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SUMMARY

The human genetic diversity of the Americas has
been affected by several events of gene flow that
have continued since the colonial era and the
Atlantic slave trade. Moreover, multiple waves of
migration followed by local admixture occurred in
the last two centuries, the impact of which has
been largely unexplored. Here, we compiled a
genome-wide dataset of �12,000 individuals from
twelve American countries and �6,000 individuals
from worldwide populations and applied haplo-
type-based methods to investigate how historical
movements from outside the New World affected
(1) the genetic structure, (2) the admixture profile,
(3) the demographic history, and (4) sex-biased
gene-flow dynamics of the Americas. We revealed
a high degree of complexity underlying the genetic
contribution of European and African populations
in North and South America, from both geographic
and temporal perspectives, identifying previously
3974 Current Biology 29, 3974–3986, December 2, 2019 ª 2019 Else
unreported sources related to Italy, the Middle
East, and to specific regions of Africa.

INTRODUCTION

North and South America were the last continental areas to be

colonized by humans. Their peopling was a complex process,

which began at least 15 thousand years ago (kya) [1–6]. Nowa-

days, a substantial proportion of individuals living in the western

hemisphere is the result of more recent episodes of admixture,

following extensive migrations during and after the European

colonial era [7].

Indeed, soon after the European discovery of the continents in

1492, western European powers began to explore and settle the

double continent. This process heavily impacted native popula-

tions, which were decimated by wars and new pathogens. The

Atlantic slave trade, which occurred between the 16th and 19th

century and was started by European merchants, added further

complexity to the continental genetic landscape.

Historical records attest a general imbalance in the number of

incoming males and females especially during the early phase of

European colonization. For instance, the first Iberian immigrants
vier Ltd.
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were mostly (>80%) males [8], and the proportion of

females, initially 5%–6%, began to increase only in the following

decades [7].

Additional migratory waves, mainly from the Southern and

Eastern regions of Europe, have added further demographic

variability since the end of the 19th century. In fact, it has been

estimated that more than 32 million individuals reached the

United States at the end of the 1800s and the beginning of the

1900s, and similar estimates are available for other American

countries. For example, more than 6 million people moved to

Argentina, and more than 5 million people moved to Brazil in

the same period [9].

Given their historical and epidemiological implications, migra-

tions to the Americas have been the subject of several genetic

studies [10–15]. Most of these have exploited local ancestry

(LA) inference algorithms, in which individual genomes are de-

convoluted into fragments ultimately tracing their ancestry in

populations from different macro-geographic areas. LA ap-

proaches have so far provided multiple insights into the compo-

sition of several recently admixed populations [16, 17]. However,

when closely related populations are involved in the admixture of

a specific target group, this approach shows some difficulties in

discriminating among sources, leading to spurious or incomplete

results.

Several surveys [10, 13, 14, 18] present a continental-wide

analysis of the origin and dynamics of the African and European

diaspora into the Americas. For instance, Gouveia et al. [18] have

recently performed a detailed analysis of the African regional

ancestry and its dynamics in several populations from North

and South America and the Caribbean. However, a more

comprehensive and systematic investigation considering multi-

ple ancestries across the two continents is still missing [10–13].

The recently increased availability of genome-wide data offers

now the chance to capture the complexity of historical and de-

mographic events that affected the recent history of the Ameri-

cas by studying the recent admixture profile of many modern

populations.

With this in mind, we have first assembled a genome-wide

dataset of 17,722 individuals, including �12,000 from North,
Central, and South America and �6,000 from Africa, Europe,

Asia, and Oceania (Figure S1A; Data S1A and S1B) and then

we harnessed haplotype-based and allele frequency methods

to (1) reconstruct the fine-scale ancestry composition, (2) eval-

uate the time of admixture, (3) assess the extent and magnitude

of sex-biased gene-flow dynamics, and (4) explore the demo-

graphic evolution of different continental ancestries after the

admixture.

RESULTS

Clustering of the Donor Individuals
To minimize the impact of within-source (‘‘donors’’) genetic het-

erogeneity in the ancestry characterization process, we grouped

the assembled 6,115 individuals (Figure 1; Data S1A and S1B)

from 239 population-label donors (from which American individ-

uals are subsequently allowed to copy fragments of genome; see

STAR Methods) into 89 genetically homogeneous clusters (Fig-

ure S2A; Data S2A) on the basis of haplotype similarities using

CHROMOPAINTER and fineSTRUCTURE [19].

African individuals were classified into 40 clusters, with a clear

split between sub-Saharans and North and Eastern Africans

(Figure S2A). We identified 7 North African clusters, including

individuals from Morocco, Egypt, and the Levant. Individuals

from Western and South Western Africa (sub-Saharan), i.e.,

from the major slave-trading regions, are grouped in 14 clusters.

East African individuals are distributed across 10 clusters,

while the cluster ‘‘SouthEastAfrica’’ includes individuals from

Mozambique and Zimbabwe (together with 10 Bantu South Afri-

cans). European individuals are differentiated into 36 clusters,

mirroring the geographic location of the analyzed samples. We

identified two Iberian clusters: ‘‘Spain’’, which includes mostly

Spanish samples (60 Spanish [92.3%], 4 French, and 1 Corsican;

Data S1), and ‘‘SpainPortugal’’, which contains 25 Spanish and

all the Portuguese samples (10 individuals). Italians are grouped

into four groups, reflecting the peculiarity of Sardinian individuals

and the genetic differences among the peninsula [20]. Basques

form two region-specific genetic groups: one in France and

one in Spain. The British samples fall into two different clusters;
Current Biology 29, 3974–3986, December 2, 2019 3975
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Figure 1. The Ancestral Mosaic of American Populations Reveals a Highly Complex Ancestral Composition

(A) Barplots representing ancestral genetic proportions based on SOURCEFIND results for North and South American populations. We applied

CHROMOPAINTER/fineSTRUCTURE and SOURCEFIND to find the ancestral compositions of 22 American populations. Only the contribution for the 21 most

representative fineSTRUCTURE clusters (contributing R2% in at least one recipient population) is reported (Data S2A).

(B) Proportion of continental ancestries for all target populations. Ancestries are represented in red for Africa, blue for Europe, and yellow for America/Asia.

See also Figures S1, S4, and S5 and Data S1, S2A, and S2B. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
the vast majority of the samples (74 individuals) cluster together

with 17 Welsh and 4 additional individuals from Germany and

Sweden, while a smaller subset (24 individuals) forms a homoge-

neous cluster with Orcadians, possibly reflecting the northern-

most nature of the group. Central North Eastern Europe is

represented by seven clusters containing individuals from multi-

ple countries, such as Lithuania, Poland, Belarus, Hungary,

Russia, Germany, Austria, Finland, and Norway. Four distinct

groups, including Jewish individuals, were identified (Figure S2A;

Data S2A). Native Americans (American populations character-

ized by more than 95% of autochthonous ancestry) are grouped

into three main clusters: one composed only by Brazilian sam-

ples (Karitiana and Surui), one including only Wichi, and one

composed by several populations (Piapoco from Colombia,

Colla from Argentina, and Tepehuano, Zapotec, and Pima from

Mexico). East Asian and Oceania individuals are grouped into
3976 Current Biology 29, 3974–3986, December 2, 2019
five clusters, each exclusively containing individuals from the

same population (Data S2A).

Our fineSTRUCTURE results (Figure S2A; Data S2A) confirm

the worldwide genetic variation pattern already observed by pre-

vious studies at the continental scale [20–24].

The Ancestral Mosaic of American Populations
We fit each of the 22 American populations as a mixture of

the identified donor groups using SOURCEFIND [25]. Differ-

ently from non-negative least squares (NNLSs) approach,

SOURCEFIND harnesses a Bayesian algorithm to provide

increased resolution in distinguishing true contribution from

background noise (see STAR Methods).

The contribution of the 21 most representative clusters (with

proportion of no less than 2% in at least one recipient population)

to the American admixed populations are reported in Figure 1A



and Data S2B. The same procedure using NNLS provided

consistently similar results (Figure S3).

African Ancestries’ Distribution Reflects the Complexity

of the Slave Trade Dynamics

Sub-Saharan African ancestry was observed at high proportion

in African Americans (AfroAme: 69.0% and ASW [Americans of

African ancestry in southwest USA]: 74.1%) and Barbadians

(ACB [African Caribbeans in Barbados]: 87.1%), with relatively

high contribution registered also for the other Caribbean and

Brazilian populations (>10%; Figure 1B).

In detail, ‘‘BeninNigeria’’ cluster showed the highest contribu-

tion (R30% of the total) in AfroAme and ACB, while in other

Caribbean populations, the contribution of ‘‘BeninNigeria’’ and

‘‘GambiaSenegal’’ clusters is comparable, with average propor-

tion of 6.9% (min = 2.6%, max = 11%) and 6.7% (min = 3.6%,

max = 11.1%), respectively.

Moreover, we found contribution from Gambia and Senegal

(‘‘GambiaSenegal’’; mean = 4.2%, min = 1.3%, max = 11.1%)

in Mexico, Caribbean islands, and Colombia, but not in Brazil,

Argentina, and Chile, which have a proportion of less than

0.2%, consistent with previous results [18].

In South America, all the analyzed populations show high

heterogeneity in African proportions, the highest values in indi-

viduals from Salvador (47.8%) [26], reflecting the high number

of deported African slaves for sugar production in the North-

eastern area of Brazil in the 17th century [27].

In detail, the African cluster contributing the most is related to

groups from Angola and Namibia (‘‘AngolaNamibia’’ cluster) with

Salvador (Brazil) having the highest percentage (>20%), which is

similar to the contribution from BeninNigeria (�19%) and mirrors

the history of African slaves arrivals in Brazil [27] (Figure S4B;

Data S2B). Although a non-negligible contribution from East

and South East Africa at the end of the slave trade period has

been documented [28], none of the analyzed populations

showed an East/South East African ancestry fraction larger

than 2%. AfroAme and ASW show the highest proportion of

this ancestry (1.2% and 0.8%, respectively). Nevertheless,

when the ancestry is explored at individual level, samples with

more than 5% of East and/or South East African ancestries

were identified in more than 1% of individuals from AfroAme

(30/2,004), ASW (2/55), Bambui (10/909), and Pelotas (51/

3,629) (Figure S5), supporting recent findings [18].

When dissecting the African ancestry into regional sources

(Figure S4D), the UPGMA (unweighted pair group method with

arithmetic mean) clustering does not strictly mirror geograph-

ical/historical patterns. Yet all the Caribbean and circum-Carib-

bean populations, with the exception of a Colombian sample,

cluster together. Similarly, all the Southern American samples,

but not Chile, form a private group. Interestingly, ACB is different

from any other populations, composed mainly by ‘‘BeninIvory-

Coast’’ and ‘‘BeninNigeria’’ clusters.

Complex Variation of European Ancestries’ Distribution

European ancestry was observed at high proportion in European

Americans (EuroAme), Caribbean Islands (PUR [Puerto Ricans

from Puerto Rico] having the highest proportion, 79%), and

Mexico (�42% and �48% for Mexican and MXL [people with

Mexican ancestry from Los Angeles, USA], respectively) but

also in Southern America, with proportions ranging from 22%

in Peru (PEL [Peruvians from Lima]) to �82% in Bambui.
When the variation of European ancestry in the Americas is

evaluated, groups from the United States (EuroAme, AfroAme,

and ASW) and Barbados (ACB) are characterized by a substan-

tial proportion of British and French ancestries. On the contrary,

in the remaining populations, the most prominent European

ancestry was represented by Iberian-related clusters, reflecting

the geo-political extent of European occupation during the Colo-

nial Era (Figure 1A). In details, populations from Mexico, Carib-

bean islands, and South America derive most of their European

ancestry from the Iberian Peninsula, represented by two clus-

ters. EuroAme exhibit high levels of heterogeneity, showing not

only a high proportion of France and Great Britain but also

Greece, South Italy, Central Europe, and Scandinavia, revealing

the high variability of European ancestries in the United States,

possibly due to secondary movements in the 19th and 20th cen-

turies [29], which involved populations that did not take part in

the Colonial Era movements [9]. Moreover, Pelotas (Brazil) is

characterized by a high contribution fromNorth Italy (�3%) while

Argentina is characterized by contributions from both North and

South Italy (2.3% and 2.2%, respectively).

The investigation of the individual ancestry profiles confirmed

and further refined the identification of multiple European sec-

ondary sources.

In one AfroAme population sample, we identified a high vari-

ability of European ancestry, with several individuals character-

ized by more than 5% ancestry from Northern, Central, and

Southern European regions (Figure S5).

Italian ancestry was found at considerable proportion (>5%) in

individuals from Colombia (4/98), Caribbean (51/1,112), Domin-

ican Republic (2/27), Ecuador (1/19), Mexico (15/427), Peru

(6/153), Puerto Rico (4/99), Argentina (27/133), and Brazil

(622/5,779). In fact, Italy has been reported as one of the main

sources of migrants to South America during the 19th century,

second only to the Spanish and Portuguese influences [30] (Fig-

ures S4A and S5).

We estimated the relationship among American populations

considering the relative European ancestries proportion by

applyingaUPGMAclustering approach (FigureS4C).Differences

in regional affinities to British and/or French versus Spanish and/

or Portuguese ancestries among American populations were

observed. Furthermore, within the last group, Spanish andPortu-

guese ancestries show distinct geographical distributions,

consistent with the Treaty of Tordesillas, signed in 1494 to regu-

late the regional influence of Spain and Portugal in the Americas

(Caribbean islands represent an exception; Figure S4C).

Native American Ancestry Distribution

With the exception of Mayan individuals (>65%), Native Amer-

ican ancestry is high in populations from the Southern part of

the continent and in Mexico (41%), with the highest values in

Peru (59.2%PEL), Ecuador (37%), and Argentina (31%; Figure 1;

Data S2B). Interestingly, in both the analyzed AfroAme popula-

tion samples, we identified a non-negligible proportion of individ-

uals harboring Native-American-related ancestry.

The Contribution of Jewish-Related Ancestry in the

Americas

A recent genetic investigation found a non-negligible proportion

of ancestry related to Jews and Middle East groups in five pop-

ulations from Northern and Southern America (Mexico,

Colombia, Peru, Chile, and Brazil) [25]. In our analysis,
Current Biology 29, 3974–3986, December 2, 2019 3977
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Figure 2. The Admixture History of the

Americas, as Inferred by GLOBETROTTER

(GT)

(A) Estimates of time and sources of admixture

events considering the whole population as target.

One or two events of admixture are reported for

each population. The closest inferred sources of

admixture are represented as colored squares;

circles show the corresponding time of admixture

estimated byGT. Time is expressed in generations

from present (bottom x axis) and years of CE

(top x axis). Red bars indicate the 95% CIs of

bootstrapped analyses. Only admixture times

estimated to have occurred in the last 30 genera-

tions are shown. Multiple admixture events may

have occurred at the same time.

(B) Distribution of admixture times considering

single individuals as targets. We retained only the

2.5%–97.5% distribution of time estimation for

each population.

(C) Density of admixture times inferred in events

considering France/GBR, Iberian, and Italian

clusters as sources, for all the 11,607 admixed

American individuals under study.

(D) Density of admixture times inferred in events

considering ‘‘GambiaSenegal’’, ‘‘BeninIvoryCoast’’,

‘‘BeninNigeria’’, ‘‘CameroonGabon’’, ‘‘Gabon’’, and

‘‘AngolaNamibia’’ clusters as sources for all the

11,607 admixed American individuals under study.

See also Data S2C.
we confirmed the presence of genetic ancestries related to

‘‘NorthAfrica’’, ‘‘Levant’’, ‘‘LevantCaucasus’’, and ‘‘Jews’’ clus-

ters in the same countries, although at a lower proportion than

previously estimated (�2.8%). This discrepancy might be due,

at least in part, to the fact that our dataset is mostly composed

by Brazilian individuals, which have been documented to have

a smaller Jewish ancestry [25]. Only 2.5%of analyzed individuals

contain more than 5%of Jewish orMiddle Eastern ancestry (Sal-

vador: 0.8%, Bambui: 3.2%, Pelotas: 2.9%). In contrast, this

proportion is higher in the non-Brazilian populations (CLM [Co-

lombians from Medellin]: 8%, Colombian: 3.8%, Peru: 2.3%,

Mexican: 5.4%,MXL: 11%, Chile: 16%, Argentina: 12%). Similar

proportions were found for Caribbean populations (ACB: 1.4%,

Caribbean: 6.8%, Dominican: 3.7%, Puerto: 3.9%, PUR:

1.4%). Interestingly, we found a relatively high proportion of indi-

viduals showing more than 5% contributions close to ‘‘Jewish’’

sources also in AfroAme (3.8%) and in EuroAme (26.7%)

(Figure S5).

Inferring the Time of Admixture in American Populations
To provide a temporal dimension to the gene flow among the

analyzed populations, we inferred the time of admixture by

applying GLOBETROTTER (GT) in two different setups for ‘‘pop-

ulation’’ and ‘‘individual’’ level analyses, as detailed in the STAR

Methods section. For both analyses, we focused on admixture

events inferred to have occurred in the last 30 generations.

In population-level inferences, all the analyzed groups showed

evidence of at least one admixture event as reported in Figure 2A

and Data S2C. Specifically, we identified one admixture event in

14 populations (ASW, ACB, Mayas, Maya, PEL, Peru, Salvador,

Ecuadorian, Colombian, MXL, Argentina, CLM, Chile, and Pu-

erto) with inferred times spanning between �6 and �11
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generations ago. The identified sources are related to British or

French and Benin-Nigeria in ACB and ASW and Iberian or South-

ern European and America in Maya, Mayas, PEL, Puerto, Peru,

Ecuador, Colombian, CLM, MXL, Argentina and Chile, in line

with SOURCEFIND estimates. In contrast, Salvador sources

are representative of Iberia and Cameroon-Gabon. Two popula-

tions from Caribbean Islands, PUR and Dominican, showed a

curve profile that fits better with a single admixture involving

more than two sources from Europe, Africa, and America, dated

�9–11 generations ago. The remaining six populations

(Mexican, EuroAme, Pelotas, Caribbean, AfroAme, and Bambui)

showed signature of at least two admixture events mainly

involving American, European, and African sources, with the

most recent occurring �6–8 generations ago.

To assess regional spatiotemporal differences in admixture

dynamics, we performed a GT individual analysis (Figures 2B

and 2D). For all the analyzed populations, the inferred 2.5%–

97.5% time interval had similar boundaries spanning

between �1 and �20 generations ago (min = 1.18, max = 19.5).

The source-specific admixture time estimates were explored,

evaluating the distributions of time inferred considering different

European and African signals (Figures 2B and 2C). When the Eu-

ropean sources were considered, times involving Iberian clus-

ters were significantly older than those involving British/French

ones, which in turn were characterized by dates significantly

older than those involving Italian sources (Wilcoxon test; Bonfer-

roni adjusted p value < 0.05).

For the five African sources considered, times inferred for the

‘‘SenegalGambia’’ cluster are significantly older than all

the other tested sources (Wilcoxon test; Bonferroni adjusted

p value < 0.05). In contrast, times involving ‘‘AngolaNamibia’’

are more recent than all the others (Wilcoxon test; Bonferroni
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Figure 3. Autosomal versus X Chromosome Ancestry Proportions

Each boxplot shows the log10-scaled ratio of autosomal to X chromosome ancestry proportion for (A) European, (B) Native American, and (C) African continental

components as inferred by ADMIXTURE analysis (K = 3) in 19 American populations. Boxplots refer to the interquartile range, andwhiskers refer to data points not

exceeding the interquartile rangemore than 1.5 times. All the other data points are considered outliers and shown as dots. See also Data S2D. The heatmap on the

right side of every panel shows the significance of Wilcox test between pairs of autosomal versus X distributions, with red color highlighting significant tests (p <

0.05 after Bonferroni correction).
adjusted p value < 0.05). Moreover, times involving ‘‘BeninIvor-

yCoast’’ are significantly older than the one involving ‘‘BeninNi-

geria’’ and ‘‘CameroonGabon’’. Lastly, times involving Camer-

oonGabon are older than the one involving ‘‘BeninNigeria’’

(Wilcoxon test; Bonferroni adjusted p value < 0.05).

Assessing the Impact of Sex-Biased Admixture of the
Americas
To evaluate the impact of sex-biased admixture dynamics in the

American populations, we compared the continental ancestry

proportions inferred by ADMIXTURE [31] from autosomal data

against those estimated for the X chromosome (see STAR

Methods). With respect to European ancestry, a pairedWilcoxon
test comparing the distribution of autosomal versus X chromo-

some revealed that the former is significantly higher in all com-

parisons, suggesting a higher contribution of European males

than females in the gene pool of American populations (Figure 3;

Data S2D), in agreement with previous continental-scale reports

based on more limited data [26, 32, 33]. This observation is

further supported by the fact that Native American ancestry esti-

mated from autosomal data is always lower (with the exception

of Dominican) than that estimated from the X chromosome. In

contrast, when considering the African ancestry, a considerable

number of populations do not show any signature of sex imbal-

ance. Indeed, in only eight out of 19 comparisons (ACB,

AfroAme, Bambui, Caribbean, EuroAme, Pelotas, PUR, and
Current Biology 29, 3974–3986, December 2, 2019 3979



Salvador), the autosomal proportion was significantly lower than

that inferred from the X chromosome (adjusted p value < 0.05).

With the exception of ACB, all these significant differences

were associated with sample sizes greater than 100. These re-

sults are in contrast with historical records documenting a higher

number of disembarked male slaves [28] and might reflect com-

plex admixture dynamics. In fact, gender imbalance in treatment

of slaves could lead to different chances to have descendants

and therefore explain, at least in part, these results. Alternatively,

they could reflect limitations in the approach exploited here, as

previously suggested [34]. We repeated the test for two single

chromosomes resembling chromosome X in terms of length

and number of markers analyzed. Despite the fact that some of

the comparisons were no longer significant for chromosome

19, and at a lesser extent for chromosome 7, the overall

observed pattern persisted.

We evaluated differences in the distribution of autosomal

versus X chromosome continental proportion performing pair-

wise Wilcoxon test among populations (Figure 3). For all the

continental ancestries evaluated, we observed a substantial

homogeneity in autosomal/X ratio, suggesting that similar

admixture dynamics took place in the whole continent, despite

historical, cultural, and geographical differences among popu-

lations. In fact, 93%, 79%, and 82% of pairwise comparisons

between distributions were not significant (after Bonferroni

correction) for sub-Saharan Africa, Europe, and America,

respectively. For European ancestry, European American and

Pelotas population show significant differences when

compared to most of the other groups. These results might

be due to more recent and heterogeneous contribution from

Europe.

Reconstructing the Ancestry-Specific Demographic
Histories of Admixed Populations
To characterize the demographic history of specific continental

ancestries, we intersected the results of identity-by-descent

(IBD) and LA inferences as in Browning et al. [35]. We excluded

from the analysis all the population ancestries in which

aðcontinentÞ � n < 50, where a is the proportion of a specific

ancestry as estimated by SOURCEFIND and n is the total num-

ber of chromosomes in the analyzed population.

The majority of the studied populations showed, for all the

continental ancestries considered, a demographic curve charac-

terized by a decline until approximately 10 generations ago, fol-

lowed by a general recovery. In a random-mating scenario, all

the admixing ‘‘ancestries’’ are expected to present an identical

demographic path, scaled by their proportion in the admixed

deme. However, when different dynamics (such as assortative

mating) occurred, differences in Ne through time for single an-

cestries could emerge. The correlation of single ancestries on

the same population might be explained by the existence of a

scenario close to random mating.

This pattern is not universally observed in all the American

populations: the Brazilian samples from Bambui showed a gen-

eral decline in population size for the African and European

ancestry, according to previous surveys reporting their low het-

erogeneity [26]. Conversely, the European ancestry for EuroAme

does not show signs of demographic decline, possibly reflecting

multiple European waves contributing to this population.
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When evaluating the Native American ancestry, the Mexican

sample differs from all the others not showing any decrease in

the effective population size. A similar behavior was shown

when the two samples from Peru were pooled together (Fig-

ure S6H) and could reflect admixture among different Native

American groups occurred after the European colonization or

different demographic histories across various American

regions.

For the European ancestry, PUR and CLM showed the most

severe decline in effective population size (Figures 4 and S6G).

Interestingly, for the four populations showing a decline-re-

covery pattern and for which the effective population size for Af-

rican and European components were available, the African

ancestry started to recover later than the European one, with

the exception of the Caribbean population. Furthermore, when

all the available data points are considered, the time of the last

minimum before the recovery is significantly younger for the Af-

rican ancestry (Wilcoxon test; p < 0.05).

We explored the correlation in demographic trajectories

among pairs of populations considering two different time inter-

vals: after 30 generations ago and between 30 and 60 genera-

tions ago (Figures S6A and S6F). For all the observed ancestries,

especially for the European and American one, the overall de-

gree of pairwise correlation is lower in recent times than in the

past. These results may suggest that admixture acted as a diver-

sifying factor in terms of past demographic evolutionary trajec-

tories, as opposed to having a homogenizing effect in terms of

genetic variability [18]. Data analysis for large sample size groups

of diverse American groups may elucidate the overall admixture

impact pattern in the continents.

DISCUSSION

Despite being virtually isolated from the rest of theworld until 500

years ago, most of the individuals living in the Americas harbor,

together with Native American ancestry, a substantial genomic

proportion inherited from Europe and Africa. These ancestral

mosaics could be explained as the consequence of two major

historical processes occurring over the Americas: first, the geno-

cide of indigenous people of America [36] that caused a sharp

decrease of the Native American populations and, second, the

admixture occurring after the European exploration and coloni-

zation, which was followed by African deportation and labor

migration that has impacted the American continents in the

19th and 20th centuries.

The investigation of the times of admixture among the two

continents revealed that all the analyzed present day American

populations are the result of at least one admixture event

involving Native American, African, and European sources within

the last 6–12 generations, corresponding to 1644 CE and 1812

CE (considering a generation time of 28 years; Figures 1 and

2). However, considering a population as a whole does not fully

capture the complexity of its admixture dynamics, characterized

by several waves of migration in the last five centuries [7, 28, 37].

One way to partially overcome this limitation is analyzing single

individuals rather than populations, evaluating a higher degree

of variation in fragment length distributions. Our per-individual

time estimations provided several insights into the complexity

of admixture in the Americas. It has been previously reported
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Figure 4. Ancestry-Specific Effective Population Size of American Populations

We combined identity by descent and local ancestry inferences to estimate ancestry-specific population size through time. The x axes show time expressed in

years of CE. The y axes show ancestry-specific effective population size (Ne), plotted on a log scale. Solid lines show estimated ancestry-specific effective

population sizes (red, African ancestry; blue, European ancestry; yellow, Native American ancestry), with ribbons indicating the 95% CIs. Only the population

ancestries, in which a(continent)3 n > 50 (where a is the proportion of a specific ancestry and n is the total number of chromosomes in the analyzed population),

are represented. See also Figure S6.
that the origin of Africans disembarked in the continents followed

a general North-South temporal pattern [38], with slaves from

Senegal and Gambia being deported earlier than the ones

from more southern areas (https://www.slavevoyages.org). In

accordance with historical data, the inferred admixture dates

involving populations from Senegal and Gambia are older than

the ones involving all the others; this area remained the main

slave trade site for the Spanish possessions until 1640 [39].

Similarly, all the dates involving clusters related to Angolan and

Namibian individuals are characterized by younger recent

admixture times (Figure 2D).

For European sources, the estimated admixture dates charac-

terized by gene flow from Iberia are older than the dates of

admixture with France/Great Britain sources, which in turn are

older than admixture events involving Italian sources, which, ac-

cording to historical records, became substantial only in the sec-

ond half of the 19th century.

Furthermore, we assessed the severe impact of the Atlantic

slave trade in several populations under study, with a pattern

that reflects historical records [28, 37, 39].

In detail, our analysis revealed that West Central African

ancestry is the most prevalent in the American continents, as

previously reported [14, 18]. Moreover, we additionally
identified a high contribution from Senegal and Gambia in the

Caribbean, Mexico, and Colombia in accordance with African

slave arrivals predominantly to Spanish-speaking America until

1620s [28].

Subsequently, about 50% of all West African slaves were de-

ported to Dutch, French, and British sugar plantations in the

Caribbean. Accordingly, we estimated a high contribution from

Benin and Nigeria in all the Caribbean populations and in popu-

lations from the United States, in line with the reported slave

arrivals.

Among all the analyzed populations, ACB is characterized by

the highest sub-Saharan ancestry proportion (�88%), possibly

due to the presence of sugar cane industry combined with the

relatively low European immigration [37] in the 18th century.

At a microgeographic scale, Barbadians derive their African

ancestry from ‘‘BeninNigeria’’ (�50%) and from ‘‘BeninIvory-

Coast’’ (�21%; Figure 1A; Data S2B), two of the main source

areas reported for the British-mediated slave trade.

In contrast, Brazil showed a peculiar African ancestral compo-

sition, characterized by a high proportion of ancestry related to

modern-day Angola and Namibia, consistent with the Portu-

guese settlement in Angola from the beginning of the 17th cen-

tury. A similar African component is also observed in Argentina,
Current Biology 29, 3974–3986, December 2, 2019 3981
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probably due to the fact that slaves arrived primarily from Brazil

via the Portuguese slave trade from Angola [38, 40].

The Atlantic coast of Africa was not the only region involved in

slave deportation; in fact, in the last decades of the slave trade

period, Mozambique was the third largest supplier of slaves

[28]. We found ancestries from Southern East African groups in

a non-negligible proportion of individuals from Bambui and

Pelotas.

Although similar works [14, 18] analyzed Bantu populations

from Southern, Southern Eastern, and Eastern Africa, here, we

included Bantu populations from Angola, which has been docu-

mented as one of themain regions for slave deportation. Consid-

ered together, this study and Gouveia et al. [14, 18] suggest an

important role of Southwestern, South, and Southeastern Africa

in shaping the African gene pool of populations from the Atlantic

Coast of the Southern Cone of South-America.

When we investigated the European contribution to the conti-

nents, we confirmed the large impact of Great Britain, France,

and Iberian Peninsula for all the tested populations, with a distri-

bution reflecting the geographic occupation of the Americas in

the Colonial Era.

Furthermore, our approach revealed the existence of several

European secondary sources contributing to a substantial pro-

portion of American populations. Among the others, we have

identified ancestry closely related to Italian populations in Euro-

pean Americans from the US, Argentinians, and Brazilian popu-

lations [41].

The Italian migration in the Americas has been recently

described as one of the largest migrations of the 19th century

and has been usually referred to as the ‘‘Italian diaspora’’

[42–44]. Although it started soon after 1492, it reached high pro-

portions only in the second half of the 19th century, with more

than 11 million individuals migrating toward the continents,

largely to the United States, Brazil, and Argentina.

Between 1866 and 1916, approximately 4 million Italians were

admitted in the United States. In the 2017 US Census Bureau,

nearly 17 million people (5% of global population) were reported

as Italian, with proportions spanning from 1.3% to 17.0% in

different states.

In Brazil, also thanks to subsidies offered by the society for the

promotion of immigration, after 1820, nearly half of all immigrants

were Italians, and in 1876, their annual arrival rate became higher

than the one from Portugal. These migrations continued steadily

until 1902, when a decree of the Italian government put an end to

all subsidized emigration to Brazil [45]. We found genetic signals

of these migrations, mostly related to North Italy, in all the three

Brazilian samples analyzed, with the highest proportion in Pe-

lotas, followed by Bambui and Salvador.

In Argentina, the identified Italian contribution is related both

to the northern and southern part of the peninsula, which is in

accordance with movements of millions of individuals from

Northern (earlier) and Southern (later) Italy registered from

the second half of 1800 throughout the 1950s [9, 30]. It has

been reported that Italian immigration was the highest

(39.4%) compared to the ones from other countries at the

beginning of the 20th century [46, 47]. Therefore, at a pan-

American level, the distribution of the Italian components is

heterogeneous and closely reflects the one reported by histor-

ical records.
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Differently from the other Brazilian groups analyzed, Pelotas is

also characterized by contributions from additional sources,

such as Central and North Europe (‘‘GreatBritain1’’, ‘‘France’’,

‘‘CentralEurope1-2’’, and ‘‘Scandinavia’’) in accordance with

historical records.

Recently, a survey employing similar methods on five Southern

American populations identified South and East Mediterranean

ancestries across Americas, which has been interpreted as a

contribution from Converso Jews [25]. Our analysis of the individ-

ual ancestry distribution confirmed the presence of Jews and Le-

vantine ancestries in virtually all the analyzed populations,

including those from the Caribbean (Figure S5).

By evaluating the continental ancestry estimates using an

allele frequencymethod, we were able to confirm the sex-biased

admixture dynamics, suggesting that a higher number of Amer-

ican females than males have contributed to the modern popu-

lations. Conversely, European males had a larger contribution

than females from the same continent.

In contrast, for the African ancestry, we observed inconsistent

results, with some of, but not all, the populations showing evi-

dence for a higher female contribution, partially discordant with

historical reports. A possible explanation might be that the ratio

between African males and females is lower than the one

observed for the European component, preventing its identifica-

tion with small sample sizes and suggesting that such patterns

(or their absence) should be interpreted with caution, as previ-

ously suggested [34]. In addition, it is possible that the different

treatment of female and male slaves, and the resulting unbal-

anced chances of having descendants, may have contributed

to add complexity on the admixture dynamics.

All these results confirm that the European and African com-

ponents are playing an important role in shaping the genetic

differentiation of different American groups, although their de-

mographic evolution after the arrival in the ‘‘new world’’ is still

unknown.

The analysis of ancestry-specific effective population sizes

demonstrated that, regardless of their composition, most of

the continental ancestries experienced a general decrease until

approximately 10 generations ago, after which a general popula-

tion size recovery was inferred (Figures 4 and S6G).

Interestingly, the recovery of the African population compo-

nent postdates those of the European one, possibly reflecting

the different conditions experienced by African slaves and Euro-

pean settlers.

On the other hand, the effective population size of the Native

American component in Mexicans and Peruvians does not

show evidence of decrease, in contrast with historical records

reporting a general dramatic decline of the Native American pop-

ulation after European colonization.

This observation is in line with Browning et al. [35], in which a

smaller reduction in the effective population size of Mexicans for

Native American ancestry compared to other populations was

observed. This result is also in line with our GLOBETROTTER re-

sults, where we found evidence for admixture between

two Native-American-related sources approximately 15 genera-

tions ago.

It may be possible that the reported decline did not heavily

affect the genetic variability of survivor populations or that indi-

viduals from different isolated native groups have been put in



contact as a consequence of the European colonization and

deportation, as recently suggested for Peruvian populations

[48]. This would result in an inflated effective population size es-

timate, as we observe in our ancestry-specific analysis.

In conclusion, we demonstrated that the European and African

genomic ancestries in American populations are composed of

several different sources that arrived in the Americas in the last

six centuries, dramatically affecting their demography and mir-

roring historical events. The analysis of high-quality genomes

from the American continents, combined with the analysis of

ancient DNA and denser sampling, will be crucial to better clarify

the genetic impact of these dramatic events. In addition, the fine-

scale composition here reported is important for the future

development of epidemiological, translational, and medical

studies.
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Target individuals [71] GEO: GSE33528
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N/A

Target individuals [72] marta.alarcon@genyo.es

Software and Algorithms

PLINK [73] http://www.cog-genomics.org/plink/1.9/

KING [74] http://people.virginia.edu/�wc9c/KING/

ShapeIT2 [75] https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/

shapeit.html

CHROMOPAINTER [19] http://www.paintmychromosomes.com/

fineSTRUCTURE [19] http://www.paintmychromosomes.com/

SOURCEFIND [25] http://www.paintmychromosomes.com/

NNLS pipeline [76] https://cran.r-project.org/web/packages/nnls/nnls.pdf

GLOBETROTTER [77] http://www.paintmychromosomes.com/

fastGLOBETROTTER Request to Wangkumhang P. (pongsakornw@gmail.com)

Beagle 4.1 [78] https://faculty.washington.edu/browning/beagle/b4_1.html

RFMIX [79] https://sites.google.com/site/rfmixlocalancestryinference/

IBDNe [80] http://faculty.washington.edu/browning/ibdne.html

ADMIXTURE [31] https://www.genetics.ucla.edu/software/admixture/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Fran-

cesco Montinaro (francesco.montinaro@gmail.com). This study did not generate new unique reagents.

METHOD DETAILS

Analyzed data
We assembled [11, 16, 17, 20, 22, 24, 26, 33, 49–72, 81–83] a genome-wide dataset of 25,732 worldwide individuals genotyped with

different Illumina platforms. Of these, 25,455 were retrieved from publicly available and controlled access resources. In order to

increase our resolution in identifying the source of analyzed individuals, we added 277 samples from 35 Eurasian populations.

Genotype data for 89 samples are available at http://evolbio.ut.ee/. The remaining samples will be available in dedicated future

publications. More detailed information are reported in Data S1A and S1B and Figure S1. The obtained dataset was filtered using

PLINK ver. 1.9 [73] to include only SNPs and individuals with a successful genotyping rate >97%, retaining a total of 251,548 auto-

somal markers.

We used KING to remove one random individual from pairs with kinship parameter higher than 0.0884 [74]. The final dataset was

therefore composed of 17,722 individuals from 261 populations [11, 16, 17, 20, 22, 24, 26, 33, 49–72, 81–83] (Data S1A and S1B;

Figure S1). Of these, 11,607 individuals belonging to 22 admixed American populations were treated as ‘recipients’, while the remain-

ing 6,115 samples from 239 source populations were considered ‘donors’.

QUANTIFICATION AND STATISTICAL ANALYSIS

PC Analysis
Principal Components Analysis (PCA) was performed on the final dataset using the command --pca from PLINK 1.9. The resulting

plot is shown in Figure S1B.

Phasing
Germline phase was inferred using the Segmented Haplotype Estimation and Imputation tool (ShapeIT2) software [75], using the

HapMap37 human genome build 37 recombination map.

Clustering of donor populations
As a first step, we clustered the individuals belonging to ‘donor’ populations into homogeneous groups. First, we used the inferential

algorithm implemented in CHROMOPAINTER (v2) [19] to reconstruct each individual’s chromosomes as a series of genomic
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fragments inherited (copied) from a set of donor individuals, using the information on the allelic state of recipient and donors at each

available position. Briefly, we ‘painted’ the genomic profile of each donor as the combination of fragments received from other donor

individuals. We used a value of 288.998 for the nuisance parameters ‘recombination scaling constant’ (which controls the average

switch rate of the HMM) Ne, and 0.00076 for the ‘per site mutation rate’ M, nuisance parameters, as estimated by 10 iterations of the

expectation-maximization algorithm in CHROMOPAINTER. This algorithm finds the local optimum values of these parameters iter-

ating over the data. Given the computational complexity of this process, the estimation of these two parameters was obtained by

averaging the values calculated from an analysis performed on a subset of six hundred individuals from all the analyzed populations,

with sample sizes mirroring the global composition of the dataset for five randomly selected chromosomes (3, 7, 10, 18 and 22).

Second, we analyzed the painted dataset using fineSTRUCTURE [19], in order to identify homogeneous clusters. We ran the soft-

ware in three subsequent steps: the first, also called ‘‘greedy,’’ infers in a fast way a rough clustering summarizing the relationships

among individuals, and it is usually used when the number of samples is large (> 5000 individuals); the second, starting from the

greedy clustering, performs 1 million MCMC iterations thinned every 10,000 and preceded by 100,000 burn in iterations. This gener-

ated a MCMC file (.xml) that was used, by the third run, to build the tree structure using the option --T 1 [84].

FineSTRUCTURE classified the analyzed individuals into 370 clusters (Figure S2B). In order to increase the interpretability of

subsequent analysis we reduced the number of identified groups. In doing so, we iteratively climbed the tree, and lumped pairs

of clusters until theminimum pairwise Total Variation Distance (TVD) estimated on the chunkcounts was lower than a given threshold.

Taking into consideration the within continents variability and their relevance as sources to American populations, we applied a

threshold of 0.04 for sub-saharan African, Asian and Oceanian clusters, 0.03 for North-African, Native American and North-East

European clusters and 0.015 for Central, West and South European clusters. After refining, 89 clusters remained (Data S2A; Fig-

ure S2A). One cluster composed of less than five individuals was excluded from the following further analysis.

Painting of the recipient populations
We used CHROMOPAINTER, to paint each recipient individual as a combination of genomic fragments inherited by ‘donor individ-

uals’ pooled using the clustering affiliation obtained as previously described, and with the same nuisance parameters inferred for the

donor individuals.

Bayesian haplotype-based ancestry estimation (SOURCEFIND)
We applied a recently developed Bayesian method, SOURCEFIND [25], to estimate the ancestral composition of recipient individ-

uals. Thus, we modeled the copying vector (obtained with CHROMOPAINTER analysis) of each admixed individual as a weighted

mixture of copying vectors from the donors. We used as parameters: self.copy.ind = 0, number of total (num.surrogates) and ex-

pected (exp.num.surrogates) surrogates equal to 8 and 4 respectively; performing (total number of MCMC iterations) 200,000 iter-

ations thinned every 1,000, and preceded by a burn in step of 50,000. Furthermore, we assigned equally-sized proportions to the

surrogates (num.slots = 100). For each recipient individual, we combined 10 independent runs extracting and averaging the esti-

mates with the highest posterior probability, weighted by their posterior probability. The efficacy and reliability of the method has

been assessed for a similar scenario through an extensive simulation approach in Chacón-Duque et al. [25].

Non-Negative Least Square haplotype-based ancestry estimation
CHROMOPAINTER provides a summary of the amount of DNA copied from each donor population. We identified the most closely

ancestrally related donor population for each admixed population by comparing their copying vectors to copying vectors inferred in

the same way for each of the donor clusters, using a slight modification of non-negative least square (NNLS) function in R 3.5.1 [76],

and following the approach reported in Montinaro et al. and Leslie et al. [14, 84]. Briefly, this approach identifies copying vectors of

donor populations that better match the copying vector of recipient populations as estimated by CHROMOPAINTER. For each recip-

ient population, we decomposed the ancestry of that group as a mixture (with proportions summing to 1) of each sampled potential

donor cluster, by comparing the ‘copying vector’ of donor and recipient populations.

Estimation of admixture dates
In order to provide a temporal characterization of the admixture events in the Americas, we estimated times and most closely related

putative sources using population-based and individual-based painting profiles.

In the ‘‘population’’ approach, given the high demand of computational resources requested for the analysis, we have used

fastGLOBETROTTER, which, based on GLOBETROTTER [77], implements several optimizations in performance, making it suitable

for large datasets. In detail, we first harnessed the painting profiles obtained by CHROMOPAINTER by testing for any evidence of

admixture using the options null.ind = 1, prop.ind = 1, and performing 100 bootstrap iterations. For each of the admixture events

inferred, we considered only those characterized by bootstrap values for time of admixture between 1 and 400. Subsequently, we

estimated time of admixture repeating the same procedure with options null.ind = 0 and prop.ind = 1 (Data S2C).

For the individual analysis we estimated admixture times with GLOBETROTTER, applying the prop.ind = 1, null.ind = 0 approach to

the 11,607 target individuals. In order to remove individuals with ‘‘unusual’’ painting profiles, only those falling in the 2.5%–97.5%

admixture time confidence interval were retained.

We tested significant differences in times of admixture involving specific African or European clusters by applying a Wilcoxon test

using R and setting alternative to ‘‘greater.’’
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Ancestry-specific effective population size estimation
In order to estimate ancestry-specific effective population size for the 22 recipient American populations we followed the pipeline

presented by Browning et al. [35] (http://faculty.washington.edu/sguy/asibdne/posted_commands.txt). The overall reliability of the

method has been previously proved through extensive simulations mimicking the admixture of the Americas, also in the presence

of genotyping errors and population structure [35].

We used IBD and LA inferred from genome-wide data as a first step. We inferred IBD segments using the refined IBD algorithm

implemented in Beagle 4.1 [78], with the following parameters: ibdcm = 2, window = 400, overlap = 24 and ibdtrim = 12, as suggested

in Browning et al. [35]. Subsequently, we ran the merge-ibd-segments.12Jul18.a0b.jar script to remove breaks and short gaps in the

inferred IBD segments (gaps shorter than 0.6cM).

We estimated the local ancestry for genomic fragments in the American individuals using RFMIX [79]. As reference populations we

used Yoruba (YRI), Gambia (GWDwg) and Mozambique for Africa, Chinese Han (CHB) and Japanese (JPT) for Asia, Spanish (IBS),

British (GBR), and Tuscans (TSI) for Europe and Tepehuano, Wichi and Karitiana for Native American ancestry. We used

‘‘PopPhased’’, ‘‘-n 5’’ and ‘‘--forward-backward’’ options as recommended in RFMix manual. Then, we corrected the initial phasing

following the modifications of RFMIX and using the rephasevit.py script provided by Browning et al. [35].

We combined the results from IBD analysis and LA assigning to each IBD segment the most probable ancestry.

Subsequently, we calculated the adjusted number of pairs of haplotypes for each ancestry. This is required because two haplo-

types can only be in IBD with respect to a given ancestry at genomic positions if both haplotypes have that ancestry. Therefore, in a

sample composed by n individuals the ancestry-adjusted number of pairs of haplotypes is equal to:

Xn�1

i = 1

Xn

j = i + 1

4pipj

(where i and j are independent individuals and pi and pj are their proportions of the given ancestry).

Finally, we used the obtained ‘‘npairs’’ to run IBDNe software (version ibdne.07May18.6a4) [35, 80] in default mode, except for

filtersample = false.

Sex-biased admixture evaluation
We intersected SNPs from the X chromosome that were present in both ourmain datasets and in the 1000Genomes Project samples.

Three admixed American groups (Mexican, Maya, and Mayas) were removed because they did not include any genotypes for chro-

mosome X. We revised and imputed sex assignments based on X chromosome data using the --impute-sex command in PLINK. A

male or female call is made when the rate of homozygosity is > 80% and < 20%, respectively. Individuals for which sex imputation

was ambiguous were removed and heterozygous SNPs in male X chromosomes were set as missing. After this step, only samples

and positions with a genotyping rate R 97% were retained: 5,227 SNPs in a total of 15,353 individuals. The same set of individuals

was extracted from the filtered autosomal dataset with 258,720 SNPs. Subsequently, we performed LD pruning (--indep-pairwise

200 50 0.2) in both X chromosome and autosomal datasets, resulting in a total of 2,519 and 116,912 SNPs, respectively.We ran sepa-

rate unsupervised ADMIXTURE (version 1.3.0 [31]) analysis for the two datasets using K values = 3 and 10 independent runs.We used

the option ‘--haploid = ‘male:23’ in order to properly treat male individuals and chose the best run according to the highest value of

log likelihood. Finally, we performed paired Wilcoxon tests in order to test for significant differences between the ancestry propor-

tions observed in the autosomes versus the X chromosome and used Bonferroni correction for multiple-testing (adjusted p value <

0.05). We evaluated similarities in the autosomal/X chromosome ratio distribution by applying a Wilcoxon distribution, and reported

the p value in Figure 3 and Data S2D.

DATA AND CODE AVAILABILITY

The genotype data for 89 samples published in this study are available at http://evolbio.ut.ee/. The remaining 188 samples will be

available in dedicated future publications.
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