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Abstract

The numerical solution of Graetz-Brinkman problem is obtained for chan-

nels having rectangular cross section with rounded corners, under T bound-

ary condition applied on the heated duct wall and adiabatic condition else-

where, assuming an adiabatic preparation of the fluid at the inlet section.

Several simulations are conducted and both Poiseuille and Nusselt numbers

calculated, based on the computed velocity and temperature profiles. The

numerical method is first verified with the resulting Nusselt and Poiseuille

numbers with literature data, available for simplified configurations and fully

developed flow, showing an excellent agreement. Comparison with numeri-

cal data is also conducted in case of fully developed flow and non-negligible

viscous dissipation. A further validation is carried out comparing current

computations with both experimental and numerical data in case of ther-
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mally developing flow inside a rectangular channel with negligible viscous

heating (i.e. the well-known Graetz problem).

The effects of duct cross section geometry and Brinkman number are investi-

gated and new correlations, useful for the design of microchannel heat sinks,

are presented in order to predict the Poiseuille number and average Nusselt

numbers.
Keywords: Microchannel, Graetz Problem, Viscous heating,

Microconvection

1. Introduction1

Microchannels are employed in a broad range of engineering applications.2

For example, heat sinks belonging to the so-called MFDs (micro-flow devices)3

are largely used for integrated cooling of small electronic components. New4

manufacturing processes, often originated in the semiconductor industry, al-5

low fabrication of non-conventional silicon structures and channels of several6

cross-sections, [1], which, in turn, has given a new impulse to the investiga-7

tion of single phase laminar forced convection through channels of various8

shapes, as testified by the literature. In fact, several research works investi-9

gate basic phenomena driving heat transfer and fluid flow in microchannels10

[2–14] and propose effective 1st- and 2nd-law based methods for optimization11

of channel geometry [15–20]. In [6] heat transfer through square and rectan-12

gular channels with rounded corners was numerically investigated: assuming13

fully developed flow, negligible axial conduction and applying H1 boundary14

conditions, the authors solved the governing Navier-Stokes equations over the15

2D channel cross section domain and proposed new correlations for Poiseuille16



and Nusselt numbers as a function of joint radius. Temperature field in the17

restrictive case of rectangular channel section geometry and H2 boundary18

condition was analitically calculated in [2] and the resulting Nusselt number19

computed for different aspect ratios. A semi-analytical approach was used20

by Ray et al. [21] in order to solve the governing equations for a fully de-21

veloped flow through square and equilateral triangular ducts with rounded22

corners under H1 and H2 boundary conditions. The influence of rarefaction23

on the Poiseuille number was numerically [7, 22], analytically [9] and exper-24

imentally [10] studied for rectangular, trapezoidal and elliptical ducts, with25

velocity-slip conditions being applied at the duct wall.26

The effect of viscous dissipation in laminar forced convection through mi-27

crochannels was studied by Morini [3] and a criterion to draw the limit of28

significance for viscous heating presented, while modified correlations for29

Nusselt number as a function of Brinkman number were presented in [5]:30

the author considered a fully developed flow through rectangular rounded31

channels with H1 boundary conditions and assumed non-negligible viscous32

heating effect. The combined effect of viscous dissipation and rarefied flow33

was studied in [8], where 2D Navier-Stokes equations for a fully developed34

flow through an elliptical channel are numerically solved by means of COMSOL35

Multiphysics R©, applying velocity-slip condtition due to rarefaction effect36

and H2 thermal boundary condition; Nusselt number is thus traced as a37

function of both Knudsen and Brinkman numbers. A similar problem, i.e.38

fully developed flow through rectangular-shaped channels and non-negligible39

viscous heating, was numerically investigated by Barletta et al. [23], who40

solved the governing equations with H1 and T thermal boundary conditions41



using FlexPDE R© and studied the effect of channel aspect ratio on the com-42

puted Nusselt number.43

In the area of single phase laminar forced convection a number of scientific44

papers deals with thermally developing flow through channels, i.e. the so-45

called Graetz problem, which was solved analytically by Graetz and Nusselt46

more than a century ago in the simple case of circular ducts. An early work47

about thermally developing, laminar flow was presented by Michelsen et al.48

[24], who numerically investigated the extended Graetz problem for a fluid49

flowing in a circular tube with imposed wall temperature and uniform inlet50

temperature profile, when axial heat conduction cannot be neglected. The51

numerical results were presented in terms of local Nusselt number as a func-52

tion of axial coordinate for different values of the non-dimensional Peclet53

number. A different extension of the Graetz problem was investigated in54

[25]: the authors assumed negligible axial heat conduction, but included the55

effect of viscous dissipation in the energy equation leading to the so-called56

Graetz-Brinkman problem, which may occur when micro-scales are involved.57

Thus, the momentum and energy equations were analytically solved for a58

circular tube, with both H2 and T boundary conditions being imposed at59

the channel wall. The Nusselt number was then expressed as a function of60

axial coordinate for different values of the Brinkman number, which com-61

pares viscous heating and heat conduction. The Graetz-Brinkman problem62

was also solved by Barletta et al. [23] in the case of parallel plates under63

T boundary conditions and adiabatic preparation of the fluid flow. Adopt-64

ing a semi-analytical approach, the temperature field was decomposed into65

two contributions and the governing energy equation solved via separation66



of variables, which leads to an eigenvalue problem. Laminar forced con-67

vection inside non-circular tubes was numerically studied in [26–28], where68

the canonical Graetz problem (i.e. negligible axial conduction and viscous69

heating) was solved for different boundary conditions: Aparecido and Cotta70

[26] proposed a semi-analytic solution in case of rectangular ducts with T71

boundary condition imposed at the duct wall and uniform inlet temperature;72

Lee and Garimella [27] used ANSYS Fluent R© in order to simulate channels73

having rectangular cross section under H1 boundary conditions applied at74

channel wall; Filali et al. [28] considered a non-linear viscoelastic fluid and75

numerically investigated circular, equilateral triangular and rectangular cross76

sections under H2 and T boundary conditions, looking for the influence of77

rheological parameters on heat transfer.78

Different extensions of the Graetz problem can be found in literature: Ay-79

din and Avci [29] and Barışık et al. [30] solved the so-called micro-Graetz-80

Brinkman problem, i.e. non-negligible axial conduction, viscous dissipation81

and rarefaction effects, in the restrictive case of a circular duct, imposing82

generalized Neumann condition at the duct wall. Such a boundary condition83

derives from the slip on both temperature and velocity fields occurring at84

duct wall due to rarefaction.85

The aim of this work is the solution of the Graetz-Brinkman problem. As-86

suming laminar forced convection of a Newtonian fluid, neglecting axial con-87

duction and rarefaction but accounting for viscous heating, the governing88

Navier-Stokes and energy equations are solved numerically. Rectangular89

ducts with rounded corners and three or four heated edges are considered,90

with a T thermal boundary condition applied along the heated perimeter.91



Following [23], the method of separation of variables is applied in order to92

reduce the three-dimensional physical problem to a two-dimensional mathe-93

matical problem, resulting in a more efficient numerical solution in terms of94

computational costs. The local Nusselt number is computed as a function95

of axial coordinate and the effect of relevant non-dimensional parameters96

analysed, providing new correlations for Nusselt number prediction. It is97

important to point out that such a test case has never been investigated98

before. In fact, heat transfer performance of rectangular rounded ducts was99

studied for laminar, fully developed flow in [6], under the assumption of negli-100

gible viscous heating effect and H1 thermal boundary condition along heated101

perimeter, while the thermally developing flow problem with non-negligible102

viscous heating has been solved for simplified geometries only [23, 29, 30].103

2. Mathematical model104

Assuming that an incompressible, Newtonian fluid flows through the

channel in steady, laminar, hydrodynamically developed regime, subject to

no-slip at the wall and T thermal boundary condition (fixed temperature Tw
at the heated portion of the channel wall) and neglecting axial conduction

(x denoting the axial, or streamwise, coordinate), momentum and energy

equations give,

µ
∂2u

∂y2 + ∂2u

∂z2

)
− ∂p

∂x
= 0 (1)

ρ cp u
∂T

∂x
= k

∂2T

∂y2 + ∂2T

∂z2

)
+ µΦ (2)

Φ being the viscous dissipation function:105

Φ = ∂u

∂y

)2

+ ∂u

∂z

)2

(3)



It is convenient to express the pressure gradient ∂p
∂x
, which is constant along106

the whole channel length L under the assumption of hydrodynamically de-107

veloped flow, as a function of the friction factor and the bulk velocity:108

∂p

∂x
= ∆p

L
= 1

2 f ρ ub
2 1
Dh

(4)

The following boundary conditions are applied at the channel wall:

u|P = 0 : no-slip condition at wall; (5)

T |Ph
= Tw : fixed temperature along heated perimeter; (6)

∇T · n̂ = 0 : adiabatic condition through P − Ph. (7)

The inlet temperature profile T |x=0 = T0(x, y) must be also imposed. Differ-109

ent inlet conditions may be investigated:110

• uniform temperature profile, namely Ti, is usually imposed in the avail-111

able literature dealing with Graetz problem;112

• an adiabatic preparation of the fluid was introduced by Barletta et al.113

[23] for solving the Graetz-Brinkman problem in case of parallel plates,114

since it should lead to a more realistic configuration than a flat profile.115

The same approach as [23] is here adopted. Thus, assuming an adiabatic116

preparation of the fluid, the energy equation at leading viscous effect,117

k
∂2T0

∂y2 + ∂2T0

∂z2

)
+ µΦ = 0 (8)

must be solved under adiabatic condition imposed along the channel section118

perimeter,119

(9)∇T0 · n̂ = 0 through P 



in order to provide the inlet temperature profile T0(y, z).

By defining the following non-dimensional quantities,

ξ = x

L
; η = y

Dh

; ζ = z

Dh

(10)

ũ = u

ub
; Φ̃ =

(
Dh

ub

)2
Φ; p̃ = ∂p

∂x

Dh
2

µub
; Θ = T − Tw

Tw − Ti
(11)

and introducing the Brinkman, Graetz and Poiseuille numbers,

Br = µu2
b

k (Tw − Ti)
; Gz = Re Pr Dh

L
; Po = f Re (12)

Equations (1) and (2) can be rewritten in a non-dimensional form:

∂2ũ

∂η2 + ∂2ũ

∂ζ2 = −2 Po (13)

Gz ũ ∂Θ
∂ξ

= ∂2Θ
∂η2 + ∂2Θ

∂ζ2

)
+ Br Φ̃ (14)

Boundary conditions can also be expressed in a non-dimensional fashon:

ũ|∂Ω = 0 : no-slip condition at wall; (15)

Θ|∂Ωh
= 0 : fixed temperature along heated perimeter; (16)

∇Θ · n̂ = 0 : adiabatic condition elsewhere, ∂Ω− ∂Ωh. (17)

3. Temperature problem and Nusselt number120

Following the approach of [23], the solution of Eqs. (13) and (14), subject121

to no-slip condition at wall and fixed wall temperature, is sought in the form,122

Θ = Θv + Θc (18)

where:123



• Θv is the ξ−independent solution of the partial differential equation

describing the effects of viscous heating on the temperature field

∂2Θv

∂η2 + ∂2Θv

∂ζ2 + Br Φ̃ = 0 (19)

Φ̃ = ∂ũ

∂η

)2

+ ∂ũ

∂ζ

)2

(20)

with uniform wall temperature imposed along the heated perimeter and124

adiabatic conditions everywhere else;125

• Θc is the solution of the energy equation with negligible viscous heating126

effect,127

Gz ũ ∂Θc

∂ξ
= ∂2Θc

∂η2 + ∂2Θc

∂ζ2 (21)

with uniform wall temperature imposed along the heated perimeter and

adiabatic conditions elsewhere too over the channel wall. According

to adiabatic preparation of the fluid, the additional inlet temperature

profile, Θ|ξ=0 = Θ0(η, ζ) is obtained via the solution of:

∂2Θ0

∂η2 + ∂2Θ0

∂ζ2 + Φ̃ = 0 (22)

∇Θ0 · n̂ = 0 on ∂Ω (23)

Following [23], Θc can be computed via separation of variables,128

Θc =
+∞∑
n=0

Cn αn(ξ)ψn(η, ζ) (24)

where Cn are constants depending on the prescribed temperature distribution129

imposed at the inlet section and αn is equal to:130

αn = exp − λnGz ξ
)

(25)



Thus, Eq. (21) can be reduced to the following eigenvalue problem,131

∂2ψn
∂η2 + ∂2ψn

∂ζ2 + λn ũ ψn = 0 (26)

with a T thermal boundary condition imposed along the heated perimeter:132

n = 0 on ∂Ωh

∇ψn · n̂ = 0 on ∂Ω− ∂Ωh

(27)

Equations (13), (19) and (26) must be solved and the coefficients Cn and133

eigenvalues λn computed, yielding the velocity field ũ(η, ζ) and the temper-134

ature field Θ(ξ, η, ζ).135

Thus, the average Nusselt number can be computed over the channel length136

as,137

Nu = qwDh

k (Tw − Tb)
(28)

where qw represents the average heat flux through wall, defined through138

integration of the Fourier law along channel section perimeter,139

qw = −k (Tw − Ti)
Dh

1
∂Ωh

∫
∂Ω
∇Θ · n̂ dΓ (29)

with dΓ = dl
Dh

the non-dimensional tangential direction to the cross-section140

perimeter.141

Following [23], the non-dimensional temperature can be decomposed accord-142

ing to Eq. (18) and the average Nusselt number reduced to,143

Nu = Nuv Θb,v + Nuc Θb,c

Θb,v + Θb,c

(30)

where:144



• Nuv, which is the Nusselt number related to viscous heating, can be145

calculated as,146

Nuv =
1

∂Ωh

∫
Ω Br Φ̃ dΩ
Θb,v

(31)

Ω = Ac/Dh
2 being the non-dimensional channel section area, ∂Ωh the147

non-dimensional heated perimeter and Θb,v the bulk temperature:148

Θb,v =
∫

Ω ũΘv dΩ∫
Ω ũ dΩ (32)

• Nuc, which is the Nusselt number resulting from solution of the eigen-149

value problem described by Eq. (26), is given by:150

Nuc =
∑+∞
n=0

(
λn

4
Ph

P

)
b,n exp

(
−λn

Gzξ
)

Θb,c

(33)

λn corresponds to the n-th eigenvalue, with n the n-th eigenfunction.151

Thus, we have:152

b,n = Cn
∫

Ω ũ ψn dΩ∫
Ω ũ dΩ (34)

Θb,c is the bulk temperature, which depends on channel axial coordinate153

ξ according to:154

Θb,c =
+∞∑
n=0

b,n exp − λnGzξ
)

(35)

Computing Nuv through Eq. (31), i.e. using the total thermal power gen-155

erated by viscous dissipation, which is an integral quantity, and the bulk156

temperature, rather than integrating the local heat flux through the heated157

perimeter, ensures a more accurate estimation when post-processing numer-158

ical data. For the same reason, it is convinient to compute Nuc through Eq.159

(33), which refers to integral quantities too. It is also worth pointing out that160

the mean Nusselt number at negligible viscous heating for a fully developed161



flow (i.e. at a distance x → ∞ from the inlet section) can be calculated,162

according to Eq. (33), as a function of the first eigenvalue λ1:163

Nuc x→∞−−−→ λ1

4
Ph
P

)
(36)

4. Numerical method164

Governing equations, Eqs. (13), (19) and (26) can not be analitically165

solved but in few cases: circular and rectangular channel cross-sections, with166

Green’s functions generally used in the latter case. Since we want to inves-167

tigate the effect of smoothing the corners of a partially heated rectangular168

shaped channel (leading to a more complex geometry, as shown in figure 1), a169

numerical approach must be adopted in order to assess both the velocity and170

temperature fields. Thus, Eqs. (13), (19) and (26) are numerically solved171

using the available FEM solvers and mesh generator included in the pdetool172

package of MATLAB R© . An initial triangular mesh discretizing the 2D channel173

section is first generated.174

Solution of momentum equation, Eq. (13), is iterated until the guessed175

Poiseuille number is such that176

Po : ũb = 1
Ω

∫
Ω
ũ dΩ ' 1

Ω

ne∑
i=1

ũi dΩi = 1 (37)

with i ∈ [1, ne] denoting the i−th mesh element. The energy equation for vis-177

cous heating, Eq. (19), with imposed wall temperature is numerically solved178

on the same mesh grid as that for Eq. (13) since the velocity field is required179

to compute viscous dissipation function. The MATLAB R© function @adaptmesh180

is used in order to solve Eqs. (13) and (19) with an adaptive triangular mesh181

method, the initial mesh being progressively refined in order to get a more182



accurate solution.183

The eigenvalue problem, given by Eqs. (26) and (27), is solved using @pdeeig,184

which returns both the eigenvalues λn and the eigenfunctions n, on the same185

mesh as that employed for momentum equation, Eq. (13), with the velocity186

field being required to compute the non-linear coefficient in Eq. (26).187

Once the eigenfunctions ψn, the corresponding eigenvalues λn and the tem-188

perature field for viscous heating Θv are computed, the coefficients Cn can189

be determined so as to satisfy the imposed inlet temperature distribution190

(the function @lsqnonlin, belonging to the MATLAB R© optimization toolbox,191

is used for such a purpose), allowing to calculate the non-dimensional tem-192

perature field Θ inside the channel as:193

Θ = Θv(η, ζ) +
∑
n

Cn ψn(η, ζ) exp − λnGzξ
)

(38)

Since decomposing temperature field into two contributions, Eq. (18), and194

applying separation of variables, Eq. (24), leads to two PDEs to be solved195

on a 2D computational domain together with momentum PDE, the pro-196

posed numerical procedure is much more efficient than a fully 3D approach197

in terms of computational costs, allowing for investigation of a wide range of198

configurations.199

5. Investigated setup200

Two different sets of geometry describing real configurations are investi-201

gated:202

• 3T: channel section identified by a rectangular shape with 2 rounded203

corners, Fig. 1(a);204



• 4T: channel section identified by a rectangular shape with 4 rounded205

corners, Fig. 1(b).206

(b)(a)

Figure 1: Investigated channel geometries: rectangular shape with 2 rounded corners (a);

rectangular shape with 4 rounded corners (b).

Geometry characteristics are identified in terms of aspect ratio β and non-207

dimensional radius of curvature γ,208

β = b

a
; γ = 2 r

b
(39)

with b the shorter edge of the reference rectangular cross-section.209

The no-slip condition at channel wall is used in all instances,210

ũ|∂Ω = 0 (40)

whilst two different sets of boundary conditions concerning temperature field211

are investigted:212

• referring to Fig. 1(a), the T boundary condition is imposed along the213

heated cross section perimeter, whilst the adiabatic condition is applied214



on the short edge of the channel cross section having sharp corners,215

Θ|∂Ωh
= 0

∇Θ · n̂ = 0 on ∂Ω− ∂Ωh

(41)

n̂ being the normal inward direction to the duct cross section.216

• referring to Fig. 1(b), wall temperature Tw is imposed along whole217

channel cross section perimeter, leading to T boundary condition:218

Θ|∂Ω = 0 (42)

Adiabatic preparation of the fluid is imposed and the inlet temperature pro-219

file computed through Eqs. (22) and (23), with the non-dimensional viscous220

dissipation function Φ̃ in Eq. (22) estimated from the known developed ve-221

locity profile. Since Eqs. (22) and (23) admit infinite solutions, the following222

condition was imposed in order to compute inlet profile Θ0,223

1
Ω

∫
Ω
ũΘ0 dΩ = −1 (43)

which means that bulk temperature of incoming fluid corresponds to the224

reference inlet temperature Ti.225

6. Model verification and validation226

6.1. Fully developed flow227

The numerical procedure was first verified with some experimental results228

from the literature, which cover simple geometry configurations. Comparison229

with numerical results is also conducted when viscous heating and complex230

coss-sectional geometry are involved. The Poiseuille and Nusselt numbers for231



a fully developed flow through a rectangular cross-section with sharp corners,232

i.e. γ = 0, are available for different aspect ratios β, when viscous heating233

is negligible (i.e. Br = 0) and wall temperature imposed along 3 or 4 edges234

[31, 32]. Barletta et al. [33] numerically investigated the case of hydrody-235

namically and thermally developed flow through a channel with dominant236

viscous heating. The channel geometry was rectangular with four rounded237

corners, β ∈ [0.05, 1] and γ = 1, and uniform wall temperature along the238

whole perimeter: under the above mentioned assumption, Nusselt number239

does not change along the axial coordinate and depends on the geometry240

of the channel’s cross-section only, regardless of the the magnitude of the241

Brinkman number.242

n
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Figure 2: Mesh accuracy parameter versus number of triangular elements (a), developed

Nusselt number (b) and estimation error (c) as a function of elements number. Test case

3T, β = 3/5, γ = 2/3.

After setting the accuracy of MATLAB R© mesh generator in order to ensure243

grid independence (namely reached when computed Poiseuille and Nusselt244

numbers are no more affected by mesh progressive refinement), numerical245

results are compared to the results reported in [33] and [31] in terms of246



both Poiseuille and Nusselt numbers. A grid dependence analysis was con-247

ducted: the accuracy parameter of MATLAB R© gridder @generateMesh (i.e.248

the maximum distance between two neightbour nodes, namely ∆/Dh) was249

progressively increased and both average Nusselt number at leading viscous250

heating and estimation error were traced as a function of mesh elements, as251

shown in Fig. 2, finding a discrepancy of about 0.0076% on the estimated Nu252

when ∆/Dh = 10−2. Using adaptive mesh option, i.e. @adaptmesh function,253

always ensures higher accuracy than @generateMesh for a given number of254

mesh elements.255

β Po Nuv

0.05 22.87[33] 22.87 16.21[33] 16.21

0.1 21.85[33] 21.86 15.07[33] 15.06

0.2 20.13[33] 20.13 13.18[33] 13.18

0.3 18.78[33] 18.78 11.80[33] 11.80

0.4 17.76[33] 17.76 10.86[33] 10.86

0.5 17.03[33] 17.03 10.26[33] 10.26

0.6 16.54[33] 16.54 9.906[33] 9.906

0.7 16.24[33] 16.24 9.714[33] 9.714

0.8 16.08[33] 16.08 9.628[33] 9.627

0.9 16.01[33] 16.01 9.602[33] 9.601

1 16.00[33] 16.00 9.600[33] 9.600

Table 1: Computed vs literature Poiseuille and Nusselt numbers in case of: dominant

viscous heating; wall temperature imposed; 4T, γ = 1.

Tables 1 and 2 show a perfect agreement with both the numerical results256



β Po
Nuc

0.1 21.17[31] 21.17 − 5.908 6.095[31] 6.189

0.2 19.07[31] 19.07 − 4.829 5.195[31] 5.256

0.3 17.51[31] 17.51 − 4.130 4.579[31] 4.626

1/3 17.09[31] 17.09 3.956[31] 3.958 − 4.464

0.4 16.37[31] 16.37 − 3.681 4.154[31] 4.191

0.5 15.55[31] 15.55 3.391[31] 3.392 3.842[31] 3.874

0.7 14.61[31] 14.61 − 3.091 3.408[31] 3.432

1/1.4 14.56[31] 14.57 3.077[31] 3.078 − 3.407

1 14.23[31] 14.23 2.976[31] 2.978 3.018[31] 3.025

Table 2: Computed vs literature Poiseuille and Nusselt numbers in case of: negligible

viscous heating; 3 and 4 heated edges; γ = 0.

of [33] and the analytical values of [31] in terms of Poiseuille number for all257

the geometries investigated. Computations of the Nusselt number at domi-258

nant viscous heating, Nuv, also reveals sufficient accuracy compared to the259

numerical results of [33], as shown in Table 1, as well as the Nusselt num-260

ber at negligible viscous heating, Nuc, whose estimation is verified with the261

literature, analytical values of [31] in case of rectangular cross section and 4262

heated edges, as shown in Table 2; Nuc for a circular shape was also veri-263

fied to converge asymptotically to the well-known value of 3.66 for increasing264

mesh refinement. More uncertainty on the computed Nusselt number Nuc265

was found when 3 edges are heated (with temperature imposed along the266



heated perimeter and adiabatic condition imposed elsewhere), the discrep-267

ancy with values of [31] ranging between 0.2−1.5 % as clearly shown in Table268

2. However, such a discrepancy can be found even comparing literature re-269

sults of [31] with those of [32], when T boundary conditions are applied over270

the whole cross-sectional perimeter.271

6.2. Thermally developing flow272

The mathematical model is also validated with experimental evidences273

in case of thermally developing flow and fixed wall temperature boundary274

condition along the whole section perimeter. Exept for the limiting case of275

circular duct, literature data are only provided in case of rectangular cross276

section channels and negligible viscous heating. Thus, Eqs. (21) and (13)277

are numerically solved. The case of rectangular cross section characterized278

by aspect ratio β = 1/2 is chosen. Since viscous heating is neglected, Br = 0,279

an uniform inlet temperature profile is imposed. The first 64 eigenfunctions,280

deriving from solution of eigenvalue problem, Eq. (26), are used for the281

imposition of inlet condition.282

In figure 3, the resulting logarithmic Nusselt number Nul is plotted as a283

function of axial length and compared with experimental points printout in284

[34]. Nul = hlDh/k can be easily computed by writing macroscopic energy285

balance,286

Q̇w = ṁ cp (Ti − Tb) = P xhl ∆Tl (44)

∆Tl being the logarithmic mean temperature:287

∆Tl = ∆Ti −∆Tb
log

(
∆Ti

∆Tb

) (45)
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Figure 3: Computed logarithmic mean Nusselt number (continuous line) versus experi-

mental data (markers) of [34] (a). Computed local Nusselt number versus numerical results

of [26] along channel non-dimensional axial direction (b). T boundary condition, β = 1/2,

γ = 0, Br = 0.

Expressing hl through the energy balance and using non-dimensional quan-288

tities, the logarithmic mean Nusselt number becomes:289

Nul = −1
4 Re Pr Dh

x
log Θb (46)

It can be noticed that the logarithmic Nusselt number, as well as the bulk290

temperature along channel θb, univocally depends on the non-dimensional291

axial coordinate x̃:292

x̃ = x

Dh

Re Pr (47)

However, different values of Nul were experimentally obtained in [34] for a293

prescribed value of x̃, since experimental points are referred to different liquid294

flow rates ṁ. Such a discrepancy, which is not predicted by the mathematical295



model, is due to the increasing Reynolds number, which is proportional to296

ṁ according to Re = ṁDh/(µAc), with higher values of the investigated Re297

approaching the laminar-turbulent transition value. In fact, the discrepancy298

between numerical and experimental results is lower than 10% for Re < 103.299

Figure 4 compares the resulting local Nusselt number, computed through Eq.300

(33), with the numerical results of [26], which authors numerically solved301

Eqs. (21) and (13), under the same boundary condition as here, using the302

generalized integral transform technique in order to reduce the costs of com-303

putations. A good agreement can be observed in both the entry region and304

the fully developed value of the Nusselt number.305

7. Results and discussion306

Equations (19) and (21) are numerically solved together with momentum307

equation, Eq. (13), and the resulting solutions Θc and Θv combined in order308

to define the temperature field Θ.309

Numerical results shown in figures 4, 5 and 6 all refer to the conditions listed310

below, which have not been investigated so far in the open literature:311

• Case 3T: rectangular section with 2 rounded corners and 3 edges heated,312

see Fig. 1(a);313

• Inlet condition: adiabatic preparation, see Eqs. (22) and (23);314

• Channel aspect ratio: β = 3/5;315

• Non-dimensional joint radius: γ = 2/3;316

• Graetz number: Gz = 3.5;317



• Brinkman number: Br = 0.1.318

Inlet temperature profile (i.e. at x = 0) is shown in Fig. 4(a), while fully de-319

veloped velocity and temperature profiles (corresponding to infinite channel320

length, x→∞) are shown in Figs. 4(b) and 4(c) respectively. Note that the321

imposed inlet temperature field, which derives from imposition of adiabatic322

preparation, is not uniform and requires additional numerical investigation.323

In fact Θ0(η, ζ) is not known a priori and Eq. (19) must be solved under324

adiabatic condition applied at channel section perimeter. Fig. 4(a) actually325

provides the numerically computed profile Θ0, which must be fitted using326

the eigenfunctions ψn from the solution of Eqs. (26) and (27) together with327

the contribution of Θv, in order to impose the inlet condition when solving328

energy equation inside the channel,329

Cn : min
{∑

i

εi
2
}
, εi = Θ0,i −

∑
n

Cn ψn,i (48)

with i denoting the mesh element.330

Actually, the first 50 eigenfunctions n deriving from Eq. (26) were used.331

Following the procedure of [23], where the number of eigenfunctions were set332

to 20 only, it was first verified that using 60 eigenfunctions instead of 50 does333

not lead to significant improvement (namely < 0.01%) in terms of computed334

Nusselt number at x/Dh > 0.001 Pe, meaning that sufficient accuracy is335

reached. We decided to evaluate the accuracy on the estimated Nu, since336

it is the relevant quantity we want to extrapolate from computation so far.337

However, the truncation error,338

ε = |Θ0 − (Θv +∑
nCn n)|

|Θ0|
(49)



was also compuetd for different numbers of ψn (needed to fit the imposed339

Θ0), in order to verify the proper imposition of the desired inlet temperature340

profile, finding that ε50 = 0.1341 (with the cross-section geometry discretized341

using more than 15000 triangular elements) and ∆ε
∆n = ε50−ε60

10 ' 1.1 × 10−3
342

(thus, the truncation error would slowly decrease for increasing number of343

eigenfunctions).344

Looking at the fully developed temperature profile, figure 4(c), it is impor-345

tant to point out that the fluid becomes warmer than the duct at x → ∞,346

owing to the effect of viscous heating. In fact, the fluid is progressively347

heated due to the heat exchange through duct walls in the thermal entrance348

region, whilst heat generation due to viscous dissipation (acting as source349

term in the energy equation) is the dominant effect when the bulk temper-350

ature approaches the imposed wall temperature Tw. Computed Poiseuille351

number, which is uniform along channel axial direction, assumes the value352

of Po = 15.691. Local Nusselt number along heated perimeter of the duct353

cross section is numerically computed from the fully-developed temperature354

profile. Comparing its behaviour, Fig. 5(b), to the corresponding channel355

section geometry, Fig. 5(a), it can be noticed that the maximum value of Nu356

is symmetrically reached along the two longer edges, where the temperature357

gradient is at its highest.358

Non-dimensional temperature as a function of axial coordinate is also com-359

puted along the thermal entrance region. Figure 6(a) shows the temperature360

profile over the vertical mid-plane of the channel: as mentioned above, heat361

is transferred from the duct wall to the fluid flow until viscous heating be-362

comes the dominant effect driving heat transfer. The mean Nusselt number363



along the channel length is numerically computed through Eqs. (30), (31)364

and (33) and is plotted in Fig. 6(b). The switch between convective heat365

exchange and dominating viscous heating can be identified by Nu = 0, which366

corresponds to x/L ' 0.37, whilst bulk temperature becomes higher than367

the imposed wall temperature after the vertical asymptote, x/L ' 0.59.368

As widely reported in literature [11, 24–27, 30], the profile of the mean Nusselt369

number is affected by several parameters:370

• Brinkman number and Peclet number, Pe = Re Pr, defines the flow371

characteristics;372

• aspect ratio and non-dimensional joint radius, which define the geom-373

etry of the cross-section .374

Knowing the effect of such parameters is crucial in practical engineering375

problems involving micro-channels heat exchanger optimization [17–20].376

Lee et al. [27] proposed a correlation for predicting the mean Nusselt number377

as a function of axial coordinate in case of negligible viscous heating (i.e.378

Br = 0),379

Nuc '
1

C1 x̃C2 + C3
+ C4 (50)

with x̃ the non-dimensional axial coordinate:380

x̃ = x

Dh

Pe−1 (51)

Regression coefficients C1−4 are plotted in [27] as a function of the aspect 

ratio β defining the rectangular cross section.

Equation (50) is not sufficient for fitting the behaviour of the Nusselt number 

when the viscous heating source term plays a dominant role in heat transfer



process, see Fig. 6(b). Thus, a modified regression model is considered

instead,

Nu ' Nuv − Nuc χ
1− χ (52)

χ = C + Br
Br exp

[
−m x

Dh

Pe−1
]

(53)

where Nuc can be calculated through Eq. (50).381

Applying such a correlation, i.e. Eqs. (52) and (53), for fitting the numer-382

ical curve of Fig. 6(b) allows to reach a residual sum of square tolerance383

of 10−2 on 1000 computed values of Nu. Regression coefficient C and ex-384

ponent m must be determined as a function of the channel cross-section385

geometry and of the Nusselt number at dominant viscous heating Nuv. It386

was verified that the computed values of C and m are not affected by chang-387

ing Peclet and Brinkman numbers while keeping the cross section geometry388

fixed, with a discrepancy of ∆C/C ∼ 1 %, ∆m/m ∼ 1 % for Pe ∈ [101, 103],389

Br ∈ [10−3, 10−1]. It is worth to point out that coefficients C1−4, C and390

m are affected by the imposed inlet condition. In accordance to the work391

of Barletta et al. [23], an adiabatic preparation of the fluid Θ0(η, ζ) having392

bulk temperature Ti < Tw is always considered throughout this paper.393

The effect of changing the joint radius on the mean Nusselt number was394

investigated and the resulting curves are plotted in Figs.7(a) and 7(b), which395

are referred to fixed Brinkman number and cross section aspect ratio, for both396

test cases 3T and 4T. It can be noticed that the position x, at which transition397

between convective to viscous driven heat transfer occurs, decreases with398

increasing γ, in accordance with the effect of rounding the cross section399

geometry, which improves heat exchange process. As expected, the effect400



γ C m C1 C2 C3 C4

0 0.7539 11.83 263.8 1.307 0.1668 3.597

3T
0.25 0.7582 12.26 270.9 1.310 0.1614 3.747

0.5 0.7674 12.56 276.8 1.311 0.1588 3.859

1 0.7632 12.60 281.5 1.312 0.1579 3.914

0 0.9225 12.86 258.0 1.321 0.1674 3.168

4T
0.25 0.9344 13.82 276.1 1.329 0.1575 3.410

0.5 0.9592 14.57 292.6 1.334 0.1527 3.597

1 0.9878 15.07 335.9 1.352 0.1506 3.727

Table 3: Regression coefficients of Eq. (53) for Nusslet number calculation through Eq.

(52); β = 3/5.

of rounding on the computed Nu is stronger for test case 4T, corresonding401

to 4 rounded corners. The corresponding values of coefficients C1−4, C and402

m, which allow fitting the numerical results of Figs.7(a) and 7(b) through403

Eqs. (50), (52) and (53), are reported in Table 3, while the dependence404

of thermal entrance length, Lth : Nu(Lth) = 0.95 Nu∞, on the Brinkman405

number and radius is shown in Fig. 8, where the non-dimensional thermal406

entrance length,407

L̃th = Lth
Dh

Pe−1 (54)

monotonically decreases for increasing Brinkman numbers in both test cases,408

3T and 4T. Note that solution of Eqs. (19) and (26) for a given section409

geometry allows one to investigate Graetz-Brinkman problem for any value410

of Pe and Br and for any inlet temperature condition, eigenfunctions n only411

depending on duct section geometry and Θv being proportional to Brinkman412



number magnitude.413

Thermally developed temperature profiles, corresponding to computed so-414

lution at x > Lth, through the duct cross section are shown in Fig. 9 for415

Br = 0.1 and γ = 0, 1. Comparing Figs. 9(a), 9(b) to Figs. 9(c), 9(d) re-416

veals that test case strongly influences the heat transfer process, since higher417

temperatures are reached when only a portion of the cross section perimeter418

is heated (test case 3T). On the other hand, the effect of rounding appears to419

be much more important when the whole perimeter is heated (test case 4T).420

The dependence of the fully-developed Nusselt number on channel geometry421

and on both test cases is discussed further later on.422

As a further validation, comparing Fig. 9(d) to the numerical results of423

[33], where the Authors investigated the restrictive case of laminar, fully424

developed flow with Br 6= 0 through a stadium-shaped channel (i.e. γ = 1)425

with imposed wall temperature (corresponding to the current 4T test case),426

reveals the same qualitative temperature profile.427

Several simulations were run in order to trace both Poiseuille and Nusselt

numbers of the fully (hydrodynamically and thermally) developed flow for

different channel geometries, looking for accurate correlations. After a re-

gression analysis, fourth order polynomial correlations were used to fit the

fully developed Poiseuille and Nusselt numbers as a function of the non-

dimensional joint radius:

Po =
5∑

m=1
Bm γ

m−1 (55)

Nuv =
5∑

m=1
Cm γ

m−1 (56)

Coefficients B1−5, C1−5 are reported for different channel aspect ratios β in428



tables 4 and 5. Results for both test cases 3T and 4T are shown. Developed429

Poiseuille and Nusselt numbers are also plotted as a function of channel cross430

section geometry in Fig. 10, which clearly shows that the effect of rounding431

corners is relevant if 4 corners are rounded instead of 2 (i.e. when test case 4T432

is considered) and the imposed aspect ratio is sufficiently high. The heated433

perimeter length ∂Ωh also plays an important role: comparing Fig. 10(c) to434

10(d) reveals that test case 3T may lead to higher Nusselt numbers than T4435

at small aspect ratio, while lower Nusselt numbers are obtained applying 3T436

constraint when β > 1/2.437

8. Conclusion438

In this paper the Poiseuille number and Nusselt, both local and average,439

number of a laminar, thermally developing flow of a Newtonian fluid inside440

a rectangular microchannel with rounded corners were studied. The effect441

of viscous heating was taken into account, leading to the so-called Graetz-442

Brinkman problem, and T boundary conditions were applied along the heated443

perimeter of the channel cross section.444

Numerical simulations were conducted using MATLAB R© pdetool, a finite-element445

based solver, in order to compute velocity and temperature fields over the446

3D channel domain. After a proper validation with literature data, several447

configurations involving complex channel section geometries, most of them448

never considered in the available literature, were investigated through an ef-449

ficient numerical method in terms of computational costs, looking for new450

correlations for Poiseuille and Nusselt number prediction. In particular, novel451

correlations taking into account viscous heating were proposed for: calcula-452



tion of Nusselt number along channel axial direction in the thermal entrance453

region, Eqs. (52) and (53); calculation of the developed Poiseuille and Nus-454

selt numbers, Eqs. (55) and (56). Also, the effects of the Brinkman number,455

heated cross section perimeter and channel geometry (defined by aspect ratio456

and rounding radius) on heat transfer performances were studied and a con-457

nection between thermal entrance length and Brinkman number was found.458

The results obtained may be useful for microchannel heat sinks design accord-459

ing to Performance Evaluation Criteria [15], since the Poiseuille and average460

Nusselt numbers are required for evaluation of transferred heat power, fric-461

tion loss and Entropy Generation Number [16].462

As future work, rarefied fluid flows will be studied since rarefaction effects463

as well as viscous dissipation may be non-negligible at the microscale [8]; a464

general Robin boundary condition depending on Knudsen number Kn (which465

is the ratio between molecular mean free path and hydraulic diameter) must466

be imposed over the perimeter or its heated part, depending on whether the467

velocity or the temperature fields are investigated. Also the laminar flow468

of non-Newtonian fluids characterized by power-law viscosity and significant469

viscous dissipation should be analysed, since they represents a physical prob-470

lem involved in many engineering applications.471
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Figure 4: Inlet temperature profile (a), developed velocity profile (b) and developed tem-

perature profile (c). Br = 0.1, β = 3/5, γ = 2/3.
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Figure 9: Developed temperature profile for different test cases and cross section geome-

tries: γ = 0, 3T (a); γ = 1, 3T (b); γ = 0, 4T (c); γ = 1, 4T (d). β = 3/5, Br = 0.1
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Figure 10: Numerical data vs Eqs. (55) and (56) describing developed Poiseuille and

Nusselt numbers as a function of non-dimensional rounding radius and aspect ratio: Po

for test case 3T (a); Po for test case 4T (b); Nuv for test case 3T (c); Nuv for test case

4T (d).



β B1 B2 B3 B4 B5

0.05 22.48 0.4619 −0.3860 0.1602 −0.04336

3T

0.1 21.17 0.8320 −0.7220 0.3068 −0.08366

0.2 19.07 1.376 −1.281 0.5655 −0.1532

0.3 17.51 1.753 −1.755 0.8191 −0.2203

0.4 16.37 2.032 −2.186 1.085 −0.2875

0.5 15.55 2.256 −2.603 1.382 −0.3590

0.6 14.98 2.451 −3.026 1.718 −0.4393

0.7 14.61 2.628 −3.455 2.086 −0.5261

0.8 14.38 2.796 −3.898 2.489 −0.6240

0.9 14.26 2.959 −4.360 2.930 −0.7383

1.0 14.23 3.118 −4.837 3.404 −0.8709

0.05 22.48 0.9239 −0.7573 0.3062 −0.08221

4T

0.1 21.17 1.664 −1.398 0.5753 −0.1580

0.2 19.07 2.753 −2.432 1.022 −0.2825

0.3 17.51 3.509 −3.285 1.439 −0.3939

0.4 16.37 4.068 −4.047 1.866 −0.4950

0.5 15.55 4.518 −4.781 2.332 −0.5889

0.6 14.98 4.908 −5.532 2.877 −0.6942

0.7 14.61 5.264 −6.302 3.481 −0.8095

0.8 14.38 5.604 −7.122 4.187 −0.9684

0.9 14.26 5.938 −8.014 5.043 −1.214

1.0 14.23 6.278 −9.030 6.157 −1.629

Table 4: Regression coefficients of Eq. (55) for polynomial fit of Po as a function of γ.



β C1 C2 C3 C4 C5

0.05 16.09 0.3325 −0.07389 −0.1167 0.03890

3T

0.1 14.86 0.5955 −0.1398 −0.2059 0.06557

0.2 12.82 0.9630 −0.2258 −0.3657 0.1131

0.3 11.23 1.192 −0.2780 −0.5037 0.1604

0.4 9.999 1.339 −0.3287 −0.5974 0.1948

0.5 9.005 1.433 −0.3774 −0.6692 0.2245

0.6 8.181 1.490 −0.4233 −0.7305 0.2552

0.7 7.487 1.522 −0.4667 −0.7846 0.2900

0.8 6.902 1.538 −0.5174 −0.8190 0.3240

0.9 6.410 1.546 −0.5727 −0.8400 0.3598

1.0 5.998 1.551 −0.6411 −0.8375 0.3914

0.05 15.85 0.6514 −0.1568 −0.2019 0.06138

4T

0.1 14.46 1.133 −0.2430 −0.4073 0.1229

0.2 12.28 1.763 −0.3372 −0.7391 0.2197

0.3 10.73 2.141 −0.4107 −0.9544 0.2908

0.4 9.677 2.400 −0.4949 −1.089 0.3644

0.5 8.977 2.610 −0.6096 −1.160 0.4451

0.6 8.520 2.803 −0.7648 −1.182 0.5302

0.7 8.232 2.994 −0.9619 −1.162 0.6126

0.8 8.061 3.190 −1.211 −1.080 0.6696

0.9 7.975 3.395 −1.535 −0.8914 0.6611

1.0 7.949 3.613 −1.955 −0.5454 0.5408

Table 5: Regression coefficients of Eq. (56) for polynomial fit of Nuv as a function of γ.
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