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Abstract

We consider a singularly perturbed system where the fast dynamics
of the unperturbed problem exhibits a trajectory homoclinic to a criti-
cal point. We assume that the slow time system admits a unique criti-
cal point, which undergoes a bifurcation as a second parameter varies:
transcritical, saddle-node, or pitchfork. We generalize to the multi-
dimensional case the results obtained in a previous paper where the
slow-time system is 1-dimensional. We prove the existence of a unique
trajectory (x̆(t, ε, λ), y̆(t, ε, λ)) homoclinic to a centre manifold of the
slow manifold. Then we construct curves in the 2-dimensional param-
eters space, dividing it in different areas where (x̆(t, ε, λ), y̆(t, ε, λ)) is
either homoclinic, heteroclinic, or unbounded. We derive explicit for-
mulas for the tangents of these curves. The results are illustrated by
some examples.

Keywords. Singular perturbation, homoclinic trajectory, transcritical bi-
furcation central manifold.
MSC 2010. 34D15, 34C37,37G10

1 Introduction

In this paper we consider the following singularly perturbed system:{
ẋ = εf(x, y, ε, λ)
ẏ = g(x, y, ε, λ)

(1.1)
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where x ∈ Rm+1, y ∈ Rn, ε and λ are small real parameters and f(x, y, ε, λ),
g(x, y, ε, λ) are Cr–functions in their arguments bounded with their deriva-
tives, r ≥ 3. We assume that for ε = λ = 0 (1.1) admits a homoclinic
trajectory (0, h(t)). Our purpose is to look for conditions ensuring the per-
sistence of a bounded trajectory close to (0, h(t)) for ε and λ small, assuming
that the slow time system undergoes a bifurcation as λ varies. This paper
generalizes previous results obtained in [8] assuming that x ∈ R, i.e. m = 0.

We suppose that the following conditions hold:

(i) for any x ∈ Rm+1, we have

g(x, 0, 0, 0) = 0,

(ii) the infimum over x ∈ Rm+1 of the moduli of the real parts of the eigen-
values of the jacobian matrix ∂g

∂y
(x, 0, 0, 0) is greater than a positive

number Λg.

(iii) the equation
ẏ = g(0, y, 0, 0)

has a solution h(t) homoclinic to the origin 0 ∈ Rn

(iv) ḣ(t) is the unique bounded solution of the linear variational system:

ẏ =
∂g

∂y
(0, h(t), 0, 0)y (1.2)

up to a scalar multiple.

According to condition (ii), for any x = (x0, x1, . . . , xm) ∈ Rm+1, the lin-
ear system ẏ = ∂g

∂y
(x, 0, 0, 0)y has exponential dichotomy on R with projec-

tions, say, P 0(x). Let rank[P 0(x)] = p, p being the number of eigenvalues
of ∂g

∂y
(x, 0, 0, 0) with positive real parts: we stress that p is constant. From

assumptions (ii) and (iii) it follows that the linear system (1.2) and its adjoint

ẏ = −
[∂g
∂y

(0, h(t), 0, 0)
]∗
y (1.3)

have exponential dichotomies on both R+ and R−, see [6, 8] for more details.
Here and later we use the shorthand notation ± to represent both the +
and − equations and functions. Observe that rank(P+) = rank(P−) = p
and the projections of the dichotomy of (1.3) on R± are I − [P±]∗. From
(iv) it follows that (1.3) has a unique bounded solution on R, up to a mul-
tiplicative constant. We denote one of these solutions by ψ(t). Note that
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ψ := ψ(0) satisfies N [P+]∗ ∩ R[P−]∗ = span(ψ) = [RP+ ∩ NP−]⊥; we as-
sume w.l.o.g. that |ψ(0)| = 1. Condition (i) implies the existence of ε0 > 0,
λ0 > 0 and a function v(x, ε, λ) which is defined for x ∈ Rm+1 small enough,
|λ| ≤ λ0 and |ε| ≤ ε0, such that v(x, 0, 0) ≡ 0 and the manifold Mc(ε, λ) :=
{(x, y) | y = v(x, ε, λ)} is an invariant centre manifold for the flow of (1.1)
(see for example [2, 12]). We will refer to Mc(ε, λ) as the “slow” manifold,
since we have the following: if x̄ = O(|ε| + |λ|) and (x(t, ε, λ), y(t, ε, λ)) is
the solution of (1.1) such that (x(0, ε, λ), y(0, ε, λ)) = (x̄, v(x̄, ε, λ)), then
∥ẏ(0, ε, λ)∥ = O[(|λ| + |ε|)]. Moreover v(x, ε, λ) is Cr−1 and bounded with
its derivatives. Using the flow of (1.1) we can extend the local manifold
y = v(x, ε, λ) outside a neighborhood of the origin: in such a case the mani-
fold is no longer a graph on the x coordinates.
In fact when g(x, 0, λ, ε) ≡ 0, then v(x, ε, λ) ≡ 0; in any case, for |x|
small enough, passing to the new variable ỹ = y − v(x, ε, λ) and replac-
ing f by f̃(x, ỹ, ε, λ) = f(x, ỹ − v(x, ε, λ), ε, λ), and g by g̃(x, ỹ, ε, λ) =
g(x, ỹ − v(x, ε, λ), ε, λ) we can assume that the slow manifold is defined by
ỹ = 0. We also wish to emphasize that even if v(x, ε, λ) is unknown we can
get some information on its derivatives using the fact that y = v(x, ε, λ) is
invariant. E.g. if ∂g

∂λ
(0, 0, 0, 0) = 0 then ∂v

∂λ
(0, 0, 0) = 0.

1.1 Remark. All our arguments are local, i.e. we just consider what happens
in a small (ε and λ independent) neighborhood Ωh ⊂ Rm+n+1 of the graph of
the unperturbed homoclinic (0, h(t)), obtained for ε = λ = 0. We stress that
a priori the slow manifold Mc(ε, λ) may be not unique: this fact follows from
centre manifold theory see [6, 13, 14]. However bounded trajectories, if any,
belong to all the slow manifolds. Moreover there is a smooth conjugation
between the dynamics of all the slow manifolds. This lack of uniqueness,
together with an analogous uniqueness problem concerning centre manifold
theory which is explained a few lines below, will be discussed in more details
in the Appendix in section 5. From now on we choose a slow manifold Mc

which is globally defined, and we work on this, unless specified.

Let xc(t, ξ, ε, λ) be the solution of the initial value problem:

ẋ = f(x, v(x, ε, λ), ε, λ) x(0) = ξ (1.4)

So (xc(t, ξ, ε, λ), v(xc(t, ξ, ε, λ), ε, λ)) describes the flow on the slow manifold
Mc, and (1.4) is the so called “slow time” system.

The behavior of homoclinic and heteroclinic trajectories subject to sin-
gular perturbation has been studied in several papers, see e.g. [1, 2, 4, 5,
6, 8, 12, 15]. In particular in [6] the authors built up a theory to prove the
existence of solutions homoclinic to Mc, for the perturbed problem (1.1)
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assuming conditions (i)–(iv) and giving transversality conditions of several
different types. They refine previous results obtained in [4].

This paper along with [8] can be thought of as a sequel of [6]. Here and
in [8] we assume that the “slow time” system (1.4) undergoes a bifurcation
as λ changes sign for ε = 0. In [8] we assumed that x ∈ R is a scalar so
the solution (x̃(t, ε, λ), ỹ(t, ε, λ)) homoclinic to the slow manifold is unique.
Then we derived further Melnikov conditions which enable us to divide the
ε, λ space in different sets in which (x̃(t, ε, λ), ỹ(t, ε, λ)) has different behavior:
it is homoclinic, heteroclinic or it does not converge to critical points either
in the past or in the future. The purpose of this paper is to extend the
results of [8] to the multidimensional case x ∈ Rm+1 for m > 0. Let Λi for
i = 0, 1, . . . ,m be the eigenvalues of ∂f

∂x
(0, 0, 0, 0); we assume

h) Λ0 = 0, and Λf := 1/2min{|Re[Λi]| | i = 1, . . . ,m} > 0

From h) it follows that for ε = λ = 0 the origin of (1.4) admits a, possibly
non-unique, one dimensional centre manifold C = C(0, 0), which for ε and
λ small persists and will be denoted by C(ε, λ). We assume further that
(1.4) undergoes a bifurcation as the parameters vary: we develop in detail
the case where (1.4) is subject to either a transcritical or a saddle-node
bifurcation (both in the non-degenerate case). Following [13] section 5, for
centre-manifold we mean a manifold C(ε, λ) which is invariant for (1.4) and
which has the following property:

ξ ∈ C(ε, λ) implies lim
|t|→∞

||xc(t, ξ, ε, λ)|| exp(−|tΛf |) = 0 (1.5)

Then it follows that C in the origin is tangent to the eigenvector corre-
sponding to the eigenvalues of (1.4) with null real part (in our case it is
1-dimensional). For ε and λ small an invariant manifold, denoted by C(ε, λ),
with the property (1.5) persist, its dimension is preserved and its tangent in
the origin varies smoothly, see again [13]. We emphasize that C and C(ε, λ)
may be not unique; however if we have two different centre manifolds C1 and
C2 (and consequently two manifolds C1(ε, λ) and C2(ε, λ), as ε, λ vary) their
dynamics is conjugated.

The main new aspect with respect to the m = 0 case is the following.
In the m > 0 case we need Proposition 3.1, which selects via implicit func-
tion theorem (x̆(t, ε, λ), y̆(t, ε, λ)) between the trajectories homoclinic to Mc.
Such a trajectory is asymptotic in the past to a centre-unstable manifold of
(1.4) and in the future to a centre-stable manifold of (1.4) whose intersection
is C(ε, λ) (see section 5 in [13] and the appendix for a rigorous definition and
a discussion on uniqueness).
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Then, generalizing the ideas of [8], we find Melnikov conditions sufficient
to divide the ε, λ space in different sets, say α, β, γ, in which we can specify
if (x̆(t, ε, λ), y̆(t, ε, λ)) is homoclinic ((ε, λ) ∈ α), heteroclinic ((ε, λ) ∈ β), or
leaves Ωh for some t ∈ R ((ε, λ) ∈ γ). This is the content of Theorems 3.4,
3.7 which regard respectively the case where (1.4) undergoes a transcritical
or a saddle-node bifurcation. We emphasize that, while in the m = 0 case
(x̆(t, ε, λ), y̆(t, ε, λ)) is always unique, when m > 0 we may lose uniqueness
as a consequence of the lack of uniqueness of centre manifolds. However
even when centre manifold is not unique, the trajectory (x̆(t, ε, λ), y̆(t, ε, λ))
is unique if (ε, λ) ∈ α, β (i.e. when it is bounded), while uniqueness is
lost if (ε, λ) ∈ γ, but we have the same behavior for all the trajectories
(x̆(t, ε, λ), y̆(t, ε, λ)).
We stress that we have explicit formulas for the derivatives of the curves
defining the border of the sets,α, β, γ. These formulas generalize the ones
found in [8], and they are a bit cumbersome due also to the “new” contribu-
tion given by the strongly stable and unstable directions of (1.4) (whose not
trivial computation is the second new aspect with respect to [8]).

For sake of clarity from now on we choose one centre manifold, denoted
by C(ε, λ), postponing to the appendix further discussions on this lack of
uniqueness problem. We denote by Mc(C(ε, λ)) the centre manifold of (1.1)
within the slow manifold, i.e.

Mc(C(ε, λ)) := {(ξ, v(ξ, ε, λ)) | ξ ∈ C(ε, λ)}

After a Cr−2 smooth transformation, we may straighten C(ε, λ) and the
corresponding centre-unstable and centre-stable manifolds. So if h) holds
we can assume w.l.o.g. that (1.4) has the following form, see Theorem 5.8 in
[13]:

ẋ0 = f0(x, v(x, ε, λ)ε, λ) := C0(x0, ε, λ) + Ca(x, ε, λ)xa + Cb(x, ε, λ)xb
ẋa = [A(ε, λ) + Fa(x, ε, λ)]xa
ẋb = [B(ε, λ) + Fb(x, ε, λ))]xb

(1.6)
where x0 ∈ R, xa ∈ Rl, xb ∈ Rm−l, A and B are matrices with respectively l
positive and m− l negative eigenvalues, C0 ∈ Cr−1, Ca, Cb, Fa, Fb ∈ Cr−2, C0

vanishes along with its first derivative in x for ε = λ = 0, Fa(0), Fb(0) are
null, Fa(x0, xa, 0, 0, 0) ≡ 0, Fb(x0, 0, xb, 0, 0) ≡ 0. This way xb = 0, xa = 0
and (xa, xb) = 0 define respectively centre-unstable, centre-stable, and centre
manifolds. We mainly focus on the transcritical and saddle-node case (non-
degenerate), so, following subsection 11.2 in [14] (see also the introduction of
[8]), up to a further change of variables we can assume w.l.o.g. that f0 has
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one of the following form:

f0(x, v(x, ε, λ), ε, λ) = (x0)
2 − b(ε)λ2 + o(x2) (1.7)

f0(x, v(x, ε, λ), ε, λ) = (x0)
2 − a(ε)λ+ o(x2) (1.8)

where a(ε) and b(ε) are positive Cr−1 functions and the terms contained in
o(x2) are Cr−1 in x and ε and Cr−2 in λ, see subsection 11.1 in [14] or the
introduction in [8] for details.

1.2 Remark. We need f and g to be at least Cr with r ≥ 3, because we
lose one order of regularity to define the slow manifold Mc, and a further
order to pass from (1.6) to the normal form (1.7) or (1.8). So if v ≡ 0 (e.g.
when g(x, 0, ε, λ) ≡ 0) and if (1.4) is in normal form, then we do not lose any
regularity and we may start from f and g just C1.

Our purpose is to find trajectories of (1.1) which are close for any t ∈ R
to the homoclinic trajectory (0, h(t)) of the unperturbed system, and to
understand when they are homoclinic, heteroclinic or they leave Ωh for some
t ∈ R (and so they are close to (0, h(t)) at most for t in a half-line). The
techniques can be applied also to bifurcations of higher order, i.e. when the
first nonzero term of the expansion of f in x has degree 3 or more (in this case
we need to assume f at least C4 or more in the x and λ variable). However in
such a case to obtain a complete unfolding of the singularity more parameters
are needed. In fact we just sketch the case of pitchfork bifurcation. Again,
following subsection 11.2 of [14], we see that, up to changes in variables and
parameters, we may reduce to f of the form

f0(x, v(x, ε, λ), ε, λ) = [x20 − a(ε)λ][x0 − b(ε)λ] + o(x3) (1.9)

where a(ε) and b(ε) are Cr−1 positive functions and the o(x3) is Cr−1 in ε
and Cr−2 in λ.

The paper is divided as follows. In section 2 we briefly review some facts,
proved in [6]: we construct the solutions asymptotic to the slow manifold
Mc either in the past or in the future, then we match them via implicit
function theorem, to construct a solution homoclinic to Mc. In section 3
we prove our main results: in Theorem 3.1 we show that for any ε, λ small
enough and any centre manifold in Mc(C(ε, λ)) there is a unique solution
(x̆(t, ε, λ), y̆(t, ε, λ)) homoclinic to it; then through Theorems 3.4 and 3.7 (in
subsections 3.1 and 3.2 respectively) we show which is the behavior of the
solution (x̆(t, ε, λ), y̆(t, ε, λ)) as ε and λ vary, respectively in the transcritical
and in the saddle-node case. So we give sufficient conditions in order to have
homoclinic, heteroclinic or no solutions lying in Ωh for any t ∈ R, as the
parameters vary. Finally we explain how the same methods can be extended
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to describe pitchfork and higher degree bifurcations in subsection 3.3. We
illustrate our results drawing some bifurcation diagrams. In section 4 we
construct examples for which we can explicitly compute the derivatives of
the bifurcation curves appearing in the diagrams. Section 5 is an Appendix
in which we discuss the lack of uniqueness problems deriving from centre
manifold theory, and we explain how some unicity may be recovered even if
Mc(C(ε, λ)) is not unique.

We collect here some notation which will be in force in the whole paper:
Notation. Let x = (x0, x1, . . . , xm) ∈ Rm+1: we denote by xa = (x1, . . . , xl),
by xb = (xl+1, . . . , xm), by x0̂ = (xa, xb) = (x1, . . . , xm); therefore x =
(x0, x0̂) = (x0, xa, xb). Moreover in the whole paper Ωx, Ω denote small
neighborhood of the origin respectively in Rm+1 and in Rn+m+1, while Ω0

and Ωh denote neighborhoods of (0, h(0)) and of {(0, h(t)) | t ∈ R} (in
Rn+m+1) respectively. All these neighborhoods are independent of ε and λ.
If f0 satisfies (1.7) (respectively (1.8)) the origin of (1.4) undergoes a tran-
scritical bifurcation (respectively a saddle node bifurcation). Let u(ε, λ) =
(u0(ε, λ), u1(ε, λ), . . . , um(ε, λ)), s(ε, λ) = (s0(ε, λ), s1(ε, λ), . . . , sm(ε, λ)) be
the zeroes of f(x, v(x, ε, λ), ε, λ) = 0. We denote by U(ε, λ) = (u(ε, λ),
v(u(ε, λ), ε, λ)), S(ε, λ) = (s(ε, λ), v(s(ε, λ), ε, λ)) the critical points of (1.1)
when they exist. When f0 satisfies either (1.7) or (1.8), (1.4) admits two
critical points for λ > 0, i.e. u(ε, λ), s(ε, λ) ∈ Rm+1. Note that u(ε, λ) and
s(ε, λ) (as well as their heteroclinic connection) are contained in each centre
manifold of C(ε, λ), see section 5 in [13] or section 3 in this article for details.
Moreover u is unstable, while s is stable with respect to the flow of (1.4)
restricted to C(ε, λ).

From the implicit function theorem we easily find that ui and si are C
r−2

functions of ε and λ, whose derivatives

∂ui
∂ε

(0, 0) =
∂si
∂ε

(0, 0) ,
∂ui
∂λ

(0, 0) =
∂si
∂λ

(0, 0) , for i = 1, . . . ,m (1.10)

can be explicitly computed. However u0 and s0 are Cr−2 functions of λ if
(1.7) holds, and of ν =

√
λ if (1.8) holds, and we have

∂u0
∂λ

(0, 0) = −∂s0
∂λ

(0, 0) ,
∂u0
∂ε

(0, 0) = 0 =
∂s0
∂ε

(0, 0) (1.11)

in the former case, while ∂u0

∂ν
(0, 0) = −∂s0

∂ν
(0, 0) in the latter. The assumptions

used in the main Theorems are the following:

(v) ∫ ∞

−∞
ψ∗(t)

∂g

∂x0
(0, h(t), 0, 0)dt ̸= 0
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(vi)

B0 +Bm ̸= ±∂u0
∂λ

(0, 0) ,

where the computable constants B0 and Bm are given in (2.20) and (3.17).

2 Solutions homoclinic to Mc.

In this section we construct Mcu and Mcs which are (locally) invariant man-
ifolds of solutions that approach the slow manifold y = v(x, ε, λ) at an expo-
nential rate. In [5, 6] the following result has been proved.

2.1 Theorem. [6] Let f and g be bounded Cr functions, r ≥ 2, with bounded
derivatives, satisfying conditions (i)-(iv) of the Introduction and let the num-
bers β and σ satisfy 0 < rσ < β < Λg. Then, given suitably small positive
numbers µ1 and µ2, there exist positive numbers ρ0, λ0, ε0(< 2σ/N , where N
is a bound for the derivatives of f(x, 0, 0, 0)), such that for |ε| ≤ ε0, |λ| ≤ λ0,
|ξ±| ≤ ρ0, ζ

+ ∈ R(P+), |ζ+| ≤ µ1, ζ
− ∈ N (P−), |ζ−| ≤ µ2, there exists a

unique solution

(x±(t), y±(t)) = (x±(t, ξ±, ζ±, λ), y±(t, ξ±, ζ±, ε, λ))

of (1.1) defined respectively for t ≥ 0 and for t ≤ 0 such that

e|βt||x+(t)− xc(εt, ξ
+, ε, λ)| ≤ µ1, e|βt||y+(t)− v(x+(t), ε, λ)| ≤ µ1 (2.1)

for t ≥ 0, and

e|βt||x−(t)− xc(εt, ξ
−, ε, λ)| ≤ µ2, e|βt||y−(t)− v(x−(t), ε, λ)| ≤ µ2 (2.2)

for t ≤ 0, and

P+[y+(0)− v(x+(0), ε, λ)] = ζ+ , (I− P−)[y−(0)− v(x−(0), ε, λ)] = ζ−

(2.3)
Moreover y±(t, ξ±, ζ±, ε, λ)−v(x±(t, ξ±, ζ±, ε, λ), ε, λ) and x±(t, ξ±, ζ±, ε, λ)−
xc(εt, ξ

±, ε, λ) are Cr−1 in the parameters (ξ±, ζ±, ε, λ) and for k = 1, . . . , r−
1, their kth derivatives also satisfy the estimate (2.2) with β replaced by β−kσ
and µ1 and µ2 replaced by possibly larger constants. Also there is a constant
N1 such that for t ≤ 0

e|βt||x−(t, ξ−, ζ−, ε, λ)− xc(εt, ξ
−, ε, λ)| ≤ N1|ε||ζ−|,

e|βt||y−(t, ξ−, ζ−, ε, λ)− v(x−(t, ξ−, ζ−, ε, λ), ε, λ))| ≤ N1|ζ−|.
(2.4)

and for t ≥ 0

e|βt||x+(t, ξ+, ζ+, ε, λ)− xc(εt, ξ
+, ε, λ)| ≤ N1|ε||ζ+|,

e|βt||y+(t, ξ+, ζ+, ε, λ)− v(x+(t, ξ+, ζ+, ε, λ), ε, λ))| ≤ N1|ζ+|.
(2.5)
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Following section 2.1 in [6], using Theorem 2.1 we define the local centre-
unstable and centre-stable manifolds near the origin in Rm+n+1 as follows

Mcu
loc := {(x−(0, ξ−, ζ−, ε, λ), y−(0, ξ−, ζ−, ε, λ)) : |ζ−| < µ0, |ξ−| < ρ0},

Mcs
loc := {(x+(0, ξ+, ζ+, ε, λ), y+(0, ξ+, ζ+, ε, λ)) : |ζ+| < µ0, |ξ+| < ρ0}.

In [6] it has been proved that Mcu
loc and Mcs

loc are respectively negatively and
positively invariant for (1.1). Thus, going respectively forward and backward
in t, we can construct fromMcu

loc andMcs
loc the global manifoldMcu andMcs,

see Lemma 2.3 in section 2.2 in [6]. Therefore Mcu and Mcs are respectively
p + m + 1 and n − p + m + 1 dimensional immersed manifolds of Rn+m+1,
made up by the trajectories asymptotic to Mc resp. in the past and in the
future.

Following the discussion after Theorems 2.1 and 2.2 in [6], we see that
the kth derivatives of x+(t, ξ, ζ+, ε, λ) and of x−(t, ξ, ζ−, ε, λ) with respect to
(ξ, ζ±, ε, λ) are bounded above in absolute value by Cke

(k+1)σ|t| for t ∈ R,
where Ck is a constant and σ > Nε0 is a positive number that satisfies
0 < rσ < β < Λg. Finally, because of uniqueness of (x±(t, ξ±, ζ±, ε, λ),
y±(t, ξ, ζ±, ε, λ)), we see that the following properties hold:

x±(t, ξ±, v(ξ±, ε, λ), ε, λ) = xc(εt, ξ
±, ε, λ),

y±(t, ξ±, v(ξ±, ε, λ), ε, λ) = v(xc(εt, ξ
±, ε, λ), ε, λ)

(2.6)

and
x±(t, ξ±, ζ±, 0, λ) = ξ± (2.7)

see [6]. Since xc(0, ξ, ε, λ) = ξ, we see that the slow manifold Mc defined by
y = v(ξ, ε, λ) is contained in the intersection between Mcu and Mcs.

Using section 2.3 in [6] we can define a foliation of Mcu
loc and Mcs

loc as
follows. Let ξ ∈ Rm+1, |ξ| sufficiently small, we set

Mcu(ξ) := {(x−(t, ξ, ζ−, ε, λ), y−(t, ξ, ζ−, ε, λ)) | |ζ−| < µ0, ζ
− ∈ NP− , t ∈ R}

Mcs(ξ) := {(x+(t, ξ, ζ+, ε, λ), y+(t, ξ, ζ+, ε, λ)) | |ζ+| < µ0, ζ
+ ∈ RP+ , t ∈ R} .

From section 2.3 in [6] we see that that Mcu(ξ) and Mcs(ξ) are p and
n− p manifolds for any ξ ∈ Rm+1, and that Mcu = ∪ξ∈Rm+1Mcu(ξ), Mcs =
∪ξ∈Rm+1Mcs(ξ), are the global centre-unstable and centre-stable manifolds

defined above. Moreover given ξ̄, ξ̃ ∈ Rm+1 then either Mcu(ξ̄) and Mcu(ξ̃)
coincide or they do not intersect; similarly eitherMcs(ξ̄) andMcs(ξ̃) coincide
or they do not intersect: thus Mcu(ξ) and Mcs(ξ) define indeed foliations
for Mcu and Mcs. In section 4 we use the following sets:

Mcu(C(ε, λ)) := {Mcu(ξ), | ξ ∈ C(ε, λ)}
Mcs(C(ε, λ)) := {Mcs(ξ), | ξ ∈ C(ε, λ)} ,

(2.8)
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where C(ε, λ) is a centre manifold of (1.4). Observe that Mcu(C(ε, λ)) and
Mcs(C(ε, λ)) are resp. p+ 1 and n− p+ 1 dimensional immersed manifolds
which are invariant for the flow of (1.1). Moreover

(x(0), y(0)) ∈ Mcu(C(ε, λ)) =⇒ lim
t→−∞

(x(t), y(t)− v(x(t), ε, λ))e−|Λf εt| = 0

(x(0), y(0)) ∈ Mcs(C(ε, λ)) =⇒ lim
t→∞

(x(t), y(t)− v(x(t), ε, λ))e−|Λf εt| = 0 .

Let A ⊂ Rm+1 be a set, we define dist(ξ, A) = inf{|ξ − η| | η ∈ A}. We
borrow from [6] a theorem which ensures the existence of solutions of (1.1)
homoclinic to Mc.

2.2 Theorem. [6] Let f and g be bounded Cr functions, r ≥ 2, with bounded
derivatives, satisfying conditions (i)–(v) of the Introduction. Then there exist
positive numbers ρ0, λ0, ε0 such that for any |ε| < ε0, |λ| < λ0 there is a
family of solutions (x̃(t, ξ0̂, ε, λ), ỹ(t, ξ0̂, ε, λ)) depending on ξ0̂ ∈ Rm, |ξ0̂| <
ρ0, such that (x̃(t), ỹ(t)) ∈ (Mcs ∩Mcu)\ Mc and

lim
|t|→∞

dist
(
(x̃(t, ξ0̂, ε, λ), ỹ(t, ξ0̂, ε, λ)),Mc

)
= 0

In fact a local type of uniqueness in ensured: there is a neighborhood Ω0

of (0, h(0)) such that, if (x(t), y(t)) ∈ (Mcs ∩ Mcu) and (x(0), y(0)) ∈ Ω0,
then (x(t), y(t)) coincides with one of the solutions (x̃(t, ξ0̂, ε, λ), ỹ(t, ξ0̂, ε, λ))
constructed through Theorem 2.2, for a certain ξ0̂ ∈ Rm.

We sketch the proof since some details will be useful later on. To prove
theorem 2.2 Battelli and Palmer in [6] look for a bifurcation function whose
zeroes correspond to solutions of the system{

x+(−T, ξ+, ζ+, ε, λ) = x−(T, ξ−, ζ−, ε, λ) = ξ
y+(−T, ξ+, ζ+, ε, λ) = y−(T, ξ−, ζ−, ε, λ)

(2.9)

where T > 0, and |ξ±| < ρ0. Set

K(ξ+, ξ−, ζ+, ζ−, ε, λ) := y+(−T, ξ+, ζ+, ε, λ)− y−(T, ξ−, ζ−, ε, λ)

They apply Liapunov-Schmidt reduction to system (2.9) and rewrite it as
follows

x+(−T, ξ+, ζ+, ε, λ) = x−(T, ξ−, ζ−, ε, λ) = ξ
K(ξ+, ξ−, ζ+, ζ−, ε, λ)− [ψ∗K(ξ+, ξ−, ζ+, ζ−, ε, λ)]ψ = 0
ψ∗K(ξ+, ξ−, ζ+, ζ−, ε, λ) = 0

(2.10)

Using several times the implicit function theorem and exponential dichotomy
estimates, they express ξ± as functions of the variables (ξ, ζ±, ε, λ), then ζ±
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as functions of the remaining variables, and they end up with unique Cr−1

functions ζ̄±(ξ, ε, λ), and ξ̄±(ξ, ε, λ) which are the unique solutions of the
first two equations in (2.10), see pages 448-453 in [6] for more details. Set

x̄±(t, ξ, ε, λ) := x±(t, ξ̄±(ξ, ε, λ), ζ̄±(ξ, ε, λ), ε, λ)
ȳ±(t, ξ, ε, λ) := y±(t, ξ̄±(ξ, ε, λ), ζ̄±(ξ, ε, λ), ε, λ)

,

Since for ε = 0, ẋ = 0 (see (1.1)), using (2.9) it follows that

x±(t, ξ̄±(ξ, 0, λ), ζ̄±(ξ, 0, λ), 0, λ) ≡ ξ̄±(ξ, 0, λ) ≡ ξ (2.11)

for any ξ and λ. Hence

∂
∂ξi
ξ̄±(ξ, ε, λ)⌊(ξ,ε,λ)=(0,0,0)=

{
0 for i = 1, . . . ,m
1 for i = 0

∂
∂λ
ξ̄±(ξ, ε, λ)⌊(ξ,ε,λ)=(0,0,0)= 0

(2.12)

Moreover, following [6], we see that

∂ξ̄±

∂ε
(ξ, ε, λ)⌊(0,0,0) =

∫ ±∞

0

f(0, h(s), 0, 0)ds (2.13)

Hence we are left with solving the bifurcation equation:

G(ξ, ε, λ) = ψ∗[ȳ+(−T, ξ, ε, λ)− ȳ−(T, ξ, ε, λ)] = 0 (2.14)

Following [6] we see that

∂G

∂ξi
(0, 0, 0) = −

∫ +∞
−∞ ψ∗(t) ∂g

∂xi
(0, h(t), 0, 0)dt , i=0,. . . ,m (2.15)

∂G

∂λ
(0, 0, 0) = −

∫ +∞

−∞
ψ∗(t)

∂g

∂λ
(0, h(t), 0, 0)dt (2.16)

∂G

∂ε
(0, 0, 0) = −

∫∞
−∞ ψ∗(s)

[
∂g
∂ε
(s) + ∂g

∂x
(s)
(∫ s

0
f(t)dt

)]
ds (2.17)

where g(s) stands for g(0, h(s), 0, 0), f(s) for f(0, h(s), 0, 0). Therefore, if (v)
holds ∂

∂ξ0
G(0, 0, 0) ̸= 0; so via Implicit Function Theorem we obtain a Cr−1

function ξ̃0(ξ0̂, ε, λ) such that ξ̃0(0, 0, 0) = 0 and G(ξ̃0(ξ0̂, ε, λ), ξ0̂, ε, λ) = 0.
Hence, for any (ξ0̂, ε, λ) ∈ Rm+2 small enough, there is a unique solution of
(1.1) which is homoclinic to the slow manifold Mc, i.e.:

x̃(t, ξ0̂, ε, λ) =

{
x̄+(t− T, ξ̃0(ξ0̂, ε, λ), ξ0̂, ε, λ) t ≥ 0,

x̄−(t+ T, ξ̃0(ξ0̂, ε, λ), ξ0̂, ε, λ) t ≤ 0.

ỹ(t, ξ0̂, ε, λ) =

{
ȳ+(t− T, ξ̃0(ξ0̂, ε, λ), ξ0̂, ε, λ) t ≥ 0,

ȳ−(t+ T, ξ̃0(ξ0̂, ε, λ), ξ0̂, ε, λ) t ≤ 0.

(2.18)
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We evaluate all the derivatives, which will be useful in next section

∂ξ̃0
∂ξj

(ξ0̂, ε, λ)⌊(0,0,0)= −

∫∞
−∞ ψ∗(t) ∂g

∂xj
(0, h(t), 0, 0)dt∫∞

−∞ ψ∗(t) ∂g
∂x0

(0, h(t), 0, 0)dt
(2.19)

B0 :=
∂ξ̃0
∂λ

(ξ0̂, ε, λ)⌊(0,0,0)= −
∫∞
−∞ ψ∗(t) ∂g

∂λ
(0, h(t), 0, 0)dt∫∞

−∞ ψ∗(t) ∂g
∂x0

(0, h(t), 0, 0)dt
(2.20)

∂ξ̃0
∂ε

(ξ0̂, ε, λ)⌊(0,0,0)= −
∂G
∂ε
∂G
∂ξ0

= A+ Am , where (2.21)

A := −
∫∞
−∞ ψ∗(s)∂g

∂ε
(s)ds+

∫∞
−∞(ψ∗(s) ∂g

∂x0
(s)
∫ s

0
f0(t)dt)ds∫∞

−∞ ψ∗(s) ∂g
∂x0

(s)ds
,

Am := −
∑m

i=1[
∫∞
−∞(ψ∗(s) ∂g

∂xi
(s)
∫ s

0
fi(t)dt)ds]∫∞

−∞ ψ∗(s) ∂g
∂x0

(s)ds
,

(2.22)

and g(s) stands for g(0, h(s), 0, 0), fi(s) for fi(0, h(s), 0, 0) and similarly for
their derivatives. This concludes the proof of Theorem 2.2. We stress that
in [6] the authors just require ∂G

∂ξ
(0, 0, 0) ̸= 0 (i.e. ∂G

∂ξj
(0, 0, 0) ̸= 0 for a

certain j ∈ {0, 1, . . . ,m}) and use such a condition and the implicit function
theorem to construct the solution defined in (2.18). Our request is slightly
more restrictive: we need (v), i.e. ∂G

∂ξ0
(0, 0, 0) ̸= 0 (so we ask the j-coordinate

to be the 0 one).

2.3 Remark. We emphasize that Theorem 2.2 allows to specify the trajec-
tory of the slow manifold which is approached by the solution (2.18) of
(1.1): this fact will be used in the next section. More precisely the orbit
(2.18) approaches the trajectory (xc(εt, ξ, ε, λ), v(xc(εt, ξ, ε, λ), ε, λ)) of the
slow manifold such that xc(∓εT, ξ, ε, λ) = ξ̃±, where ξ = (ξ̃0(ξ0̂, ε, λ), ξ0̂) and
ξ̃± = ξ̃±(ξ0̂, ε, λ).

3 Existence of Homoclinic and Heteroclinic

solutions.

In this section we state and prove our main results. In Theorem 3.1, we
select a trajectory (x̆(t, ε, λ), y̆(t, ε, λ)) defined in (3.14), homoclinic to the
centre manifold within the slow manifold, denoted by Mc(C(ε, λ)). The lack
of uniqueness problems are discussed in the appendix.

We recall that, when h) holds, (1.4) admits at least a centre-manifold
which continue to exist if ε and λ are small, as long as the critical points
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persist. We choose one of them and denote it by C(ε, λ). Moreover, with a
Cr−2 change of coordinates (we recall that (1.4) is just Cr−1) and losing some
regularity, we can flatten C(ε, λ) and make it coincide with the x0 axis, for
ε = λ = 0: i.e. we pass from (1.4) to (1.6), see Theorem 5.8 in [13] (in fact
something more can be said when either the unstable or the stable directions
do not exist, i.e. l = 0 or m− l = 0 respectively, see section 5 in [13]).

Assume to fix the ideas that f0 is either as in (1.7) or as in (1.8) and
ε, λ > 0, so that we have two critical points s(ε, λ) and u(ε, λ) which are
respectively stable and unstable for the restriction of (1.6) to C(ε, λ). Then
u(ε, λ) and s(ε, λ) admit respectively a l + 1 and a l dimensional unstable
manifolds, as critical points of (1.6), denoted byW u(u(ε, λ)) andW u(s(ε, λ));
similarly they admit the m − l and m − l + 1 dimensional stable manifolds
W s(u(ε, λ)) and W s(s(ε, λ)): all these manifolds are uniquely defined. Let
Ωx be a neighborhood of the origin in Rm+1: we can define local centre-
unstable W u(C(ε, λ)) and centre-stable manifolds W s(C(ε, λ)) (not unique)
having the following properties

if ξ ∈ (W u(C(ε, λ)) ∩ Ωx) , then limt→−∞|xc(t, ξ, ε, λ)|eΛ
f t = 0

if ξ ∈ (W s(C(ε, λ)) ∩ Ωx) , then limt→∞|xc(t, ξ, ε, λ)|e−Λf t = 0
(3.1)

where Λf is defined in h).
Note that C(ε, λ) is obtained as intersection between W u(C(ε, λ)) and

W s(C(ε, λ)). Observe that C(ε, λ) is divided by u(ε, λ) into two open com-
ponents: one, say C−(ε, λ), is the graph of a trajectory which becomes un-
bounded as t → +∞, the other is made up by trajectories converging to
s(ε, λ) as t → +∞. Similarly s(ε, λ) divides C(ε, λ) into two open compo-
nents: C+(ε, λ) is the graph of a trajectory which becomes unbounded as
t → −∞, and the other is made up by trajectories converging to u(ε, λ) as
t→ −∞. Analogously them−l dimensional manifoldW s(u(ε, λ))∩Ωx splits
W s(C(ε, λ)) into two relatively open components: W s(s(ε, λ))∩Ωx and a fur-
ther component, say W s,n(C(ε, λ)) which is made up by trajectories which
leave Ωx for t > 0. The fact that we have just two components easily follows
from an analysis of the tangent spaces. Moreover the l dimensional manifold
W u(s(ε, λ))∩Ωx splitsW u(C(ε, λ)) intoW u(u(ε, λ))∩Ωx and a further com-
ponent, say W u,n(C(ε, λ)) which is made up by trajectories which leave Ωx

for t > 0, Note that all the manifoldsW u(C(ε, λ)),W u(s(ε, λ)),W s(C(ε, λ)),
W s(u(ε, λ)) have their tangent planes coinciding with the coordinate axes.

Now we represent all these manifolds,W u(C(ε, λ)),W s(C(ε, λ)),W u(s(ε, λ)),
W s(u(ε, λ)) of Ωx ⊂ Rm+1 as graphs, introducing some functions hj. Con-
sider W u(C(ε, λ)) and W s(C(ε, λ)); there are open neighborhoods of the
origin A0,a ⊂ Rl+1, A0,b ⊂ Rm−l+1, and smooth functions h(0,a) : A0,a ×
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[−ε0, ε0] × [−λ0, λ0] → Rm−l, h(0,b) : A0,b × [−ε0, ε0] × [−λ0, λ0] → Rl such
that ξ = (ξ0, ξa, ξb) ∈ W u(C(ε, λ)) ∩ Ωx if and only if ξb = h(0,a)(ξ0, ξa, ε, λ),
while ξ ∈ W s(C(ε, λ)) ∩ Ωx if and only if ξa = h(0,b)(ξ0, ξb, ε, λ).
Moreover there are smooth functions ha : Aa× [−ε0, ε0]× [−λ0, λ0] → R, hb :
Ab × [−ε0, ε0]× [−λ0, λ0] → R such that ξ = (ξ0, ξa, ξb) ∈ W u(s(ε, λ))∩Ωx if
and only if ξ0 = ha(ξa, ε, λ) and ξb = h(0,a)(ξ0, ξa, ε, λ), while ξ = (ξ0, ξa, ξb) ∈
W s(u(ε, λ)) ∩ Ωx if and only if ξ0 = hb(ξb, ε, λ) and ξa = h(0,b)(ξ0, ξb, ε, λ).
Moreover

∂h(0,a)
∂(ξ0, ξa)

= 0 ,
∂h(0,b)
∂(ξ0, ξb)

= 0 ,
∂ha
∂ξa

= 0 ,
∂hb
∂ξb

= 0 (3.2)

where the derivatives are evaluated for ε = λ = ξ0 = 0, ξa = 0, ξb =
0. Such an orthogonality condition is a consequence of the particular form
of system (1.6), which is obtained precisely flattening stable, unstable and
centre invariant manifolds.

In order to divide the parameter space (ε, λ) in subsets in which (x̆(t, ε, λ),
y̆(t, ε, λ)) has different behavior, we need to compute the derivatives of the
functions h(0,a), h(0,b), ha, hb with respect to all the variables. Since

sb(ε, λ) = h(0,a)(s0(ε, λ), sa(ε, λ), ε, λ) , s0(ε, λ) = ha(sa(ε, λ), ε, λ)
ua(ε, λ) = h(0,b)(u0(ε, λ), ub(ε, λ), ε, λ) , u0(ε, λ) = hb(ub(ε, λ), ε, λ)

(3.3)

from (3.2) and (3.3) we get

∂
∂ε
h(0,a)((0, 0), 0, 0) =

∂ub

∂ε
(0, 0) , ∂

∂ε
ha(0, 0, 0) = −∂u0

∂ε
(0, 0) = 0

∂
∂ε
h(0,b)((0, 0), 0, 0) =

∂ua

∂ε
(0, 0) , ∂

∂ε
hb(0, 0, 0) =

∂u0

∂ε
(0, 0) = 0

(3.4)

where we used (1.10) and (1.11). When f0 satisfies (1.7) we have

∂
∂λ
h(0,a)((0, 0), 0, 0) =

∂ub

∂λ
(0, 0) , ∂

∂λ
ha(0, 0, 0) = −∂u0

∂λ
(0, 0)

∂
∂λ
h(0,b)((0, 0), 0, 0) =

∂ua

∂λ
(0, 0) , ∂

∂λ
hb(0, 0, 0) =

∂u0

∂λ
(0, 0)

(3.5)

When f0 satisfies (1.8) we need to introduce the variable µ :=
√
λ so that

the critical points are smooth functions of ε and µ. Then reasoning as above
and recalling that ∂si

∂µ
(0, 0) = 0 for i = 1, . . . ,m we find the following:

∂
∂µ
h(0,a)((0, 0), 0, 0) = 0 , ∂

∂µ
h(0,b)((0, 0), 0, 0) = 0

∂
∂µ
ha(0, 0, 0) = −∂u0

∂µ
(0, 0) , ∂

∂µ
hb(0, 0, 0) =

∂u0

∂µ
(0, 0)

(3.6)

We recall that Mc(C(ε, λ)) denotes the centre manifold within the slow man-
ifold and that it is contained in Mcu(C(ε, λ)) ∩Mcs(C(ε, λ)). We are going
to prove the following.
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3.1 Theorem. Let f and g be Cr functions, r ≥ 2, bounded with their
derivatives, satisfying conditions (i)–(v) of the Introduction. Then there are
ε0 > 0 and λ0 > 0 such that for any 0 < |ε| < ε0 and |λ| < λ0 there
exists a trajectory (x̆(t, ε, λ), y̆(t, ε, λ)) homoclinic to Mc(C(ε, λ)) and such
that (x̆(0, ε, λ), y̆(0, ε, λ)) lies in the neighborhood Ω0 of (0, h(0)).

We look for a trajectory homoclinic to Mc(C(ε, λ)); we set

ξ̃±(ξ0̂, ε, λ) := (ξ̃±0 (ξ0̂, ε, λ), ξ̃
±
0̂
(ξ0̂, ε, λ)) := ξ̄±

(
ξ̃0(ξ0̂, ε, λ), ξ0̂, ε, λ

)
, (3.7)

In the next subsection we divide the parameters space into different subsets
in which the solution (x̆(t, ε, λ), y̆(t, ε, λ)) constructed via Theorem 3.1 has a
different asymptotic behavior: we need to evaluate all the derivatives of ξ̃±0 .
Notation. In the whole section we proceed to evaluate via implicit function
theorem several derivatives, having quite long formulas. To deal with less
cumbersome notation in the whole section we set, with a little abuse, fi(s) for
fi(0, h(s), 0, 0), gi(s) for gi(0, h(s), 0, 0),

∂fi
∂x

(s) for ∂fi
∂x

(0, h(s), 0, 0) and sim-

ilarly for all the possible derivatives of both f and g, for i = 0, . . . ,m, a, b, 0̂.
Using (2.11), for ε = 0 we find:

ξ̃±(ξ0̂, 0, λ) = (ξ̃0(ξ0̂, 0, λ), ξ0̂) . (3.8)

It follows that

∂ξ̃±
0̂

∂ξ0̂
(ξ0̂, 0, λ) = I ,

∂ξ̃±
0̂

∂λ
(ξ0̂, 0, λ) = 0 . (3.9)

Using (2.13) and the first equality in (3.9) we find

∂ξ̃±
0̂

∂ε
(ξ0̂, 0, 0) =

(∫ ±∞

0

f1(s)ds, . . . ,

∫ ±∞

0

fm(s)ds
)
=

∫ ±∞

0

f0̂(s)ds , (3.10)

From (2.13) and (2.21), setting A±
0 := A+

∂ξ̄±0 (0,0,0)

∂ε
we find

∂ξ̃±0 (0, 0, 0)

∂ε
=
∂ξ̄±0 (0, 0, 0)

∂ξ0

∂ξ̃0(0, 0, 0)

∂ε
+
∂ξ̄±0 (0, 0, 0)

∂ε
= A±

0 + Am ,

A±
0 := −

∫∞
−∞ ψ∗(s)∂g

∂ε
(s)ds+

∫∞
−∞(ψ∗(s) ∂g

∂x0
(s)
∫ s

±∞ f0(t)dt)ds∫∞
−∞ ψ∗(s) ∂g

∂x0
(s)ds

(3.11)

We consider the solution (x̃(t, ξ0̂, ε, λ), ỹ(t, ξ0̂, ε, λ)), and the corresponding
functions ξ̃±(ξ0̂, ε, λ) = (ξ̃±0 (ξ0̂, ε, λ), ξ̃

±
a (ξ0̂, ε, λ), ξ̃

±
b (ξ0̂, ε, λ)) constructed through

Theorem 2.2. We define the functions H+ : Aa×Ab× [−ε0, ε0]× [−λ0, λ0] →
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Rl, H− : Aa × Ab × [−ε0, ε0] × [−λ0, λ0] → Rm−l, H : Aa × Ab × [−ε0, ε0] ×
[−λ0, λ0] → Rm as follows:

H+(ξ0̂, ε, λ) = ξ̃+a (ξ0̂, ε, λ)− h(0,b)(ξ̃
+
0 (ξ0̂, ε, λ), ξ̃

+
b (ξ0̂, ε, λ), ε, λ)

H−(ξ0̂, ε, λ) = ξ̃−b (ξ0̂, ε, λ)− h(0,a)(ξ̃
−
0 (ξ0̂, ε, λ), ξ̃

−
a (ξ0̂, ε, λ), ε, λ)

H(ξ0̂, ε, λ) = (H+(ξ0̂, ε, λ), H
−(ξ0̂, ε, λ))

(3.12)

We stress that ξ̃+(ξ0̂, ε, λ) ∈ W s(C(ε, λ)) and ξ̃−(ξ0̂, ε, λ) ∈ W u(C(ε, λ))
whenever H(ξ0̂, ε, λ) = 0. Observe that

∂H+

∂ξ0̂
=
∂ξ̃+a
∂ξ0̂

−
∂h(0,b)
∂(x0, xb)

(∂ξ̃+0
∂ξ0̂

,
∂ξ̃+b
∂ξ0̂

)
.

Using (3.9), (3.2) and repeating the argument for H−, we find

∂H

∂ξ0̂
(ξ0̂, ε, λ)⌊(0,0,0)= I (3.13)

Moreover by construction we haveH(0, 0, 0) = 0; so we can apply the implicit
function theorem to find a smooth function ξ̆0̂(ε, λ) such thatH(ξ̆0̂(ε, λ), ε, λ) ≡
0. As usual we set ξ̆±(ε, λ) := ξ̃±(ξ̆0̂(ε, λ), ε, λ), and

(x̆(t, ε, λ), y̆(t, ε, λ)) := (x̃(t, ξ̆0̂(ε, λ), ε, λ), ỹ(t, ξ̆0̂(ε, λ), ε, λ)) (3.14)

The solution of (1.1) defined by (3.14) is homoclinic toM(C(ε, λ)) and proves
Theorem 3.1. We evaluate the derivatives of ξ̆0̂(ε, λ), which will be useful for

the next step. From (3.13) we get
∂ξ̆0̂
∂λ

(0, 0) = −∂H
∂λ

(0, 0, 0), so using (3.9),
(3.2), (3.5) and the implicit function theorem we find

∂ξ̆0̂
∂λ

(0, 0) = −

(
∂ξ̃+a
∂λ

−
∂h(0,b)
∂λ

,
∂ξ̃−b
∂λ

−
∂h(0,a)
∂λ

)
=
∂u0̂
∂λ

(0, 0) (3.15)

Since
∂ξ̆0̂
∂ε

(0, 0) = −∂H
∂ε
(0, 0, 0), using (3.10) and (3.4) we find

∂ξ̆0̂
∂ε

(0, 0) =

(∫ 0

+∞
fa(s)ds+

∂ua
∂ε

(0, 0),

∫ 0

−∞
fb(s) +

∂ub
∂ε

(0, 0)ds

)
(3.16)

From
∂ξ̆±0
∂λ

(0, 0) =
∂ξ̃±0
∂ξ0̂

(0, 0, 0)
∂ξ̆0̂
∂λ

(0, 0) +
∂ξ̃±0
∂λ

(0, 0, 0) ,
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using (2.19), (2.20) and (3.15) we find the following

∂ξ̆±0
∂λ

(0, 0) = B0 +Bm , where B0 is as in (2.20) and

Bm := −

∑m
j=1

[
∂uj

∂λ
(0, 0)

∫∞
−∞ ψ∗(t) ∂

∂xj
g(t)dt

]
∫∞
−∞ ψ∗(t) ∂

∂x0
g(t)dt

.

(3.17)

Hence in particular
∂ξ̆−0
∂λ

(0, 0) =
∂ξ̆+0
∂λ

(0, 0). Similarly we find

∂ξ̆±0
∂ε

(0, 0) =
∂ξ̃±0
∂ξ0̂

(0, 0, 0)
∂ξ̆0̂
∂ε

(0, 0) +
∂ξ̃±0
∂ε

(0, 0, 0) .

Hence using (2.19), (3.16), (3.11) we find

∂ξ̆±0
∂ε

(0, 0) = Cm + A±
0 + Am , where Cm :=

m∑
i=1

[
Fi

∫ ∞

−∞
ψ∗(t)

∂g

∂xi
(t)dt

]
∫∞
−∞ ψ∗(t) ∂g

∂x0
(t)dt

Fj =

∫ +∞

0

fj(t)dt−
∂uj
∂ε

(0, 0) , Fk =

∫ −∞

0

fk(t)dt−
∂uk
∂ε

(0, 0)

(3.18)

for 1 ≤ j ≤ l < k ≤ m. We stress that the terms A±
0 and B0 are the same

as in the one dimensional case m = 0, while Am, Bm and Cm are new terms
depending on the strongly stable and unstable directions of the slow manifold
and they become trivially null when m = 0 (compare with [8]).
In the next subsections we see for which values of the parameters the solution
defined by (3.14) is heteroclinic, homoclinic or leaves Ωh. Now we distinguish
between f satisfying (1.7) and (1.8).

3.1 Transcritical bifurcation.

We argue separately in each quadrant: we start from ε > 0 and λ > 0. The
key point to understand the behavior in the future is to establish the mutual
positions of ξ̆+(ε, λ) andW s(u(ε, λ)), while to understand the behavior in the
past we need to know the positions of ξ̆−(ε, λ) with respect to W u(s(ε, λ)).
So we define J±

1 : [−ε0, ε0]× [−λ0, λ0] → R as follows

J+
1 (ε, λ) = ξ̆+0 (ε, λ)− hb(ξ̆

+
b (ε, λ), ε, λ) ,

J−
1 (ε, λ) = ξ̆−0 (ε, λ)− ha(ξ̆

−
a (ε, λ), ε, λ)

(3.19)
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We want to construct via implicit function theorem two curves, λ+1 (ε) and
λ−1 (ε), satisfying λ

±
1 (0) = 0, and such that J±

1 (ε, λ
±
1 (ε)) = 0. Then (x̆(t, ε, λ+1 (ε)),

y̆(t, ε, λ+1 (ε))) converges to U(ε, λ+1 (ε)) as t → +∞, while (x̆(t, ε, λ−1 (ε)),
y̆(t, ε, λ−1 (ε))) converges to S(ε, λ

−
1 (ε)) as t→ −∞.

Using (3.17) and (3.5) we find

∂J+
1

∂λ
(0, 0) =

∂ξ̆+0
∂λ

(0, 0)− ∂hb

∂λ
(0, 0, 0) = B0 +Bm − ∂u0

∂λ
(0, 0)

∂J−
1

∂λ
(0, 0) =

∂ξ̆−0
∂λ

(0, 0)− ∂ha

∂λ
(0, 0, 0) = B0 +Bm + ∂u0

∂λ
(0, 0)

; (3.20)

so, if (vi) holds we can apply the implicit function theorem and construct the
curves λ±1 (ε) (defined for 0 ≤ ε ≤ ε0) such that J±

1 (ε, λ
±
1 (ε)) = 0. Moreover

d

dε
λ+1 (0) = −

∂
∂ε
ξ̆+0 (0, 0)− ∂u0

∂ε
(0, 0)

∂
∂λ
ξ̆+0 (0, 0)− ∂u0

∂λ
(0, 0)

= − A+
0 + Am + Cm

B0 +Bm − ∂u0

∂λ
(0, 0)

d

dε
λ−1 (0) = − A−

0 + Am + Cm

B0 +Bm + ∂u0

∂λ
(0, 0)

(3.21)

3.2 Remark. The curves λ+1 (ε) and λ−1 (ε) may not intersect the open set
Q1 = {(ε, λ) | ε > 0 , λ ≥ 0}. If this is the case for any (ε, λ) ∈ Q1 the
trajectory (x̆(t, ε, λ), y̆(t, ε, λ)) does not converge respectively to U in the
future neither to S in the past.

By construction ξ̆+(ε, λ) ∈ W s(u(ε, λ)) if and only if J+
1 (ε, λ) = 0. We

recall that, if we restrict to a small neighborhood Ωx of the origin, then
W s(C(ε, λ)) is divided by W s(u(ε, λ)) in two relatively open components,
W s(s(ε, λ)) andW s,n(C(ε, λ)). The following result is crucial in what follows
(see also section 5 for a discussion concerning uniqueness problem related to
centre manifold theory).

3.3 Remark. Assume ε, λ > 0, then

ξ0 − hb(ξb, ε, λ) < 0 , if and only if ξ ∈ W s(s(ε, λ)) ;
ξ0 − hb(ξb, ε, λ) > 0 , if and only if ξ ∈ W s,n(C(ε, λ))

Proof. In Ωx the manifold W s(C(ε, λ)) is characterized by the property that
ξ ∈ W s(C(ε, λ)) if and only if ξa = h0,b(ξ0, ξb, ε, λ); moreover ξ ∈ W s(u(ε, λ))
if and only if we also have ξ0 = hb(ξb, ε, λ). Moreover ξ0−hb(ξb, ε, λ) changes
sign in W s(C(ε, λ)) ∩ Ωx. It follows that we have the two alternatives: the
one described in Remark 3.3 and its opposite (the one obtained changing
sign in both the inequality).
From (3.2) and the fact that u0(ε, λ)− s0(ε, λ) > 0 we see that

hb(ub(ε, λ), ε, λ)− hb(sb(ε, λ), ε, λ) < u0(ε, λ)− s0(ε, λ) .

EJQTDE, No. 1, p. 18



Since u(ε, λ) ∈ W s(u(ε, λ)) then u0(ε, λ) = hb(ub(ε, λ), ε, λ); using this fact
in the previous inequality we get s0(ε, λ) − hb(sb(ε, λ), ε, λ) < 0. Obviously
s(ε, λ) ∈ W s(s(ε, λ)), hence ξ0 − hb(ξb, ε, λ) < 0 in the whole connected
component containing s(ε, λ) and Remark 3.3 follows.

From Remark 3.3 we see that if J+
1 (ε, λ) < 0, then ξ̆+(ε, λ) ∈ W s(s(ε, λ))

and the trajectory xc(t, ξ̆
+(ε, λ), ε, λ) of (1.4) converges to s(ε, λ); if J+

1 (ε, λ) >
0, then ξ̆+(ε, λ) ∈ W s,n(C(ε, λ)), so there is T > 0 such that xc(T, ξ̆

+(ε, λ), ε, λ)
̸∈ Ωx. In the former case (x̆(t, ε, λ), y̆(t, ε, λ)) → S(ε, λ) as t→ +∞, while in
the latter there is T > 0 such that x̆(T, ε, λ) ̸∈ Ωx (obviously ξ̆+(ε, λ+1 (ε)) ∈
W s(u(ε, λ+1 (ε))) so x̆(t, ε, λ) → U(ε, λ) as t → +∞). The analogous argu-
ment holds also for W u(s(ε, λ)), W u(u(ε, λ)) and in W u,n(C(ε, λ)). Further-
more

J+
1 (ε, λ) = J+

1 (ε, λ
+
1 (ε)) +

∂J+
1

∂λ
(ε, λ+1 (ε))(λ− λ+1 (ε)) +O((λ− λ+1 (ε))

2)

J−
1 (ε, λ) = J−

1 (ε, λ
−
1 (ε)) +

∂J−
1

∂λ
(ε, λ−1 (ε))(λ− λ−1 (ε)) +O((λ− λ−1 (ε))

2)
(3.22)

From (3.20) we know the signs of ∂
∂λ
J±
1 (ε, λ

±
1 (ε)); thus, using these two el-

ementary observations we deduce for which values of ε, λ the point ξ̆+(ε, λ)
belongs toW u(u(ε, λ)) orW u,n(C(ε, λ)) (and toW s(u(ε, λ))), and we obtain
a detailed bifurcation diagram (we give some examples in figures 1, 2).

Now we assume λ ≤ 0 < ε, the critical points u(ε, λ) and s(ε, λ) are C1

so u is stable and s is unstable for the flow of (1.4) restricted to C(ε, λ).
We look for the values of the parameters for which ξ̆+(ε, λ) ∈ W s(s(ε, λ))
and ξ̆−(ε, λ) ∈ W u(u(ε, λ)). So we define the smooth functions h̃b : Ab ×
[−ε0, ε0] × [−λ0, λ0] → R, h̃a : Aa × [−ε0, ε0] × [−λ0, λ0] → R such that
ξ = (ξ0, ξa, ξb) ∈ W u(u(ε, λ)) ∩ Ωx if and only if ξ0 = h̃a(ξa, ε, λ) and ξb =
h(0,a)(ξ0, ξa, ε, λ), while ξ ∈ W s(s(ε, λ)) ∩ Ωx if and only if ξ0 = h̃b(ξb, ε, λ)

and ξa = h(0,b)(ξ0, ξb, ε, λ). Repeating for h̃ the argument developed for h, we

see that the derivatives of h̃a and h̃b in (0, 0, 0) with respect to ξi are null,
but

∂h̃a
∂λ

(0, 0, 0) =
∂u0
∂λ

(0, 0) = −∂h̃b
∂λ

(0, 0, 0)

∂h̃a
∂ε

(0, 0, 0) =
∂u0
∂ε

(0, 0) = 0 =
∂h̃b
∂ε

(0, 0, 0)

(3.23)

Then we define

J+
4 (ε, λ) = ξ̆+0 (ε, λ)− h̃b(ξ̆

+
b (ε, λ), ε, λ) ,

J−
4 (ε, λ) = ξ̆−0 (ε, λ)− h̃a(ξ̆

−
a (ε, λ), ε, λ)

(3.24)
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Once again ξ̆+(ε, λ) ∈ W s(s(ε, λ)) if and only if J+
4 (ε, λ) = 0, while ξ̆−(ε, λ) ∈

W u(u(ε, λ)) if and only if J−
4 (ε, λ) = 0 (whenever λ ≤ 0 < ε). Moreover

arguing as above we see that J±
4 (0, 0) = 0 and

∂J+
4

∂λ
(0, 0) = B0 +Bm + ∂u0

∂λ
(0, 0) =

∂J−
1

∂λ
(0, 0)

∂J−
4

∂λ
(0, 0) = B0 +Bm − ∂u0

∂λ
(0, 0) =

∂J+
1

∂λ
(0, 0)

; (3.25)

so, if (vi) holds we can apply the implicit function theorem and construct
the curves λ±4 (ε) such that J±

4 (ε, λ
±
4 (ε)) ≡ 0, and

d

dε
λ+4 (0) = −

∂
∂ε
J+
4 (0, 0)

∂
∂λ
J+
4 (0, 0)

= − A+
0 + Am + Cm

B0 +Bm + ∂u0

∂λ
(0, 0)

d

dε
λ−4 (0) = −

∂
∂ε
J−
4 (0, 0)

∂
∂λ
J−
4 (0, 0)

= − A−
0 + Am + Cm

B0 +Bm − ∂u0

∂λ
(0, 0)

(3.26)

Obviously a fact analogous to Remark 3.2 holds also in this setting (and
when ε < 0 as well, see below). So W s(s(ε, λ)) divides W s(C(ε, λ)) into
two relatively open sets: W s(u(ε, λ)), and say W s,n(C(ε, λ)). If ξ̆+(ε, λ) ∈
W s(u(ε, λ)), the solution (x̆(t, ε, λ), y̆(t, ε, λ)) defined in (3.14) converges to
S(ε, λ) as t→ +∞, while if ξ̆+(ε, λ) ∈ W s,n(C(ε, λ)), there is T > 0 such that
(x̆(T, ε, λ), y̆(T, ε, λ)) ̸∈ Ω. The analogous argument holds for W u(u(ε, λ))
and W u(C(ε, λ)). So, using a Taylor expansion analogous to (3.22), we can
draw a detailed bifurcation diagram (we give some examples in figures 1, 2).

When ε < 0 we have an inversion in the stability properties of the critical
points of (1.1) with respect to the stability properties of (1.4). Therefore
if ξ̆+ = ξ̆+(ε, λ) = (ξ̆+0 , ξ̆

+
a , h(0,a)(ξ̆

+
0 , ξ̆

+
a , ε, λ)) ∈ W u(C(ε, λ)) then x̆(t, ε, λ)

converges to C(ε, λ) as t→ +∞, while if ξ̆− = ξ̆−(ε, λ) = (ξ̆−0 , h(0,b)(ξ̆
−
0 , ξ̆

−
b , ε, λ),

ξ̆−b ) ∈ W s(C(ε, λ)) then x̆(t, ε, λ) converges to C(ε, λ) as t → −∞. So we

have to reverse the role of ξ̆+ and ξ̆−. Namely we set

H̃+(ξ0̂, ε, λ) = ξ̃+b (ξ0̂, ε, λ)− h(0,a)(ξ̃
+
0 (ξ0̂, ε, λ), ε, λ), ξ̃

+
a (ξ0̂, ε, λ), ε, λ)

H̃−(ξ0̂, ε, λ) = ξ̃−a (ξ0̂, ε, λ)− h(0,b)(ξ̃
−
0 (ξ0̂, ε, λ), ε, λ), ξ̃

−
b (ξ0̂, ε, λ), ε, λ)

H̃(ξ0̂, ε, λ) = (H̃−(ξ0̂, ε, λ), H̃
+(ξ0̂, ε, λ))

(3.27)

Reasoning as in (3.13) we find again H̃(0, 0, 0) = 0 and ∂H̃
∂ξ0̂

= I, so we can ap-

ply the implicit function theorem to find ξ̆0̂(ε, λ) such that H̃(ξ̆0̂(ε, λ), ε, λ) ≡
0, and the solution defined by (3.14) is homoclinic to M(C(ε, λ)).
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Assume first λ ≥ 0; arguing as in (3.15), (3.16) we find

∂ξ̆0̂
∂λ

(0, 0) =
∂u0̂
∂λ

(0, 0)

∂ξ̆0̂
∂ε

(0, 0) =

(∫ 0

−∞
fa(s)ds+

∂ua
∂ε

(0, 0),

∫ 0

+∞
fb(s)ds+

∂ub
∂ε

(0, 0)

) (3.28)

We stress that the formula for
∂ξ0̂
∂ε

(0, 0) has changed with respect to the ε > 0
case. When ε ≤ 0 ≤ λ we define the following functions:

J+
2 (ε, λ) = ξ̆+0 (ε, λ)− ha(ξ̆

+
a (ε, λ), ε, λ) ,

J−
2 (ε, λ) = ξ̆−0 (ε, λ)− hb(ξ̆

−
b (ε, λ), ε, λ)

(3.29)

and we look for curves λ±2 (ε) such that J±
2 (ε, λ

±
2 (ε)) = 0. Then the solution

defined by (3.14) converges to S(ε, λ) as t → +∞ when (ε, λ) = (ε, λ+2 (ε))
and to U(ε, λ) as t→ −∞ when (ε, λ) = (ε, λ−2 (ε)). Repeating the argument
of (3.17) and (3.18) we find again

∂ξ̆±0
∂λ

(0, 0) = B0 +Bm (3.30)

as in the ε > 0 case, but the formula for
∂ξ̆±0
∂ε

differs from the ε > 0 case:

∂ξ̆±0
∂ε

(0, 0) = A±
0 + Am + C̃m , where C̃m :=

m∑
i=1

[
F̃i

∫ ∞

−∞
ψ∗(t)

∂g

∂xi
(t)dt

]
∫∞
−∞ ψ∗(t) ∂g

∂x0
(t)dt

F̃j =

∫ −∞

0

fj(t)dt−
∂uj
∂ε

(0, 0) , F̃k =

∫ +∞

0

fk(t)dt−
∂uk
∂ε

(0, 0)

(3.31)

for 1 ≤ j ≤ l < l + 1 ≤ k ≤ m. So if (vi) holds we can apply the implicit
function theorem to construct the curves λ±2 (ε) and we have the following
formulas for the derivatives:

d

dε
λ+2 (0) = −

∂
∂ε
J+
2 (0, 0)

∂
∂λ
J+
2 (0, 0)

= − A+
0 + Am + C̃m

B0 +Bm + ∂u0

∂λ
(0, 0)

d

dε
λ−2 (0) = −

∂
∂ε
J−
2 (0, 0)

∂
∂λ
J−
2 (0, 0)

= − A−
0 + Am + C̃m

B0 +Bm − ∂u0

∂λ
(0, 0)

(3.32)

Then, using a Taylor expansion as in the ε > 0 case, we get a picture of the
whole bifurcation diagram.
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Figure 1: Example of bifurcation diagram in the transcritical case i.e. f0 as

in (1.7). Here we assume ∂J+

∂λ
< 0 < ∂J−

∂λ
, and

∂λ−
j

∂ε
<

∂λ+
j

∂ε
< 0 <

∂λ+
i

∂ε
<

∂λ−
i

∂ε
,

for i = 1, 3, j = 2, 4.

When ε and λ are both negative we have a further change in the stability
properties. So we define the functions

J+
3 (ε, λ) = ξ̆+0 (ε, λ)− h̃a(ξ̆

+
a (ε, λ), ε, λ) ,

J−
3 (ε, λ) = ξ̆−0 (ε, λ)− h̃b(ξ̆

−
b (ε, λ), ε, λ)

. (3.33)

and we look for the curves λ±3 (ε) such that J±
3 (ε, λ

±
3 (ε)) ≡ 0, so that the

solution defined by (3.14) converges to S(ε, λ) as t→ −∞ and to U(ε, λ) as
t → +∞. Once again such curves can be constructed via implicit function
theorem if (vi) holds, and we find:

d

dε
λ+3 (0) = −

∂
∂ε
J+
3 (0, 0)

∂
∂λ
J+
3 (0, 0)

= − A+
0 + Am + C̃m

B0 +Bm − ∂u0

∂λ
(0, 0)

d

dε
λ−3 (0) = −

∂
∂ε
J−
3 (0, 0)

∂
∂λ
J−
3 (0, 0)

= − A−
0 + Am + C̃m

B0 +Bm + ∂u0

∂λ
(0, 0)

(3.34)

We stress that a priori the curves λ±i for i = 1, 2, 3, 4 may have all different
tangent in the origin. This is not the case in the m = 0 case, see [8].

The bifurcation diagram changes according to the signs of the nonzero

computable constants
∂J±

1

∂λ
(0, 0) and of the following computable constants

which may be zero

d

dε
λ+i (0),

d

dε
λ−i (0),

d

dε
λ+i (0)−

d

dε
λ−i (0) (3.35)

for i = 1, 2, 3, 4. To illustrate the meaning of Theorem 3.4 we draw some
pictures for specific nonzero values of the constants given in (3.35), the other
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Figure 2: Example of bifurcation diagram in the transcritical case i.e. f0 as

in (1.7). Here we assume
∂J+

1

∂λ
< 0 <

∂J−
1

∂λ
, d

dε
λ−i < 0 < d

dε
λ+i and d

dε
λ+j < 0 <

d
dε
λ−j for i = 1, 3 and j = 1, 4.

possibilities can be obtained similarly (not all the combinations are effectively
possible). In section 4 we construct a differential equation for which the
values of these constants are explicitly computed.

3.4 Theorem. Assume that Hypotheses (i)–(vi) of the Introduction hold and
that f satisfies h) and (1.7). Then we can draw the bifurcation diagram for
system (1.1), see figures 1, 2)

3.5 Remark. Assume that ε and λ are both positive. When (x̆(t, ε, λ), y̆(t, ε, λ))
tends to S(ε, λ) as t → +∞ (so that in particular λ ̸= λ1+(ε)) it has a slow
rate of convergence, i.e. ∥(x̆(t, ε, λ), y̆(t, ε, λ))−S(ε, λ)∥ ∼ exp(−K1|ελ|t) for
some K1 > 0 (independent of ε and λ). However when (x̆(t, ε, λ), y̆(t, ε, λ))
tends to S(ε, λ) as t→ +∞, that is λ = λ+1 (ε), we have faster convergence i.
e. ∥(x̆(t, ε, λ), y̆(t, ε, λ))− U(ε, λ+1 (ε))∥ ∼ exp(−εK2t) for a certain K2 > 0.

3.6 Remark. In the proof of Theorem 3.1 we have shown that, for each centre
manifold Mc(C(ε, λ)), there is exactly one trajectory (x̆(t, ε, λ), y̆(t, ε, λ))
homoclinic to it (unicity follows from the use of Implicit Function Theorem).
We emphasize that when (x̆(t, ε, λ), y̆(t, ε, λ)) is bounded, i.e. when it is
either a homoclinic or a heteroclinic trajectory, then it satisfies

sup
t∈R

|(x̆(t, ε, λ), y̆(t, ε, λ))− (0, h(t))| ≤ Kε (3.36)

for a certain K > 0.
If we consider the example in figure 1, such a fact happens if (ε, λ) are

in the subsets I, II, VIII, IX, XI, XVII, XVIII. In the remaining cases
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Figure 3: Example of bifurcation diagram in the saddle node case, i.e. f0 as

in (1.8). We assume
∂ξ̆+0
∂ε

(0, 0) < 0 <
∂ξ̆−0
∂ε

(0, 0),
∂ξ̆+0
∂ε

(0, 0) < 0 <
∂ξ̆−0
∂ε

(0, 0).

there are no trajectories satisfying (3.36). See Remark 5.3 for a discussion of
uniqueness in relation with the multiplicity of centre manifolds.

When the computable constants given in (3.35) are null we cannot draw
the bifurcation diagram in all details; see the end of section 3 in [8] for a
more detailed discussion of this case.

3.2 Saddle-node bifurcation.

We briefly consider the case where f0 satisfies (1.8) so that the origin under-
goes a saddle-node bifurcation. We need to introduce the auxiliary variable
ν =

√
|λ| and we observe that u(ε, ν2) and s(ε, ν2) are smooth functions

(while they are just Holder functions of λ). Theorem 3.1 holds also in this set-
ting, so there is a unique solution of (1.1) which is homoclinic toMc(C(ε, λ)).
In fact Theorem 3.4 works too, with some minor changes, but condition (vi)
is not needed anymore. Once again we have to argue separately in each
quadrant of the parameters plane; we start from ε and λ positive, and we
define

J̃+
1 (ε, ν) = ξ̆+0 (ε, ν

2)− hb(ξ̆
+
b (ε, ν

2), ε, ν2) ,

J̃−
1 (ε, ν) = ξ̆−0 (ε, ν

2)− ha(ξ̆
−
a (ε, ν

2), ε, ν2)

and we repeat the analysis made in the previous subsection. The solution
defined by (3.14) converges to U as t → +∞ if J̃+

1 (ε, ν) = 0 and to S as
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t → −∞ if J̃−
1 (ε, ν) = 0. We stress that

∂ξ̆±0
∂ν

(0, 0) = 0 since ∂λ
∂ν
(0) = 0,

therefore
∂J̃−

1

∂ν
(0, 0) =

∂u0
∂ν

(0, 0) = −∂J̃
+
1

∂ν
(0, 0) .

So we can apply the implicit function Theorem and construct smooth curves
ν±1 (ε) such that ν±1 (0) = 0, J̃±

1 (ε, ν
±
1 (ε)) = 0; note that (vi) is not necessary.

Furthermore

d

dε
ν+1 (0) =

A+
0 + Am + Cm

∂
∂ν
u0(0, 0)

,
d

dε
ν−1 (0, 0) = −A

−
0 + Am + Cm

∂
∂ν
u0(0, 0)

(3.37)

When ε < 0 ≤ λ we define

J̃+
2 (ε, ν) = ξ̆+0 (ε, ν

2)− ha(ξ̆
+
a (ε, ν

2), ε, ν2) ,

J̃−
2 (ε, ν) = ξ̆−0 (ε, ν

2)− hb(ξ̆
−
b (ε, ν

2), ε, ν2)

and we find again curves ν±2 (ε) such that ν±2 (0) = 0, J̃±
2 (ε, ν

±
2 (ε)) = 0, and

d

dε
ν+2 (0) =

A+
0 + Am + C̃m

∂
∂ν
u0(0, 0)

,
d

dε
ν−2 (0, 0) = −A

−
0 + Am + C̃m

∂
∂ν
u0(0, 0)

(3.38)

The solution defined by (3.14) converges to S as t→ +∞ if J̃+
2 (ε, ν) = 0 and

to U as t→ −∞ if J̃−
2 (ε, ν) = 0.

Obviously in both the cases for λ < 0 there are no critical points and
hence no bounded trajectories. Arguing as in the previous subsection we
obtain a result analogous to Theorem 3.4.

3.7 Theorem. Assume that Hypotheses (i)–(v) of the Introduction hold and
that f satisfies h) and (1.8). Then we can draw the bifurcation diagram for
system (1.1).

The bifurcation diagram of (1.1) described in Theorem 3.7 depends on
the signs of the following computable constants:

dν+i
dε

(0),
dν−i
dε

(0),
d

dε
ν+i (0)−

d

dε
ν−i (0). (3.39)

We give again one example for illustrative purposes, see figure 3.

3.8 Remark. When ε is the only parameter involved in the bifurcation, so
that f does not depend on λ, we can still perform our analysis, with some
trivial (and simplifying) changes. When both f and g do not depend on λ,
we cannot unfold completely the singularity. However the behavior of the

EJQTDE, No. 1, p. 25



 (ε)ν 1

1,u

 (ε)ν 1

2,u (ε)ν 2

1,u

 (ε)ν 2

2,u

SU1 U2

SU1 U2

SU1 U2

SU1 U2

SU1 U2 S U2U1

S U2U1

S U2U1

I

ε

IV

V

III

I

II

II

λ λ (ε)1
s

VI

VIII
VII

IX

λ (ε)3
s

O

V

III

IVX

XI

XII

U2

U1

S

U1

SU1

U1

S

VI

S

S

SS

S

S

S

S

U2

U2

S

IX

X

VIII

VII

XI

U2+

U2

XII

Figure 4: Bifurcation diagram in the pitchfork case, i.e. f0 as in (1.9). We
assume A±

0 + Am + Cm > 0, A±
0 + Am + C̃m > 0, and B0 +Bm − ∂s0

∂λ
> 0.

solution (x̆(t, ε), y̆(t, ε)) defined by (3.14) is determined in the transcritical
case by the signs of the following constants:

K+ =
∂ξ̆+0
∂ε

(0)− ∂u0
∂ε

(0) = A+
0 + Am + Cm − ∂u0

∂ε
(0) ,

K− =
∂ξ̆−0
∂ε

(0) +
∂u0
∂ε

(0) = A−
0 + Am + Cm +

∂u0
∂ε

(0) ,

K̃+ =
∂ξ̆+0
∂ε

(0)− ∂u0
∂ε

(0) = A+
0 + Am + C̃m − ∂u0

∂ε
(0) ,

K̃− =
∂ξ̆−0
∂ε

(0) +
∂u0
∂ε

(0) = A−
0 + Am + C̃m +

∂u0
∂ε

(0) ,

(3.40)

see (3.18), (3.31). E.g. if K± are positive, we find that (x̆(t, ε), y̆(t, ε))
converges to U(ε) as t → −∞ and leaves a neighborhood of the origin for t
large, and the same happens for ε < 0, see Remark 3.6 in [8] for more details.

Reasoning in the same way it is easy to see that when f and g are indepen-
dent from λ and (1.4) exhibits a saddle-node bifurcation, then (x̆(t, ε), y̆(t, ε))
is always a heteroclinic connection between U and S, and converges to the
former in the past and to the latter in the future, since s0(ε) < ξ̆±0 (ε) < u0(ε)
for ε > 0; in fact ∂s0

∂ε
(0) = −∞ and ∂u0

∂ε
(0) = +∞.

3.3 Degree 3 or more.

In this subsection we show briefly how our methods can be applied to un-
fold singularities more degenerate than (1.7) and (1.8). We just sketch the
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case where (1.4) undergoes a pitchfork bifurcation, i.e. f0 has the form (1.9)
stressing that the construction can be easily generalized to describe singular-
ities of higher order. We denote by u10, s0 and u20 the x0 coordinates of the
critical points, and we set U1(ε, λ) = (u1(ε, λ), v(u1(ε, λ), ε, λ)), U2(ε, λ) =
(u2(ε, λ), v(u2(ε, λ), ε, λ)), S(ε, λ) = (s(ε, λ), v(s(ε, λ), ε, λ))). However to
achieve a complete unfolding of the singularity one more parameter is needed.

Theorem 3.1 holds in this case too, so using the function H defined in
(3.12) for ε > 0, and the function H̃ defined in (3.27) for ε < 0, via implicit
function theorem we construct the smooth function ξ̆0̂(ε, λ) such that the
solution defined by (3.14) is homoclinic to Mc(C(ε, λ)).

Similarly to the saddle-node case the functions u10(ε, λ) and u
2
0(ε, λ) are

not smooth in the origin, so we need to introduce the parameter ν =
√
λ. On

the other hand the function s0(ε, λ) is smooth and its derivative with respect
to ν is null; so, in order to apply the implicit function theorem, we have to
work with u10(ε, ν

2), u20(ν
2) and s0(ε, λ).

Let us start assuming λ ≥ 0 and ε > 0, in analogy to the previous
subsection we define the functions h̄1b , h̄

2
b : Ab × [−ε0, ε0] × [−λ0, λ0] → R,

h̄a : Aa × [−ε0, ε0] × [−λ0, λ0] → R such that ξ̆ ∈ W s(ui(ε, λ)) ∩ Ωx if
and only if ξ̆0 = h̄ib(ξ̆b, ε, ν) and ξ̆a = h(0,b)(ξ̆0, ξ̆b, ε, ν

2) for i = 1, 2, while

ξ̆ ∈ W u(s(ε, λ))∩Ωx if and only if ξ̆0 = h̄a(ξ̆a, ε, λ) and ξ̆b = h(0,a)(ξ̆0, ξ̆a, ε, λ).

Again the derivatives of h̄a and h̄jb in (0, 0, 0) in ε and xi are null, and

∂h̄1b
∂ν

(0, 0, 0) =
∂u10
∂ν

(0, 0) = −∂h̄
2
b

∂ν
(0, 0, 0) ,

∂h̄a
∂λ

(0, 0) =
∂s0
∂λ

(0, 0) .

Then we define the functions

J i,u
1 (ε, ν) = ξ̆+0 (ε, ν

2)− h̄ib(ξ̆b, ε, ν) , Js
1(ε, λ) = ξ̆−0 (ε, λ)− h̄a(ξ̆a, ε, λ)

for i = 1, 2; obviously J i,u
1 (0, 0) = 0 for i = 1, 2 and Js

1(0, 0) = 0. We
stress that ∂

∂ν
ξ̆+0 (ε, ν

2) = 0 for (ε, ν) = (0, 0). To apply the implicit function
theorem we just need to assume

(vi’)
∂u1

0

∂ν
(0, 0) ̸= 0 , and B0 +Bm − ∂

∂λ
s0(0, 0) ̸= 0

So we prove the existence of curves νi,u1 (ε), λs1(ε) such that (x̆(t, ε, λ), y̆(t, ε, λ))
converges to U i as t → +∞ when λ = [νi,u1 (ε)]2 for i = 1, 2, and to S as
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t→ −∞ when λ = λs1(ε). Moreover

d

dε
ν1,u1 (0) =

∂
∂ε
ξ̆+0 (0, 0)−

∂u1
0

∂ε
(0, 0)

∂u1
0

∂ν
(0, 0)

=
Am + A+

0 + Cm

∂u1
0

∂ν
(0, 0)

d

dε
ν2,u1 (0) =

∂
∂ε
ξ̆+0 (0, 0)−

∂u2
0

∂ε
(0, 0)

∂u2
0

∂ν
(0, 0)

= −Am + A+
0 + Cm

∂u1
0

∂ν
(0, 0)

d

dε
λs1(0) = −

∂
∂ε
ξ̆−0 (0, 0)− ∂s0

∂ε
(0, 0)

∂
∂λ
ξ̆0(0, 0)− ∂s0

∂λ
(0, 0)

= − Am + A−
0 + Cm

B0 +Bm − ∂s0
∂λ

(0, 0)
,

(3.41)

When λ ≤ 0 the only critical point of (1.4) in a neighborhood of the origin
is s(ε, λ), which is unstable in the direction of C(ε, λ). So we define the
function h̄b such that ξ ∈ W s(s) ∩ Ωx if and only if ξ0 = h̄b(ξb, ε, λ) and
ξa = h(0,b)(ξ0, ξb, ε, λ) and

Js
4(ε, λ) = ξ̆+0 (ε, λ)− h̄b(ξ̆b, ε, λ) .

Then via implicit function theorem we construct the curve λs4(ε) such that
(x̆(t, ε, λs4(ε)), y̆(t, ε, λ

s
4(ε))) converges to S as t→ +∞; moreover

d

dε
λs4(0) = −

∂
∂ε
ξ̆+0 (0, 0)− ∂s0

∂ε
(0, 0)

∂
∂λ
ξ̆0(0, 0)− ∂s0

∂λ
(0, 0)

= − Am + A+
0 + Cm

B0 +Bm − ∂s0
∂λ

(0, 0)
. (3.42)

When λ < 0 < ε the trajectory (x̆(t, ε, λ), y̆(t, ε, λ)) homoclinic toM(C(ε, λ))
converges to S as t→ −∞.

When ε < 0 as usual the critical points of (1.1) reverse their stability
properties, so we have to redefine the auxiliary functions as we did in the
previous section. When ε < 0 ≤ λ we construct via implicit function theo-
rem the curves ν1,u2 (ε), ν2,u2 (ε) and λs2(ε) with the following properties: the
trajectory defined by (3.14) converges to U i as t → −∞ when

√
λ equals

νi,u2 (ε) for i = 1, 2, and to S as t→ +∞ when λ = λs2(ε). Moreover

d

dε
ν1,u2 (0) =

Am + A−
0 + C̃m

∂u1
0

∂ν
(0, 0)

,
d

dε
ν2,u2 (0) = −Am + A−

0 + C̃m

∂u1
0

∂ν
(0, 0)

d

dε
λs2(0) = − Am + A+

0 + C̃m

B0 +Bm − ∂s0
∂λ

(0, 0)
,

(3.43)

Similarly when ε and λ are negative, we construct the curve λs3(ε), such that
the trajectory defined by (3.14) converges to S as t→ −∞. Moreover

d

dε
λs3(0) = − Am + A−

0 + C̃m

B0 +Bm − ∂s0
∂λ

(0, 0)
.
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Furthermore the trajectory (x̆(t, ε, λ), y̆(t, ε, λ)) homoclinic to Mc(C(ε, λ))
converges to S(ε, λ) as t→ +∞. Now, similarly to the previous subsections,
using a Taylor expansion analogous to (3.22), we can draw the bifurcation
diagram for (1.1). Once again the bifurcation diagram depends on the sign

of some computable constants, i. e. B0 + Bm − ∂s0
∂λ

(0, 0),
∂ν1,ui

∂ε
, for i = 1, 2,

∂λs
i

∂ε
for i = 1, 2, 3, 4, see figure 4.

4 Examples.

In this section we construct examples for which the conditions of Theorems
3.1, 3.4, 3.7 are fulfilled and the derivatives of the bifurcation curves can be
explicitly computed. Let us consider the following system:

ẋ0 = ε
[
x20 − (σ0λ)

2 + αy1y2 + ω0(x, y, ε, λ)
]
:= εf0(x, y, ε, λ)

ẋ1 = ε
[
x1 − σ1λ+ βy21y2 + ω1(x, y, ε, λ)

]
ẋ2 = ε

[
− x2 + σ2λ+ γy2 + ω2(x, y, ε, λ)

]
ẏ1 = y2 + x0(a

′y1 + a′′y2) + a′′′x1y2 + aivx2y1 + λy2k(y1) +O((|λ|+ |ε|)|x||y|)
ẏ2 = y1 − (y1)

3 + x0(b
′y1 + b′′y2) + x1y1 + λh(y1) +O((|λ|+ |ε|)|x||y|)

(4.1)
where α, β, γ, σi, a

′, a′′, a′′′, aiv, b′, b′′ ∈ R, h and k are smooth functions sat-
isfying h(0) = 0 = k(0), ωi(x, y, ε, λ) = O(|y||x|) + o(ε2 + λ2 + |x|2) for
i = 0, 1, 2. The y component of (4.1) is constructed on the unperturbed
problem {

ẏ1 = g1(0, y, 0, 0) := y2
ẏ2 = g2(0, y, 0, 0) := y1 − (y1)

3 (4.2)

which admits two homoclinic trajectories ±(χ1(t), χ2(t)) where

χ1(t) =
2
√
2

et + e−t
, χ2(t) = −2

√
2
et − e−t

(et + e−t)2

and χ4
1/2 − χ2

1 + χ2
2 = 0. So χ(t) = (0, 0, 0, χ1(t), χ2(t)) and −χ(t) are ho-

moclinic trajectory for (4.1) for ε = λ = 0. Note that the adjoint variational
systems ẏ = −[∂g/∂y]∗(±χ(t), 0, 0)y admits the unique (up to multiplicative
constant) solutions ±ψ(t) = ±({χ1(t)− [χ1(t)]

3},−χ2(t)).
We stress that for each slow manifold Mc there is a possibly different func-
tion v which satisfies y = v(x, ε, λ) close to the origin in R6; however from
∂g
∂λ
(0, 0, 0, 0) = 0 = ∂g

∂ε
(0, 0, 0, 0) we find v(x, ε, λ) = O(ε2+λ2). Hence all the

slow manifolds Mc satisfy

f0(x, v(x, ε, λ), ε, λ) = x20 − (σ0λ)
2 + o(ε2 + λ2 + |x|2) .
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Moreover it is easy to check that the centre manifold within the slow man-
ifold (which possibly is not unique) is tangent to the x0 axis for ε and λ
small. From a straightforward computation we find ∂u

∂λ
(0, 0) = (σ0, σ1, σ2),

∂s
∂λ
(0, 0) = (−σ0, σ1, σ2), and ∂u0

∂ε
(0, 0) = ∂s0

∂ε
(0, 0) = 0.

From further computations we get χ1(0) =
√
2, χ2(0) = 0,

∫
R χ

4
1 =∫

R χ
2
2 =

16
3
,
∫
R χ

2
1 = 4,

∫
R χ

6
1 =

128
15
,
∫
R χ

2
1χ

2
2 =

16
15
,
∫
R χ

3
1 = π

√
2,
∫
R χ

5
1 =

3π√
2
.

X0 =

∫ ∞

−∞
±ψ∗(t)

∂g

∂x0
(±χ(t), 0, 0)dt =

∫ ∞

−∞

[
a′(χ2

1 − χ4
1(t))− b′′χ2

2(t)
]
dt =

=− 4

3
a′ − 16

3
b′′ , X1 =

∫ ∞

−∞
±ψ∗(t)

∂g

∂x1
(±χ(t), 0, 0)dt = 0,

X2 =

∫ ∞

−∞
±ψ∗(t)

∂g

∂x2
(±χ(t), 0, 0)dt = −4

3
aiv

Moreover∫ t

0

f0(±χ(s), 0, 0)ds =
α

2
[χ2

1(t)− χ2
1(0)] ,

∫ t

0

f1(±χ(s), 0, 0)ds =

± β

3
[χ3

1(t)− χ3
1(0)] ,

∫ t

0

f2(±χ(s), 0, 0)ds = ±γ[χ1(t)− χ1(0)]

F±
1 =

∫ −∞

0

f1(±χ(t), 0, 0)dt−
∂s1
∂ε

(0, 0) = ∓2
√
2β

3
= F̃±

1

F±
2 =

∫ +∞

0

f2(±χ(t), 0, 0)dt−
∂s2
∂ε

(0, 0) = ∓γ
√
2 = F̃±

2

and

K0 =

∫ ∞

−∞
±ψ∗(t)

∂g

∂x0
(±χ(t), 0, 0)

[ ∫ t

±∞
f0(±χ(s), 0, 0)ds

]
dt = −8α

15
(3a′ + b′′) ,∫ ∞

−∞
±ψ∗(t)

∂g

∂λ
(±χ(t), 0, 0)dt =

∫ ∞

−∞
±ψ∗(t)

∂g

∂ε
(±χ(t), 0, 0)dt = 0

K1 =

∫ ∞

−∞
±ψ∗(t)

∂g

∂x1
(±χ(t), 0, 0)

[ ∫ t

0

f1(±χ(s), 0, 0)ds
]
dt = 0

K±
2 =

∫ ∞

−∞
±ψ∗(t)

∂g

∂x2
(±χ(t), 0, 0)

[ ∫ t

0

f2(±χ(s), 0, 0)ds
]
dt =

±aivγ√
2

(
8

3
− π) .

We stress that condition (v) is satisfied whenever X0 ̸= 0, so it is satisfied for
both ±χ when a′ ̸= −4b′′. Condition (vi) is satisfied whenever σ1X1+σ2X2 ̸=
±σ0X0.
The values of F+

i , F̃+
i and K+

2 change to F−
i , F̃−

i and K−
2 passing from χ
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to −χ, while the other values remain the same. For simplicity from now on
we restrict our attention to +χ(t). So when (v) and (vi) hold, using (3.18),
(3.31) and (3.17) we find:

A±
0 + Am = −K0 +K1 +K+

2

X0

, B0 +Bm = −σ1X1 + σ2X2

X0

,

Cm = C̃m =
F1X1 + F2X2

X0

.

Thus, from (3.21), (3.26), (3.32), (3.34) we get the following:

∂λ±1
∂ε

(0) =
∂λ∓4
∂ε

(0) =
∂λ∓2
∂ε

(0) =
∂λ±3
∂ε

(0) =
F1X1 + F2X2 −K0 −K+

2

σ1X1 + σ2X2 ± σ0X0

.

(4.3)

So we can draw explicitly the bifurcation diagram of (1.1), and our descrip-
tion is accurate at least at the first order. Furthermore from Remark 5.3,
we can say if (x̆(t, ε, λ), y̆(t, ε, λ)) satisfies (3.36) (and in such a case it is
uniquely defined and it is the unique trajectory satisfying (3.36)) and we can
specify if it is a heteroclinic or a homoclinic, or if (x̆(t, ε, λ), y̆(t, ε, λ)) leaves
Ωh and so it does not satisfy (3.36). In this latter case we may have many
trajectories (x̆(t, ε, λ), y̆(t, ε, λ)) with the same behavior.

If we replace f0 in (4.1) by

f0(x, y, ε, λ) := x20 − (σ0λ) + αy1y2 + ωsn(x, y, ε, λ)

where ωsn(x, y, ε, λ) = O(|y||x|) + o(ε2 + λ+ |x0|2 + |x0̂|) and σ0 > 0, we get

f0(x, v(x, ε, λ), ε, λ) = x20 − (σ0λ) + o(ε2 + λ+ |x0|2 + |x0̂|) ,

so we have a saddle-node bifurcation. Once again condition (v) is satisfied
whenever X0 ̸= 0, and using (3.37) we find

∂ν±1
∂ε

(0) = ∓F1X1 + F2X2 −K0 −K+
2√

σ0X0

=
∂ν∓2
∂ε

(0) (4.4)

So we can draw the bifurcation diagram of (1.1), also in this case.
If we replace f0 in (4.1) by

f0(x, y, ε, λ) := (x0 − σ̃0λ)(x
2
0 − σ0λ) + αy1y2 + ωp(x, y, ε, λ)

where ωp(x, y, ε, λ) = o(|y||x|+ ε2 + λ2 + |x0|3 + |x0̂|2) and σ0 > 0, we get

f0(x, v(x, ε, λ), ε, λ) = (x0 − σ̃0λ)(x
2
0 − σ0λ) + o(ε2 + λ2 + |x0|3 + |x0̂|2) ,
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so we have a pitchfork bifurcation. We find
∂ν1,u1

∂ε
(0) =

∂ν2,u2

∂ε
(0) = −∂ν2,u1

∂ε
(0) =

−∂ν1,u2

∂ε
(0)

∂ν1,u1

∂ε
(0) = −K0 +K+

2 + αX0 − F1X1 − F2X2√
σ0X0

∂λsi
∂ε

(0) = −K0 +K+
2 − F1X1 − F2X2

σ1X1 + σ2X2 + σ̃0X0

for i = 1, 2, 3, 4

Thus we obtain the bifurcation diagram of (1.1) in this case, too.

5 Appendix: lack of uniqueness problem.

In this appendix we want to discuss lack of uniqueness problems, depending
on the use of centre manifold theory; in particular we want to show how we
can recover some uniqueness result even if we have many centre manifolds.
In Theorem 3.1, we have selected a trajectory (x̆(t, ε, λ), y̆(t, ε, λ)) defined in
(3.14), homoclinic to the centre manifold within the slow manifold, denoted
byMc(C(ε, λ)). Our construction faces two lack of uniqueness problems: the
slow manifold Mc of (1.1) may be not unique, and, even when Mc is unique,
the centre manifold within the slow manifold, i.e. Mc(C(ε, λ)) may be not
unique. However in any case bounded trajectories of (1.6) are contained in all
the possible choices of the centre manifold C(ε, λ), see section 5 in [13]. From
this fact we will get that, if (x̆(t, ε, λ), y̆(t, ε, λ)) is bounded (a homoclinic or a
heteroclinic trajectory), then it is unique even if the centre manifold C(ε, λ)
and the slow manifold Mc are not. While if (x̆(t, ε, λ), y̆(t, ε, λ)) leaves Ωh,
such a trajectory will depend both in the choice of the of the slow manifold
Mc and on the choice of the centre manifold C(ε, λ) within Mc. However
in this latter case all the trajectories (x̆(t, ε, λ), y̆(t, ε, λ)) will have the same
behavior due to smooth conjugation between centre manifolds, see Theorem
5.4 in [13].

Let us assume that Mc is fixed: we recall some known facts related to
the centre manifold C(ε, λ), see section 5 in [13] for more details. If h) holds,
then (1.4) admits a one-parameter family of centre-manifolds Ci(ε, λ), i ∈ I,
which may coincide (recovering uniqueness). We can flatten one of them,
say C1(ε, λ), and pass to a system of the form (1.6). These centre manifolds
continue to exist as long as (at least) one critical point persists. Assume
this is the case and that there are two of such manifolds C1(ε, λ) ̸= C2(ε, λ)
and C1(0, 0) is the x0 axis: they both contain all the bounded trajectories of
(1.6), in particular the critical points and their heteroclinic connections, if
any. Moreover the dynamics in C1(ε, λ) and C2(ε, λ) are C

r−2 conjugate, see
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Theorem 5.4 in [13]. Assume to fix the ideas that f0 is either as in (1.7) or
as in (1.8) and ε, λ > 0: s(ε, λ) and u(ε, λ) exist, belong to Ci(ε, λ) for any i
and are respectively stable and unstable for the restriction of (1.6) to Ci(ε, λ)
for any i. The l+1 and a l dimensional unstable manifolds, W u(u(ε, λ)) and
W u(s(ε, λ)) are uniquely defined, as well as them−l andm−l+1 dimensional
stable manifolds W s(u(ε, λ)) and W s(s(ε, λ)). Moreover we can define a not
unique l + 1 dimensional centre-unstable manifold W u(Ci(ε, λ)) of s(ε, λ),
and a not unique m− l+ 1 dimensional centre-stable manifold W s(Ci(ε, λ))
of u(ε, λ) with the following properties: they are respectively negatively and
positively invariant for the flow of (1.6) and

if ξ ∈ Ωx ∩W u(Ci(ε, λ)) , then limt→−∞|xc(t, ξ, ε, λ)− s(ε, λ)|eΛf t = 0

if ξ ∈ Ωx ∩W s(Ci(ε, λ)) , then limt→∞|xc(t, ξ, ε, λ)− u(ε, λ)|e−Λf t = 0

for any i ∈ I, where Λf is defined in h); see section 5 of [13] for the con-
struction. In fact we may replace limt→−∞|xc(t, ξ, ε, λ) − s(ε, λ)|eΛf t simply
by limt→−∞|xc(t, ξ, ε, λ)|eΛ

f t in the definition of W u(Ci(ε, λ)) and similarly
for W s(Ci(ε, λ)). By definition each centre manifold Ci(ε, λ) is obtained
as intersection between centre-unstable manifolds W u(Ci(ε, λ)) and centre-
stable manifolds W s(Ci(ε, λ)) (in [13] they are actually constructed as such
intersections).

The (uniquely defined) l dimensional manifold W u(s(ε, λ)) ∩ Ωx is con-
tained in each l + 1 dimensional manifold W u

i (C(ε, λ)) for any i ∈ I, and
divides it into two open components. One component isW u(u(ε, λ))∩Ωx and
it is in common to any W u

i (C(ε, λ)) for i ∈ I, so it is uniquely defined; then
we have a further component,W u,n

i (C(ε, λ)) which is made up by trajectories
which leaves Ω0 for t < 0, and changes as i takes values in I (however it is al-
ways l+1 dimensional). Similarly any manifoldW s

i (C(ε, λ)) inW
s(C(ε, λ)) is

made up by a common part uniquely defined, i.e. [W s(s(ε, λ))∪W s(u(ε, λ))]∩
Ωx, and a further not uniquely defined part, sayW s,n

i (C(ε, λ)) (see the begin-
ning of section 3). Hence each Ci(ε, λ) has a common part uniquely defined,
say C0(ε, λ), and two not uniquely defined parts, say C−

i (ε, λ) and C
+
i (ε, λ).

C0(ε, λ) is {u(ε, λ), s(ε, λ)} ∪ [W u(u(ε, λ)) ∩W s(s(ε, λ))], which are respec-
tively two critical points and their heteroclinic connection; C−

i (ε, λ) (respec-
tively C+

i (ε, λ)) is the graph of a trajectory that leaves Ωx for t = −T < 0,
(respectively for t = T > 0), which may be different for i ∈ I (recall that
bounded trajectories belong to all the centre manifolds, see [13]).

Now we proceed to examine when we have effectively non-uniqueness and
when uniqueness is recovered in the arguments of section 3 of this paper.

5.1 Remark. The functions h0,a (and h0,b) defined in section 3, depend on the
choice of W u(Ci(ε, λ)) (respectively the choice of W s(C(ε, λ))), while ha and
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hb are uniquely defined. However all the centre-unstable and centre-stable
manifolds have the same Taylor expansions, so the derivatives evaluated in
(3.4), (3.5), (3.6) are uniquely defined.

5.2 Remark. The function J+
1 (ε, λ) in (3.19) is uniquely defined. In fact, even

if h(0,b) is not unique W
s(u(ε, λ)) and consequently hb are uniquely defined.

Similarly J−
1 (ε, λ) is uniquely defined. Analogously we see that the functions

J±
i (ε, λ) defined in (3.24), (3.29), (3.33), and their analogous of section 3.2

and 3.3 do not depend on the choice of the centre manifold. It follows that,
even if ξ̆(ε, λ) may depend on the choice of the centre manifold, the functions
λ±i (ε) defined for i = 1, 2, 3, 4, are independent from such a choice in the (1.7)
case; the analogous result applies in the (1.8) and (1.9) case.

5.3 Remark. From Theorem 3.1 we know that, for each centre manifold
Mc(C(ε, λ)), there is exactly one trajectory (x̆(t, ε, λ), y̆(t, ε, λ)) homoclinic
to it. However each centre manifold Ci(ε, λ) has a common part, C0(ε, λ): if
for i = 1, ξ̆(ε, λ) ∈ C0(ε, λ) then we have the same trajectory (x̆(t, ε, λ), y̆(t, ε, λ))
for all the centre manifolds Ci(ε, λ), and for all the slow manifolds Mc (again
since bounded trajectories belong to all the centre manifolds and to all the
slow manifolds); so in this case (x̆(t, ε, λ), y̆(t, ε, λ)) is really unique. If we
consider the example in figure 1, such a fact happens if (ε, λ) are in the sub-
sets I, II, VIII, IX, XI, XVII, XVIII. In this cases (x̆(t, ε, λ), y̆(t, ε, λ)) is
bounded, and it is the unique trajectory of (1.1) which satisfies (3.36)

If for i = 1, ξ̆(ε, λ) ∈ C±
1 (ε, λ), then (x̆(t, ε, λ), y̆(t, ε, λ)) leaves Ωh

and there are no trajectories satisfying (3.36). Moreover we have as many
(x̆(t, ε, λ), y̆(t, ε, λ)) as the number of centre-manifolds within the slow man-
ifold Mc(C(ε, λ)), so we may lose uniqueness (in the example of figure 1 this
happens when (ε, λ) is in the subsets III, IV, V, VI, VII, X, XII, XIII,
XIV, XV, XVI). However all these trajectories have the same behavior (the
one sketched in figure 1).
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