perform all the statistical analyses of this work.
The libraries are freely available at the following GitHub repository: https:
//github.com/federicomarulli/CosmoBolognaLib.

Table 1. Void counts in five logarithmic bins of void effective radii, Reff,
in the range [18–60] Mpc h−1, for DM halo catalogues with different mass
and redshift selections, after the cleaning procedure has been applied.

Reff (Mpc h−1)

20.5 26.0 33.1 42.1 53.6

Mmin (M� h−1) Ntot N (Reff)

z = 0.00

2 × 1012 1063 719 288 53 3 0
5 × 1012 1007 544 333 115 15 0
1013 803 291 309 160 39 4

z = 0.55

2 × 1012 1053 690 301 56 6 0
5 × 1012 943 444 356 120 22 1
1013 693 196 256 176 49 7

z = 1.00

2 × 1012 1090 698 314 72 6 0
5 × 1012 850 370 301 146 33 0
1013 557 140 170 156 77 14

sufficiently high to enclose enough tracers and sufficiently low to
identify the voids would be valid (this will be intensively discussed
in Section 3.2).

(iii) When two voids do overlap (thus when the distance between
void centres is less than the sum of their radii), the one with the
higher central density is rejected, avoiding double countings. This
choice favours the selection of larger, most underdense voids.

The effect of the cleaning procedure is to reshape the selected
voids as spherical non-overlapping regions, centred in density
depths of the tracer density field, embedding a fixed density contrast
(see Section 3.1). As a consequence, the void number counts result
lower with respect to the original output of VIDE. Moreover, as it
can be seen from Table 1, (i) the total number of void counts tends
to decrease for tracer catalogues with higher mass selections due
to the lowering of the resolution, and (ii) the void radii are shifted
towards higher values because of the consequent reduction of the
mean mass density.

Our choice of modelling the underdensity regions as spheres is
aimed at comparing void statistics directly to theoretical models. We
do not need to reconstruct accurately the real shape of individual
voids. Although real voids are not spherical objects, the mean void
ellipticity is small in standard cosmological frameworks (Verza et al.
2019). We can thus reasonably assume that the voids’ geometry is
spherical on average (Lavaux & Wandelt 2012).

3 THE VOI D SI ZE FUNCTI ON MODEL

In this section, we first present the theoretical model for the void
size function that we use in our work. Secondly, we describe the
method we adopt to rescale the model to make it directly comparable
with the abundance of voids identified in the distribution of biased
tracers. In the end, we focus on the measure of the tracer bias in
overdensity and underdensity regions, since the value of the latter
is required for the re-parametrization of the theoretical model.

MNRAS 488, 3526–3540 (2019)
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3.1 The size function model of voids detected in the DM
distribution

Contrary to what happens in the case of overdensities, voids
typically do not invert their expansion during their growth, so they
cannot collapse and virialize like DM haloes. Instead, they expand
at a super-Hubble rate, which is inversely proportional to the density
enclosed in their boundary. Considering an initial negative top-hat
perturbation, and modelling it as a set of concentric shells, the
inner shells will expand faster than the outer ones. This implies
that the shells near the centre of the underdensity will eventually
reach the more external ones. This event is called shell-crossing.
When this occurs, we can consider that a void is formed. After
the shell-crossing, the void recovers the overall expansion rate,
growing with the Hubble flow. This phenomenon is completely
described by the spherical non-linear evolution model of an isolated
spherically symmetric density perturbation. It can be demonstrated
that in linear theory this event takes place at a fixed value of the
density contrast, δNL

v ≈ −2.71, for an Einstein–de Sitter universe
(EdS). Therefore, we can define voids as underdense, spherical,
non-overlapping regions, which have gone through shell crossing.

The void size function, that is the comoving number density of
cosmic voids as a function of their effective radii, has been modelled
for the first time by Sheth & van de Weygaert (2004, hereafter the
SvdW model), with the same excursion-set approach used to model
the mass function of DM haloes (Press & Schechter 1974; Bond
et al. 1991). The void size function in linear theory can be written
as follows:

dn

d ln r

∣∣∣∣
lin

= fln σ (σ )

V (r)

d ln σ−1

d ln r
, (2)

where fln σ is the fraction of the Universe occupied by cosmic voids,
as predicted by the excursion-set theory:

fln σ = 2
∞∑

j=1

jπx2 sin(jπD) exp

[
− (jπx)2

2

]
, (3)

where

x ≡ D
|δL

v | σ , (4)

and

D ≡ |δL
v |

δL
c + |δL

v | . (5)

In the previous equations, σ is the square root of the mass
variance, while δL

v and δL
c represent the shell-crossing threshold

and the critical value for the collapse of an overdense shell in an
EdS universe, respectively.4 The latter is expected to vary within
1.06 ≤ δL

c ≤ 1.686, since both the turnaround and the collapse
density contrast value can be considered acceptable assumptions.

In order to derive the void size function in the non-linear regime,
SvdW assumed that the total number of voids has to be conserved
in the transition from linearity to non-linearity. This condition leads

4In this paper, we indicate with the superscripts L and NL the density
contrasts derived in linear and non-linear regimes, respectively. In absence
of any superscript, we take for granted the reference to the non-linear
counterpart. Moreover, with the subscript v we refer to the values measured
inside voids, both for DM and biased mass tracers. We will use the subscript
tr to indicate generically any type of mass tracers, and the subscript halo to
indicate specifically the DM haloes.

to a correction in the void radius by a factor C ∝ (1 + δNL
v )−1/3:

d n

d ln r

∣∣∣∣
SvdW

= d n

d ln(C r)

∣∣∣∣
lin

. (6)

However, according to equation (6), the fraction of the volume
occupied by voids can be larger than the total volume of the
Universe. To address this issue, Jennings et al. (2013) proposed
a volume conserving model (hereafter the Vdn model), in which
the total volume occupied by cosmic voids is conserved in the
transition to the non-linear regime. In particular, the Vdn model can
be obtained as follows:

d n

d ln r

∣∣∣∣
Vdn

= d n

d ln r

∣∣∣∣
lin

V (rL)

V (r)

d ln rL

d ln r
, (7)

where the subscript L indicates a value derived in linear theory.
Ronconi et al. (2019) showed that the Vdn model can predict
accurately the measured void size function of unbiased tracers,
provided that the void catalogue is appropriately cleaned from
spurious voids and the void radii are rescaled to a fixed density
threshold (see Section 2.2).

3.2 The size function model of voids detected in biased tracer
distribution

The goal of the cleaning procedure is to make the measured void
size function directly comparable to the Vdn model. The method
is based on the requirement that the spherically averaged density
contrast embedded inside the void effective radius has to coincide
with the value defined by the theory. As shown in Ronconi et al.
(2019), dealing with unbiased tracers, this value can correspond to
that of the shell crossing in the non-linear regime, δNL

sc = −0.795.
With this prescription, the measured size function of voids identified
in the DM field is consistent with the one predicted by the Vdn
model.

It is important to notice that the choice to rescale the void radii
to the specific density contrast characteristic of the shel -crossing
is not universal. In fact, in order to have correspondence with the
theory, it is only required to rescale the radii at a chosen density
threshold with the cleaning algorithm and use the same density
contrast (converted to linear theory) also in the theoretical void size
function. This overdensity threshold δNL

sc , which identifies the time
at which cosmic voids form, has to be rescaled at redshift z > 0,
using the growth factor:

δL
sc(z) = δL

sc(0)
D(z)

D(0)
, (8)

where δL
sc(0) = −2.71 is the shell-crossing density contrast in linear

theory at z = 0, and D(z) is the growth factor. Therefore, voids
formed at lower density contrast values in the past. After shell
crossing, the void radii continue to grow with cosmic time, and
the enclosed volume becomes increasingly underdense. Choosing
the threshold δNL

v = δNL
sc (z), we are rescaling voids to the radii

embedding the density contrast typical of the phenomenon of the
shell crossing at that epoch. In other words, we are rescaling
void radii to the size they had when they formed. This method
cleans the catalogue of newly forming voids that have yet to
meet the underdensity criterion. In fact, the ones that cannot be
rescaled to this particular density contrast (because they are not
enough underdense at that epoch) are rejected. However, every
negative density threshold −1 < δNL

v < 0 is allowed in principle,
provided that the same value is used in the theoretical size
function.

MNRAS 488, 3526–3540 (2019)
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Figure 1. Spherically averaged density profiles measured from the centres of voids identified in the tracer distribution at redshifts z = 0 (left), z = 0.55
(centre), z = 1 (right). The red lines represent the median of the profiles computed in the DM particle distribution, while the blue ones indicate the profiles
in the DM halo catalogues with different mass cuts. The horizontal dashed line indicates the value of the density contrast threshold (δNL

v, tr = −0.7) selected
in the cleaning procedure. All the profile radii are rescaled to the mean effective radius of the catalogue with Mmin = 2 × 1012 M� h−1, in order to show the
effect of the rescaling procedure of the cleaning algorithm. The shaded areas represent 2σ confidence regions, that is two times the standard deviation of the
distribution of the mean values.

Dealing with mass tracers, the effect of the tracer bias has to
be taken into account to extract accurate cosmological constraints
from the void number counts (see e.g. Pollina et al. 2017). Let us
assume that the voids identified in the DM and the mass tracer
density fields have the same radii when the phenomenon of the
shell crossing occurs. This implies that voids found in the biased
tracer distribution have a lower embedded density contrast with
respect to the ones traced by DM particles. This is illustrated in
Fig. 1, that shows the spherically averaged void density profiles5

as traced by either DM or DM haloes with different biases, at
three different redshifts (see also Ronconi et al. 2019). With this
assumption, and given that the DM density field within voids is
linearly related to the density field traced by biased tracers (Pollina
et al. 2018), the threshold at which the void radii have to be rescaled
corresponds to:

δNL
v, tr = b δNL

v, DM , with δNL
v, DM = −0.795 . (9)

It is evident that for b > 1, the density contrast can reach values
so low that the phenomenon of the shell crossing might not even
happen, since the lowest minimum is δNL

v, tr = −1 (corresponding
to the state without any tracer). Therefore, it is not possible to
perform this technique to rescale the void radii in the case of biased
tracers. For this reason, we use a different density contrast in the
rescaling procedure, fixing the threshold in the tracer distribution,
instead of in the DM one. In particular, we set a threshold equal
to −0.7 for all the considered halo catalogues. Thus, we rescale
all the voids found in the tracer catalogues to an effective radius
such that the spherically averaged density contrast they contain is
δNL

v, tr = −0.7. This choice is aimed at having not too small void
radii (the higher is the threshold, the higher is the radius), in order
to enclose a sufficient number of tracers. In fact, the resolution of
the tracer catalogue does not allow us to identify voids with radii
smaller than 2–3 times the mean inter-particle separation. At the
same time, we require that the chosen threshold is not too high,

5All the void profiles with effective radii, Reff, larger than two times the
mean interparticle separation are stacked in these plots. As a result of the
cleaning procedure, that rescales every void radii at the same level of density
contrast, the profiles do not show a clear dependence on the void effective
radius and they are therefore averaged together.

since the selected regions have to be enough underdense to be
still classified as voids. Moreover, we want to keep the threshold
low also to prevent the possible overlap between adjacent voids,
that would make the cleaning algorithm to discard the smaller,
thus the one with higher central density, to prevent double counts
(see Section 2.2).

To model the theoretical size function of voids identified in
the mass tracer field, we follow the prescription described in
Ronconi et al. (2019). This is based on the reasonable assumption
that voids identified in the DM and the tracer field are equal
in number, and that their centre positions are approximately the
same.6 Since the Vdn model can predict the number of voids with
a certain radius, the simplest procedure to apply is to rescale the
theoretical size function dividing the chosen threshold by the bias
value:

δNL
v, DM = δNL

v, tr

b
, with δNL

v, tr = −0.7 . (10)

We convert δNL
v, DM to its linear counterpart, with the fitting formula

provided by Bernardeau (1994):

δL
v, DM = C

[
1 − (1 + δNL

v, DM)−1/C , (11)

with C = 1.594. This equation is exact for models with null
cosmological constant �, and is a good fit for any values of �,
especially for the underdense regions. The density contrast given
by equation (11), δL

v, DM, has to be used in equations (4) and (5).
This is basically equivalent to expand the radii of voids identified in
the DM field (embedding the same density contrast −0.7), in order
to match the same radius of the ones identified in the tracer field. In
this way, we are able to recover the theoretical size function taking
into account the effect of the bias, that shifts the size function to
higher void radii. 7

6We tested this hypothesis using a catalogue of voids identified in the DM
density field and cleaning it using the corresponding distribution of DM
haloes as tracer. The results obtained are in agreement with the ones found
with the voids identified in the biased tracer distribution. Therefore this
assumption can be considered statistically valid, even if the correspondence
between void centres in different mass density fields is not always exact.
7A new algorithm to rescale the void size function model as a function of
the tracer bias has been implemented in the COSMOBOLOGNALIB. The code
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Figure 2. Relation between the density contrast computed in the DM distribution (δDM) and in the tracer distribution (δhalo). The data points are computed
as the spherically averaged density contrast for 1000 random positions in the halo catalogue with Mmin = 2 × 1012 M� h−1 at z = 0, averaging in different
radius bins. The different colours refer to the different radius sizes of the spheres used to compute the density contrast. Left: in the upper sub-panel, the data
are computed as the median of the values of δhalo in different bins of δDM, with error bars computed as the ratio between the standard deviation and the square
root of the number counts in each bin. The points are fitted with a second-order polynomial, whose equation is reported in the yellow insert and represents the
non-linear bias function. In the lower sub-panel are reported the residuals from the quadratic fit. Right: in the upper sub-panel, the points with δDM > 0 and <

0 of each radius bin are fitted separately with a linear relation. In the lower sub-panel is shown the variation of the slope of each fit as a function of the radius
of the sphere used to compute the averaged density contrast.

3.3 The bias of tracers in overdensity and underdensity
regions

The bias of cosmic tracers is a non-linear stochastic function
described by the conditional probability of tracer density contrast,
δtr, given the mass density contrast δDM (see e.g. Dekel & Lahav
1999; Di Porto et al. 2016, and references therein). This is shown
in Fig. 2, where the density contrast of a halo catalogue analysed in
this work (Mmin = 2 × 1012 M� h−1 at z = 0) is plotted against
the corresponding DM density contrast, smoothing the density
field at 1000 random positions with top-hat spherical filters with
different radii. As shown in the left-hand panel of Fig. 2, the data
are well fitted by a second-order polynomial. However, a linear
model is accurate enough to describe separately the points in the
overdensity and the underdensity regions. Indeed, fitting all the
points with a second-order polynomial the reduced chi square is
χ̃2 = 1.977, while fitting δDM > 0 and < 0 separately with a linear
relation we obtain χ̃2 = 1.758 and 2.780, respectively. The slope
of the former, b [δDM > 0], represents the linear bias that can be
approximately inferred e.g. from the tracer large-scale two-point
correlation function (2PCF). The slope of the latter, b [δDM < 0],
represents the bias of the tracers inside cosmic voids, which is the

requires in input the values of the radii at which the model is computed, the
redshift of the sample, the size function model to use (e.g. SvdW and Vdn)
and the effective bias of the catalogue, beff. The latter can be automatically
converted to brel using the relation calibrated in this work (see Section 4.1).
Moreover, a new notebook is provided to explain, step by step, how to clean
a void catalogue, and how to measure and model the void size function,
according to the method described in this paper.

value we actually need in order to properly rescale the void size
function, as we will explain in the next section. As shown in the
right-hand panel of Fig. 2, b [δDM < 0] > b [δDM > 0].

Since b [δDM < 0] is generally not directly measurable, we shall
calibrate a relation between b [δDM > 0] and b [δDM < 0] to be able to
model the size function of voids detected from real tracer catalogues.
Specifically, we search for a relation between the effective linear
bias of the tracers used to detect cosmic voids, beff ∼ b [δDM > 0]
(that we measure from the tracer 2PCF at large scales, as described
in Appendix A), and the linear bias of tracers inside the detected
voids. A convenient estimate of the latter can be assessed through
the ratio between δNL

v, halo and δNL
v, DM at a distance of Reff from void

centres (Ronconi et al. 2019):

bpunct ≡ δNL
v, tr(R = Reff)

δNL
v, DM(R = Reff)

. (12)

The punctual bias given by equation (12) characterizes the relation
between the density contrast measured in the tracer field and in the
DM field punctually, that is at R = Reff. Since in our analysis the
value of δhalo(Reff) is fixed at −0.7, then δDM(Reff) is exactly the value
we need to rescale the void size function model (see Section 3.2).

An alternative method to estimate b [δDM < 0] is the one
employed by Pollina et al. (2018). They found a linear relation
between the density profiles of tracers and DM inside voids. The
slope of this relation, bslope, provides an estimate of the tracer bias in
underdensity regions. We discuss about this method in Appendix B,
but choose not to use it in our analysis as it is more prone to
uncertainties.
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Figure 3. Measure of the tracer bias estimated as the ratio between the density contrast computed in the halo (δhalo) and in the DM (δDM) density fields,
at a distance of 1 Reff from the void centres. The different panels show the results obtained from the halo catalogues with Mmin = 2 × 1012, 5 × 1012, and
1013 M� h−1 (rows from top to bottom), at redshifts z = 0, 0.55, and 1 (columns from left to right). The dark green points represent the median of the ratio for
different radius bins, with error bars representing the 1σ uncertainty. The green lines are the weighted fit of the data, bpunct, while the red dashed lines show
the effective bias, beff. The shaded regions show the 1σ errors on the bias values.

4 RESULTS

In this section, we first estimate the linear bias of DM haloes inside
voids, bpunct. We then model the relation between this bias and
the effective linear bias of all the tracers used to detect the voids,
beff. The latter is estimated from the tracer 2PCF at large scales,
as explained in Appendix A. We want a size function model that
can be promptly compared with real data measures. To this end,
it is crucial to obtain a relation between beff and bpunct that can be
applied, independently of the tracer used to sample the underlying
DM density field. Afterwards, we measure the void size function in
all our simulated catalogues, and compare the measurements with
the theoretical model. Finally, we perform a Bayesian Markov Chain
Monte Carlo (MCMC) statistical analysis, exploiting the calibrated
bias scaling relation to construct the likelihood function. With this

approach, we investigate the constraining power of the method by
assessing the posterior probability of two cosmological parameters,
namely �M and σ 8, at varying redshift.

4.1 The bias of DM haloes inside voids

Fig. 3 shows the ratio between the density contrast of haloes and
DM, δhalo/δDM, measured at R = Reff and averaged over voids of
similar effective radii, together with their weighted average values
(equation 12), bpunct, for all the considered simulated catalogues.
Therefore, in this figure, the points are obtained by computing
the ratio δNL

v, tr(R = Reff)/δNL
v, DM(R = Reff) for each void of the cata-

logues (with Reff being the effective radius of that specific void) and
binning the result as a function of Reff. Then, to compute the value

MNRAS 488, 3526–3540 (2019)



Cosmology with void abundances 3533

Figure 4. Relation between the effective bias (beff) and the bias measured
inside voids (bpunct), at different redshifts. The points correspond to the
data reported in Table 2, with 1σ errors. The squares are the values of
bpunct, obtained with the method presented in Fig. 3, while the circles are
estimated with the best-centring technique (see Section 4.1) and correspond
to bpunct(bc). The black line is the linear fit of the bpunct(bc) values.
The best-fitting parameters are reported in the label in the lower right
corner.

of bpunct, we perform a weighted fit of these data with a constant. For
comparison, we show also the effective tracer bias, beff, estimated
from the 2PCF at large scales, as explained in Appendix A. As
shown in Fig. 3, the δhalo/δDM ratio decreases as a function of Reff,
especially at high redshifts. In particular, it tends to beff at large radii,
in agreement with the results obtained by Pollina et al. (2017, 2018).
Nevertheless, we find that an average constant value of bpunct is suf-
ficient to properly rescale the void size function, as we will show in
Section 4.2.

Since in most cases it is not possible to infer the underlying
DM distribution inside voids, it is worth to search for a relation
between bpunct and beff, which can be accurately estimated e.g.
from clustering measurements. This relation is displayed in Fig. 4.
As it can be seen, the data can be well fitted by a simple linear
model.

However, the bpunct values estimated in the higher bias halo
catalogues tend to systematically depart from the fit, at all redshifts.
The reason of this slight deviation is related to the method used to
find the void centres. In fact, if the detected voids are traced by too
few tracers, the VIDE method might not be sufficiently accurate to
localize their centres. Computing the spherically averaged density
contrast starting from a point that is not a local minimum of the
density field causes systematic errors in the bias measurements.
This is a natural consequence of the cleaning procedure: when
rescaling the void radii, the selected threshold might be reached at
smaller radii if overdense regions are included in the measurement,
due to a bad centring. This is an issue especially for catalogues with
a high-mass selection.

As a possible strategy to alleviate the problem, we repeat our
bias measurements using in all cases, the centre positions of the
voids detected in the catalogues with the lowest mass cut. We will
refer to this method as our best-centring technique, and we will
call bpunct(bc) the corresponding bias. As shown in Fig. 4, these
bias values (shown as coloured circles) are in better agreement with

Table 2. The values of the bias with 1σ uncertainties measured in the
overdensity (beff) and in the underdensity (bpunct and bpunct (bc)) regions,
for all the halo catalogues with different mass selections and redshifts.

beff bpunct bpunct (bc)

Mmin (M� h−1) z = 0.00

2 × 1012 1.122 ± 0.006 1.383 ± 0.006 1.383 ± 0.006
2.5 × 1012 1.140 ± 0.009 1.390 ± 0.005 1.397 ± 0.004
5 × 1012 1.256 ± 0.011 1.497 ± 0.008 1.491 ± 0.007
7.5 × 1012 1.353 ± 0.011 1.580 ± 0.014 1.571 ± 0.009
1013 1.429 ± 0.012 1.641 ± 0.013 1.644 ± 0.012

Mmin (M� h−1) z = 0.55

2 × 1012 1.507 ± 0.011 1.702 ± 0.014 1.702 ± 0.014
2.5 × 1012 1.536 ± 0.011 1.715 ± 0.018 1.717 ± 0.013
5 × 1012 1.730 ± 0.013 1.915 ± 0.017 1.893 ± 0.012
7.5 × 1012 1.872 ± 0.015 2.062 ± 0.030 2.032 ± 0.017
1013 2.018 ± 0.019 2.208 ± 0.029 2.148 ± 0.037

Mmin (M� h−1) z = 1.00

2 × 1012 1.983 ± 0.017 2.104 ± 0.017 2.104 ± 0.017
2.5 × 1012 2.301 ± 0.017 2.113 ± 0.017 2.128 ± 0.036
5 × 1012 2.321 ± 0.021 2.405 ± 0.018 2.420 ± 0.031
7.5 × 1012 2.573 ± 0.027 2.745 ± 0.072 2.620 ± 0.041
1013 2.756 ± 0.031 2.881 ± 0.028 2.816 ± 0.033

a linear model. Therefore, we use them to calibrate the relation
between the bias measured on large scales and the one computed
inside cosmic voids, obtaining the following equation:

bpunct (bc) = beff · (0.854 ± 0.007) + (0.420 ± 0.010) . (13)

This relation can be used to estimate the bias of the tracers
inside voids from the effective bias of the whole tracer population.
Hereafter, the bias obtained using equation (13) will be called f(beff)
≡ brel. All the different bias values are reported in Table 2.

It is important to notice that the best-centring technique is not
employable with real mocks, since in that case it is not possible
to use more numerous tracers to improve the centre of a void.
Nevertheless, in our work we choose to rely on this technique to
obtain a better calibration of the relation between bpunct and beff.
Indeed, it is convenient to calibrate the latter with bpunct(bc) to
minimize the deviation of the data associated to the catalogues with
higher mass selections from the linear fit. Using the best-centring
technique to alleviate the problem of the sparsity of the tracers, we
are able to extend our pipeline also to catalogues with lower spatial
resolution.

4.2 The void size function

Here we measure the void size function of our cleaned catalogues
and compare it with the theoretical predictions given by the re-
parametrized Vdn model. We reject the voids that are too close to the
boundaries of the simulation box, as their radii cannot be accurately
rescaled by our cleaning algorithm, and we correct consequently
the effective volume of the box. The theoretical size function is
modelled taking into account the effect of the bias of DM haloes
inside voids, as described in Section 3.2.

Fig. 5 displays our results. The new re-parametrized void size
function model accurately describes all our measurements, in the
full range of redshift and mass (thus bias) selections. This represents
the main outcome of our analysis. We show both the size function
models obtained by rescaling with bpunct and brel, that appear
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Figure 5. The measured size function of the voids (yellow dots) identified in the DM halo catalogues with Mmin = 2 × 1012, 5 × 1012, and 1013 M� h−1

(rows from top to bottom), at redshifts z = 0, 0.55, and 1 (columns from left to right). Voids with Reff < 2.5 times the mean interparticle separation are rejected
from the analysis. Upper sub-panels: the blue dashed lines represent the void size function obtained by rescaling the Vdn model with brel, that is the value of
the bias computed from the relation shown in Fig. 4. The green solid lines show the model rescaled with the value of bpunct. The red dashed lines represent the
model rescaled with the effective bias, beff. In all cases, the shaded areas indicate the variation of the model obtained applying 1σ errors on the value of the
tracer bias. Lower sub-panels: the residuals of the void counts, computed as the ratio between the difference data − model and the data errors, where the data
are the measured void size function and the model is given by the re-parametrization of the Vdn model with brel. The grey dashed areas indicate the regions in
which the discrepancy between the data and the model is within the data errors.
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Figure 6. 68 per cent and 95 per cent contours in the σ 8–�M plane, for the halo catalogues with Mmin = 2 × 1012 (left), 5 × 1012 (centre), and 1013 M� h−1

(right). The colour of ellipses corresponds to different redshifts: red for z = 0, green for z = 0.55, and blue for z = 1. The prior distributions are uniform for
σ 8 and �M, and Gaussian for beff, Arel, and Brel. The histograms (top and bottom right panels) show the posterior distributions of σ 8 and �M, respectively.
The black lines represent the true WMAP7 values (σ 8 = 0.809 and �M = 0.2711).

fully consistent, especially at low-redshift and bias values. The
uncertainty in the identification of void centres in low-density tracer
catalogues causes the slight discrepancies that can be seen at high
redshifts and biases, which in any case appear not statistically
significant. For comparison, we also show the model obtained by
rescaling the Vdn model with the effective bias of the full DM
halo population, beff. As it is clearly evident in the figure, this
case underpredicts systematically the measured size function at all
redshifts and biases.

The final goal of this paper is to investigate the cosmological
constraints that can be derived from the void size function at
different redshifts. To mimic real data analyses, we suppose to
have access only to the tracer density field. With no information
about the underlying total matter distribution, we have to rely on
the relation found in Section 4.1. We first estimate the effective
bias of the sample, beff, and we consider the coefficients shown in
equation (13), Arel and Brel, that are the offset and the slope of the
calibrated relation, respectively. These coefficients are necessary to
convert beff into brel, which in turn is required to re-parametrize
the Vdn model, as shown in Fig 5. Then, we perform a Bayesian
statistical MCMC analysis of the measured void size function by
sampling the posterior distribution of the parameters σ 8 and �M.
We assume uniform prior distributions for σ 8 and �M, and we
leave as free parameters also beff, Arel, and Brel, assuming in this
case Gaussian prior distributions centred at the estimated values of
these parameters, with standard deviations equal to their relative 1σ

uncertainties. The results for our simulated catalogues with three
different mass cuts and redshifts are reported in Fig. 6. The true
values of the cosmological parameters are within the 68 per cent
levels in all cases. In Appendix C, we investigate the systematics in
the cosmological constraints possibly caused by the uncertainites
in the estimation of the tracer bias, while in Appendix D, we
show the outcome of combining the posterior distributions at
different redshifts to achieve tighter constraints on the cosmological
parameters.

5 C O N C L U S I O N S

In this work, we have extended the prescriptions developed by
Ronconi et al. (2019) to model cosmic void abundances. In partic-

ular, we have focused on the relation between the size-abundance
distribution of voids and the bias of the tracers used to detect them.
We have also investigated the cosmological constraints that can be
derived from void number counts at different redshifts.

The main steps and results of our work can be summarized as
follows.

(i) We have run the finding and cleaning algorithms on simulated
DM halo catalogues, selected with different mass cuts to probe
different tracer biases and redshifts.

(ii) We have compared the tracer bias measured on large scales
to the one measured inside cosmic voids, finding a tight relation
(see equation 13) between the two.

(iii) Then, we have provided a new parametrization of the Vdn
model as a function of the large-scale tracer bias. We have calibrated
the model on our simulated catalogues at different redshifts and
biases.

(iv) Finally, we have explored the constraining power of the
void size function. Specifically, we have performed a Bayesian
statistical inference analysis, fitting the measured size function
with the new calibrated model, obtaining constraints on σ 8

and �M.

In this paper, we have investigated one of the possible cos-
mological applications of cosmic void statistics, that is void
abundances. The bias relation calibrated in Section 4.1 allows
to construct the likelihood for the statistical inference analy-
sis as a function of the large-scale effective bias of the sam-
ple. This work lays the foundations for the cosmological ex-
ploitation of the void size function, when the voids are iden-
tified in the distribution of biased tracers, such as in real data
catalogues.

We note that another interesting application of our method would
be to combine results using tracers with significantly different bias,
e.g. combining optical surveys to HI surveys, where the bias can be
negative (Pénin, Umeh & Santos 2018; Maartens, Clarkson & Chen
2018). This test is beyond the scope of the paper and we leave it as
a future development of our work.

Finally it is important to notice that the relation between bpunct

and beff provided in equation (13) is valid in the �CDM framework
only. Extending our method to other cosmological scenarios (e.g. for
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Figure 7. The halo bias for the catalogues with Mmin = 2 × 1012, 5 × 1012, and 1013 M� h−1 (rows from top to bottom), at redshifts z = 0, 0.55, and 1
(columns from left to right). The black points represent the square root of the ratio between the autocorrelation function of the haloes and the DM particles
(equation A5). The error bars are the diagonal elements of the covariance matrix estimated with Bootstrap. The red shaded areas show the 1σ uncertainties on
the best-fitting bias values estimated with the MCMC modelling, fitting in the range of radii of [20–40] Mpc h−1. The dashed grey lines show the theoretical
predictions given by the Tinker et al. (2010) model.

constraining modified DE models) requires to calibrate the relation
using appropriate N-body simulations.
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APPENDI X A: MEASURI NG THE LI NEAR BIAS

In this appendix, we describe the methods employed in this work to
estimate the large-scale effective linear bias of the tracers used to
identify the voids. We followed the same prescriptions as in Marulli
et al. (2013, 2018), exploiting the 2PCF of the DM haloes of our
simulated catalogues, and performing a Bayesian statistical analysis
to infer the effective bias, beff.

The angle-averaged 2PCF ξ̂ (r) is computed using the Landy &
Szalay (1993) estimator:

ξ̂ (r) = NRR

NOO

OO(r)

RR(r)
− 2

NRR

NRR

OR(r)

RR(r)
+ 1 , (A1)

where OO(r), RR(r), and OR(r) are the binned numbers of object–
object, random–random, and object–random pairs with distance r
± �r, while NOO = NO(NO − 1)/2, NRR = NR(NR − 1)/2, and
NRR = NONR are the total numbers of object–object, random–
random, and object–random pairs in the sample, respectively, and
NO and NR are the total number of objects and random objects,
respectively. The Landy & Szalay (1993) estimator provides an
unbiased estimate of the 2PCF in the limit NR → ∞, with minimum
variance.

We computed the covariance matrix Ci, j, which measures the
variance and correlation between the different bins of the 2PCF,
with the Bootstrap method, dividing the original catalogues in 125
sub-catalogues, and constructing 100 realizations by resampling

Table A1. Table of the values bslope and coff obtained by the linear fitting
of δDM and δhalo, as shown in Fig. A1. Here are presented the results for all
the halo catalogues (with five mass cuts) at redshifts z = 0, 0.55, and 1. We
report also the values of b̃punct computed with equation (B2).

bslope coff b̃punct

Mmin (M� h−1) z = 0.00

2 × 1012 1.405 ± 0.009 0.017 ± 0.004 1.373 ± 0.011
2.5 × 1012 1.415 ± 0.008 0.015 ± 0.003 1.386 ± 0.010
5 × 1012 1.521 ± 0.009 0.016 ± 0.003 1.486 ± 0.011
7.5 × 1012 1.562 ± 0.007 0.002 ± 0.002 1.561 ± 0.009
1013 1.661 ± 0.006 0.005 ± 0.002 1.650 ± 0.008

Mmin (M� h−1) z = 0.55

2 × 1012 1.685 ± 0.009 −0.001 ± 0.003 1.687 ± 0.011
2.5 × 1012 1.789 ± 0.010 0.004 ± 0.003 1.719 ± 0.012
5 × 1012 1.901 ± 0.012 −0.001 ± 0.003 1.903 ± 0.014
7.5 × 1012 2.032 ± 0.019 −0.002 ± 0.004 2.037 ± 0.023
1013 2.163 ± 0.013 −0.001 ± 0.003 2.167 ± 0.016

Mmin (M� h−1) z = 1.00

2 × 1012 2.086 ± 0.010 −0.003 ± 0.002 2.095 ± 0.011
2.5 × 1012 2.129 ± 0.011 −0.005 ± 0.002 2.145 ± 0.012
5 × 1012 2.433 ± 0.019 −0.005 ± 0.003 2.452 ± 0.021
7.5 × 1012 2.690 ± 0.016 −0.005 ± 0.002 2.711 ± 0.017
1013 2.806 ± 0.025 −0.006 ± 0.003 2.830 ± 0.028
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Figure A1. The ratio of the stacked density profiles shown in Fig. 1, that is δNL
v, DM as a function δNL

v, tr, at redshifts z = 0 (left), z = 0.55 (centre), and z = 1 (right).

Different colours correspond to the halo catalogues with Mmin = 2 × 1012 M� h−1 (in violet), Mmin = 5 × 1012 M� h−1 (in blue), and Mmin = 1013 M� h−1

(in green). The black error bars represent 1σ uncertainties. As expected, the slope of the fit becomes steeper with higher mass cuts (thus, the value of bias
inside voids).

Figure A2. 68 per cent and 95 per cent contours in the σ 8–�M plane, for the halo catalogues with Mmin = 2 × 1012 M� h−1 (left), 5 × 1012 M� h−1 (centre),
and 1013 M� h−1 (right), obtained by re-parametrizing the Vdn model directly with beff, thus without converting this value by means of equation (13). The
colour of ellipses corresponds to different redshifts: red for z = 0, green for z = 0.55, and blue for z = 1. The prior distributions are uniform for σ 8 and �M,
and Gaussian for beff. The histograms (top and bottom right panels) show the marginalized posterior distributions of σ 8 and �M, respectively. The black lines
represent the true WMAP7 values (σ 8 = 0.809 and �M = 0.2711).

from the sub-catalogues, with replacement. We constructed the
random catalogue by extracting the object coordinates randomly,
preserving the same 3D coverage and the same geometry of the
initial catalogue. In particular, we build the random catalogue to be
four times larger than the DM halo sample, since this proportion
allows to have sufficiently small Poissonian errors in the DR
counts, compared to the errors in DD. We also performed tests
with different sizes of the random catalogue, finding consistent
results.

The covariance matrix is defined as follows:

Ci,j = F
NR∑
k=1

(ξk
i − ξ i)(ξ

k
j − ξ j) , (A2)

where the subscripts i and j run over the 2PCF bins, while k refers
to the 2PCF of the kth of NR catalogue realizations, and ξ̂ is the
mean 2PCF of the NR samples. F is the normalization factor, which
takes into account the fact that the NR realizations might not be
independent (Norberg et al. 2009), and is F = 1/(NR − 1) in the
case of the Bootstrap method.

Finally, we performed a full MCMC analysis of the 2PCF, using
a Gaussian likelihood function L, defined as:

− 2lnL =
N∑

i=1

N∑
j=1

(ξd
i − ξm

i )C−1
i,j (ξd

j − ξm
j ) , (A3)

where C−1
i,j is the inverse of the covariance matrix, N is the number

of comoving separation bins at which the 2PCF is estimated, and
the superscripts d and m stand for data and model, respectively. The
2PCF model, ξm(r), is computed as follows:

ξm(r) = b2
eff ξDM(r) , (A4)

where ξDM(r) is the DM 2PCF, which is estimated by Fourier
transforming the power spectrum, PDM(k), computed with the CODE

FOR ANISOTROPIES IN THE MICROWAVE BACKGROUND (CAMB, http:
//camb.info). An accurate estimate of the effective bias parameter,
beff, and its uncertainty are assessed by sampling its posterior
distribution.

Fig. 7 shows the results of this analysis. The data points are the
square root of ratio between the tracer and matter 2PCFs:

b =
√

ξtr/ξm , (A5)
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while the dashed red lines show the best-fitting values and uncertain-
ties of beff, estimated from the median and quartiles of the posterior
distribution sampled with the MCMC analysis.

We compared these values to the theoretical effective bias of DM
haloes, computed as follows:

beff(z) =
Mmax

Mmin
dM b(M, z)(M, z)

Mmax

Mmin
dM (M, z)

, (A6)

where (M, z) is the halo mass function of the catalogue, and
Mmin and Mmax are the lowest and largest masses in the sample,
respectively. To compute the linear bias b(M, z), we relied on the
theoretical model developed by Tinker et al. (2010).

APPENDIX B: TESTING DIFFERENT BIAS
ESTIMATES INSIDE VOIDS

Pollina et al. (2018) found a linear relation between the spherically
averaged density profiles of biased tracers inside voids, δNL

v, tr, and
the underlying DM, δNL

v, DM. The slope of this relation provides an
alternative estimate of the bias of void tracers. We repeated the
analysis of Pollina et al. (2018) finding consistent results, as shown
in Fig. A1, that reports this relation measured in three DM halo
catalogues at three different redshifts.

Even if the offset of the linear fit is small, it can be taken into
account to recover a better estimate of the bias inside voids. In
particular, to obtain a value comparable with bpunct (see equation 12),
we can recover the bias at a distance of one effective radius, Reff,
from void centres, that is where δNL

v, tr = −0.7 (thus the requested
threshold we chose for the cleaning procedure). Specifically, from

Figure B1. 68 per cent and 95 per cent contours in the σ 8–�M plane, for
the halo catalogue with Mmin = 2 × 1012 M� h−1 at z = 0. The histograms
(top and bottom right panels) show the posterior distributions of σ 8 and
�M, respectively. The grey filled contours represent the confidence levels
obtained using equation (13), while the blue and red contours indicate the
results obtained by converting the value of beff shifting both the values of
Arel and Brel by +1σ and −1σ , respectively. The black lines represent the
true WMAP7 values (σ 8 = 0.809 and �M = 0.2711).

the fitting of the data we obtained:

δNL
v, tr = bslope δNL

v, DM + coff , (B1)

and we computed equation (B1) at R = Reff, imposing δNL
v, tr(Reff) =

−0.7. Then, dividing both sides by δNL
v, tr(Reff), we can derive a bias

value equivalent to bpunct as follows:

b̃punct ≡ bslope

1 − coff
δNL

v, tr(Reff)

. (B2)

In Table A1, we report the results obtained for all the analysed
halo catalogues. As expected, we found similar values for b̃punct and
bpunct. Nevertheless, the method described here is not particularly
accurate for the following reasons (see Fig. 2 as a reference):

(i) First, using the stacked profiles of voids we cannot distinguish
a possible variation of the bias as a function of void radii.

(ii) Second, the slope of the fit depends on the radial extension
of the profiles: the wider the regions are embedded, the more the
bias computed will tend to the one of the overdensities. There is not
a preferential value for the maximum radius of the profiles.

(iii) Third, a linear fit to the relation between δhalo and δDM is not
accurate enough in the full range of δDM.

This method can be refined considering different bins of void
radii and using different linear fits for each of them, to account for
the variation of the bias as a function of Reff.

APPENDIX C: TESTING SYSTEMATICS
CAUSED BY UNCERTAI NTI ES ON THE
CALI BRATED BI AS RELATI ON

Here, we first test the effect of using the value of beff instead of
brel to recover the cosmological parameters. In particular, we repeat
the MCMC analysis of the measured size functions performed in
Section 4.2 employing a wrong theoretical model, that is a Vdn
model re-scaled with the linear bias inferred from the tracer large-
scale 2PCF. As demonstrated in Fig. 5, the model obtained using the
tracers bias beff cannot fit properly the measured void abundances,
unless this value is previously converted in brel by means of the
relation in equation (13). As shown in Fig. A2, the contour levels
achieved with the effective bias are on average smaller with respect
to the ones presented in Fig. 6. In fact, the uncertainties associated to
the theoretical model re-parametrized directly with beff are smaller,
since the errors of Arel and Brel are not included in the model. As
expected, the contour levels obtained using the wrong bias value
tend to shift from the real values of σ 8 and �M, especially for low
redshifts and mass cuts. Indeed, in these cases the values of beff and
brel are significantly different from each other, whereas at higher
redshifts and mass cuts they tend to be more similar, as showed in
Fig. 3.

We secondly assess the systematic errors on the cosmological
constraints caused by uncertainties in the estimation of the coeffi-
cients of the conversion relation, calibrated in Section 4.1. This
is particularly useful in the perspective of a future application
on real surveys. To propagate a possible systematic error on the
equation (13) to the final cosmological constraints, we repeated the
MCMC analysis described in Section 4.2 assuming different values
for the coefficient Arel and Brel. In particular, to test the cases with
the major discrepancy from the calibrated relation, we increased or
decreased both the parameters by 1σ , where 1σ is the uncertainty
derived by the weighted fit of the data in Fig. 4. Specifically,
we set A′

rel = 0.420 + 0.010 and B ′
rel = 0.854 + 0.007 in the first
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case, whereas A′′
rel = 0.420 − 0.010 and B ′′

rel = 0.854 − 0.007 in
the second case. In Fig. B1, we report the results for the catalogue
with Mmin = 2 × 1012 M� h−1 at z = 0. As shown in this figure, the
real values of σ 8 and �M are within the 68 per cent confidence levels
obtained in both cases. Moreover, the posterior distribution of �M is
almost unchanged, while σ 8 results shifted towards greater values
using a conversion relation with A′′

rel and B ′′
rel and towards lower

values for the case with A′
rel and B ′

rel. We obtained the same results
also for the catalogue with higher redshift and mass selections. The
larger is the tracer bias, the larger is the discrepancy of the modified
relation from the one calibrated in equation (13). Indeed, shifting
both the values of Arel and Brel by +1σ and −1σ , the resulting
linear equations tend to move even further away from the calibrated
relation with beff. This causes a systematic error that has more
impact on the theoretical size functions associated to the catalogues
with higher beff. Nevertheless, we verified that even in these cases
the constraints are still consistent with the real values of σ 8 and
�M. We can conclude that, even with a systematic error of ±1σ on
the values of the coefficients in the calibrated relation, the void size
function still provides reliable cosmological constraints.

APPENDIX D: COMBINING SAMPLES AT
DIFFERENT REDSFHITS

In this appendix, we test the constraining power given by the
combination of the posterior probabilities obtained performing the
Bayesian statistical analysis of the measured void size functions
for a DM halo catalogue at different redshifts. Thanks to the
redshift dependence of the degeneracy directions, it is possible to
derive tighter constraints on the values achieved for σ 8 and �M.

Figure D1. Normalized posterior probabilities of σ 8 (left) and �M (right)
computed for the halo catalogue with Mmin = 2 × 1012 M� h−1 at redshift
z = 0, 0.55, and 1. The histograms with black outlines represent the com-
bined distributions achieved by multiplying all the posterior probabilities
relative to different redshifts. The black dashed lines indicate the true
WMAP7 values (σ 8 = 0.809 and �M = 0.2711).

Table D1. Mean and standard deviation of the posterior distributions for
the parameters σ 8 and �M, computed from the Bayesian statistical analysis
of the measured void size functions for the DM halo catalogues with
Mmin = 2 × 1012, 5 × 1012, and 1013 M� h−1 at z = 0, 0.55, and 1. The
last line of each table reports the results obtained by combining the posterior
distributions at the three different redshifts.

σ 8 �M

Mean St. dev. Mean St. dev.

Mmin = 2 × 1012M� h−1

z = 0.00 0.848 0.036 0.321 0.052
z = 0.55 0.868 0.068 0.325 0.059
z = 1.00 0.856 0.118 0.322 0.081
Combined 0.846 0.030 0.308 0.032

Mmin = 5 × 1012M� h−1

z = 0.00 0.853 0.051 0.295 0.059
z = 0.55 0.901 0.124 0.333 0.093
z = 1.00 0.989 0.204 0.360 0.116
Combined 0.856 0.045 0.293 0.041

Mmin = 1 × 1013M� h−1

z = 0.00 0.802 0.062 0.228 0.054
z = 0.55 0.910 0.147 0.310 0.091
z = 1.00 1.047 0.247 0.378 0.125
Combined 0.822 0.053 0.256 0.040

Despite our samples cannot be considered completely independent,
we multiply the posterior probabilities at different redshifts as if
they were achieved from independent data, in order to reproduce
the results that would be obtained from separate redshift shells
in real surveys. We show in Fig. D1, the results for the halo
catalogue with Mmin = 2 × 1012 M� h−1 obtained by multiplying
the posterior distributions for the parameters at z = 0, 0.55, and
1. Table D1 reports the mean values and the standard deviations
of the posterior distributions of σ 8 and �M at these redshifts
also for the catalogues with Mmin = 5 × 1012 and 1013 M� h−1,
together with the analogous quantities obtained for the combined
posterior probability. As expected, by joining the information at
different redshifts, we can achieve more precise constraints on the
cosmological parameters, as shown by the decreasing of the width
of the combined posterior distributions.
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