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Rodrigo Togneri, Carlos Kamienski, Ramide Dantas, Ronaldo Prati, Attilio Toscano, Juha-Pekka Soininen, and Tullio Salmon Cinotti

Advancing IoT-Based Smart Irrigation

Introduction 
Nowadays, the Internet of Things (IoT) has already left the state 
of an idea and has been applied in practical projects. The tech-
nical and application challenges are enormous since IoT plat-
forms enable complex real-time control systems that combine 
the use of communication infrastructure, hardware, software, 
analytical techniques, and application knowledge combined 
into multiple layers. One of the key technical challenges is to 
realize the expected IoT impacts on systems, as IoT allows them 
to become service mashups, connecting things as services. 
Consequently, system development will become dynamic plug-
and-play interoperable service composition, and system logic 
will become service orchestration. Overall, IoT allows solution 
flexibility to fulfill custom application needs. 

In the context of agriculture, irrigation is a key task to guar-
antee adequate crop yield by avoiding under- and over-water-
ing. Moreover, it is an important cost driver, as the energy to 
transport water and to operate irrigation equipment is costly 
— in some places, even the water itself is costly. Smart irrigation 
seeks to apply IoT and analytical methods to leverage precision 
irrigation, aiming optimal cost effectiveness to the farmer by 
flowing the water in the proper amount to places where and 
when it is needed. 

In this article we introduce the concept of a flexible IoT-ma-
chine learning (ML) platform, wherein IoT and ML components 
are connected as services in an application context, allowing 
adaptable solutions to fulfill application needs. This approach 
benefits IoT professionals, as they can easily develop and 
deploy complex solutions involving devices, communication, 
data management, analytics, and application elements. 

In particular, our work on this concept has resulted in a 
platform called SWAMP1 that implements our flexible IoT-ML 
architecture toward the smart irrigation problem. This allows 
highly customizable soil water management solutions, involv-
ing flexible connectivity among data, physical models, and ML 
algorithms oriented to solve application key tasks, such as water 
need estimation and irrigation planning and operation. We call 
this concept flexible data-driven soil water management, which 
in practice allows suitable solutions to a great variety of soil, 
plant, and regional weather characteristics. This approach bene-
fits the farmer, as a highly customizable smart irrigation solution 
may reduce water and energy usage and mitigate crop yield 
risks as it keeps soil water content at healthy levels for plants. 

In the remainder of this article, we compare our approach to 
other practical IoT research projects, provide details on our flex-
ible platform applied to precision irrigation, describe our flexible 
ML approach to address precision irrigation tasks, highlight 
the potential impacts of our approach to IoT professionals and 
farmers, and summarize our main contributions. 

Related Work 
In recent years, different academic and commercial initiatives 
have emerged, aiming to incorporate IoT and ML into the agri-
culture. IoF2020 (www.iof2020.eu)2 and Dragon (www.data-
dragon.eu) are two projects funded by the European Union 
for developing IoT platforms for agrifood. IoF2020 is organized 
into five sectors that adopt different solutions: arable crops, 
dairy, vegetables, fruits, and meat. Arable crops use sensors to 
monitor production and intelligent analysis of images to assess 
crop development. GPS data from cattle neck collars or live-
stock movements monitor dairy chain, and ML is used for early 
lameness detection. IoT devices track the production chain of 
vegetables, fruits, and meat. Dragon aims to integrate IoT data 
with phenomics, genomics, and metagenomics data associated 
with ML methods to increase production. 

Other recent academic studies include a platform for preci-
sion agriculture and experimentation in turmeric cultivation [1]. 
The platform provides a graphical interface for connecting sen-
sors and actuators and uses analytical methods to analyze the 
delay of messages. Another study uses thermal images generat-
ed by drones and transmitted throughout a cloud-fog system to 
identify non-uniform irrigation zones [2]. 

Commercial companies are also putting some of these ideas 
into the market. Examples include Agrosmart (www.agrosmart.
com.br) in Brazil, Agricolus (www.agricolus.com) in Italy, and 
Cropmetrics (www.cropmetrics.com) in the United States. 
Among other technologies, they use soil sensors, weather sta-
tions, and weather forecasts for irrigation advising. However, 
their underlying approaches for water need estimation and irri-
gation optimization and operation are not available. 

Despite the richness of recent approaches adopting IoT in 
the agri-food chain, they do not yet fully explore: (a) the archi-
tectural aspects to hold flexible solutions involving IoT and ML 
components and (b) the potential of the collected data for a 
more accurate analysis of water needs. In this article, we advo-
cate that data-intensive methods provided by ML algorithms, in 
combination with IoT technologies and weather-soil-atmosphere 
simulations, can provide a considerable impact in precision irri-
gation and its solution deployment. 

A Flexible IoT-ML Platform for  
Smart Irrigation 

The success of next generation systems for precision irrigation 
based on IoT technologies coupled with intelligent ML data 
processing techniques depends on the ability of the solution 
to adapt to different contexts found in farms. A flexible IoT-ML 
platform must allow different deployment configurations of 
hardware, software, and communication technologies, custom-
ized to deal with the requirements and constraints of different 
settings, countries, climate, soils, and crops. Here we advo-
cate that an IoT-ML infrastructure for providing smart irriga-
tion services be defined by two complementary dimensions, 
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namely core components and deployment locations. Core com-
ponents are a set of software, hardware, and communication 
technologies, such as soil moisture sensor probes, long-range 
WAN (LoRaWAN) [3], Message Queuing Telemetry Transport 
(MQTT) [4], LoRa Server (www.loraserver.io), FIWARE [5], and 
SEPA [6], as well as specific services for water need estimation 
and irrigation planning and operation. 

On the other hand, deployment locations define where core 
components can be placed, and how they communicate with 
each other. This generates distinctive configuration scenarios 
for different deployments. Locations follow an IoT computing 
continuum, composed of things (sensors and actuators), mist 
(field nodes such as radio gateways), fog (farm on-premise com-
puting infrastructure), cloud (data storage and processing), and 
terminal (a smartphone, tablet, or laptop where the end user 
interacts with the application). The five instances of this contin-
uum define the end-to-end information path starting with data 
collected by sensors up to commands executed by actuators. 
The five instances might not necessarily be present in all sce-
narios. Rather, depending on farm characteristics, requirements, 
and constraints, fog or cloud may not be present. This feature 
provides additional flexibility to the IoT-ML platform, as the 
differences are understood, and the platform adapts to the farm 
and not the opposite. 

Figure 1 depicts the IoT infrastructure for providing smart 
irrigation services, composed of core components and deploy-
ment locations. In smart agriculture, each farm has particular 
objectives and characteristics, so different deployment config-
urations may be used, representing instances of the same plat-
form. Figure 1 presents a simpler version of the deployment of 
the IoT-ML platform where locations are thing, mist, cloud, and 
terminal (i.e., no fog is used). This configuration was chosen for 
simplicity and a farmer’s choice of not hosting any on-premises 
infrastructure. 

In Fig. 1, the numbers in blue circles represent a simplified 
sequence of the end-to-end data flow through this deployment 
of the IoT-ML platform. Soil moisture sensors send data via 
LoRaWAN to the gateway installed in the mist node. Particularly 
for the SWAMP Project, we have built a custom-made three-
depth soil moisture sensor, but also use commercial sensors 
from Libelium (www.libelium.com) and Meter (www.meter-
group.com). A weather station also sends data to the mist node 
via a serial wired interface (1). From there, the mist node for-
wards data via 4G through the Internet directly to the cloud (2). 

Within the cloud, sensor data are treated by the LoRaWAN 
server and sent to the IoT protocol translator (3), such as a 
FIWARE IoT Agent. Weather data goes directly to the IoT proto-
col translator using the Ultralight 2.0 protocol, as well as weath-
er forecasts obtained from an external service. The Translator 
converts the three different types of input data — soil, weather 
conditions, and weather forecast — into the format of the par-
ticular IoT underlying platform transmitting them to the context 
broker (4) (e.g., NGSI JSON format for FIWARE Orion). Once 
data arrives at the context broker, it is forwarded to time series 

storage (5) that makes it available for further processing (e.g., 
FIWARE QuantumLeap using CrateDB), where the first part of 
the end-to-end data flow ends. Here, depending on the volume 
and velocity of data, the time series storage may be replaced by 
a distributed data pipeline (e.g., Apache Kafka) connected to a 
big data processing system (e.g., Apache Spark). However, for 
most smart agriculture scenarios dealing with individual farms 
with hundreds of sensors, time series storage is a lightweight 
solution that provides adequate performance. 

The water need estimation component obtains soil moisture, 
weather conditions, and weather forecast data from the time 
series storage (6) to generate ideal crop water need estimates. 
Water need estimation is further divided into physical and ML 
models, further explained in the next section. The estimates are 
in turn used by irrigation planning to generate an optimized and 
real plan that is aware of different physical and financial con-
straints (7). Farmers are shown the irrigation plan via the Farmer 
App (8) and approve or change the irrigation plan that is sent 
back to irrigation operation (9), which controls the irrigation 
system. From there, irrigation commands follow the way back 
to the mist going through the context broker (10), IoT protocol 
translator (11), and Internet/4G (12). Finally, irrigation com-
mands reach sprinklers, pumps, and valves (13). 

Should the fog be present in a different scenario, the end-
to-end communication would be preserved with small chang-
es, as some components would be deployed on-premises in 
the farm office where the fog node is located, such as the 
LoRaWAN server. This scenario includes the direct operation of 
the irrigation system. In alternative scenarios, the irrigation plan 
either interacts with existing third-party irrigation systems (e.g., 
Netafim — www.netafim.com — or Focking — www.fockink.ind.
br) already installed on the farm or even used by farmers to 
operate the irrigation systems manually. These options for inter-
acting with an irrigation system are common, and we assume 
they are generic enough to represent an IoT ecosystem for 
smart irrigation. 

Flexible Data-Driven Soil Water Management 
Over the last decades, data-driven soil water management has 
been accomplished using physical models3 or triggering soil 
moisture sensors data4 [7]. However, as IoT enables more abun-
dant data, with major spatial and temporal granularity and low 
latency, it increasingly allows the rise of data-driven approaches. 
Here, a key challenge is how to make all analytical techniques 
(e.g., physical models and ML) available to work together in a 
flexible IoT platform, considering that each crop, type of soil, 
and region may demand a different solution. In this sense, our 
work aims to show the roles that these analytical techniques 
can play in soil water management, and how they can be flex-
ibly assembled together. Our approach is based on two main 
characteristics: 
.	 Solution flexibility: Modularized components are integrated as 

services in the IoT platform, allowing solution flexibility.
.	 Increased ML relevance: Analytical solutions can be assem-

Figure 1. IoT-ML platform overview and end-to-end data path for a smart irrigation scenario.



bled from traditional physical approaches, and modern ML 
and simulation ones, and even by combining them. Benefits 
of this approach are not only improved irrigation plans, but 
also self-improved platforms that learn from experience. 
Soil water management is performed in two phases, namely 

water need estimation and irrigation planning. 

Water Need Estimation 
The precision irrigation problem can be modeled as the soil 
water balance system at the root zone, where the soil water 
content is the result of the balance between water content 
level and a series of mechanisms that make this level increase 
or decrease (soil water dynamics) [8]. IoT provides the ability 
to monitor water content levels and dynamics, while soil water 
management systems seek to maintain water content in an opti-
mal range [7]. 

Figure 2 depicts the water need estimation process, divided 
into two key activities: 
.	 Soil water content and dynamics estimation: This consists of 

estimating soil water content and dynamics through:
	 — Direct measurement of soil water content, rainfall, irriga-

tion, and so on
	 —Physical models of soil water dynamics applied over the 

collected data (weather data mainly) and soil and crop char-
acteristics

.	 Soil water need forecast: This consists of calculating soil water 
content forecasts and water need forecasts for each moment 
of a planning horizon, using techniques such as simulation 
and ML algorithms:

	 — Simulation is appropriated when working with physical 
models, iteratively applied to simulate future data points [9].

	 —ML takes advantage of data from multiple time series (soil 
moisture, soil water balance, soil characteristics, and weather 
data) of direct sensor readings or from variables derived out 
of physical models. Weather forecast data, provided by exter-
nal services, can also be used. Different multivariate forecast-
ing methods can be used to handle these multiple time series 
[10, 11]. 
The process depicted in Fig. 2 allows flexibility once it allows 

different components combinations, as they are implemented 
as services in the platform. It is also possible to customize each 
combination, as they have numerous options inside them (i.e., 
different physical models and ML techniques). 

As an example, the SWAMP project provides two custom-
ized analytical solutions among all combination possibilities to 
fit the characteristics and needs of different pilots. One of them, 
called CRITERIA-1D [9], uses physical models and simulation, 

wherein soil water dynamics models (physical mod-
els) are the input to soil simulation that generates 
soil water content and water need forecasts. Anoth-
er solution uses direct measurements, physical 
models, ML, and simulation, wherein the main input 
is direct measurement of soil moisture enriched by 
an evapotranspiration5 model (physical model) [7] 
as the main soil water balance contributor. ML tech-
niques6, such as Panel VAR [10] and RNN-LSTM 
[11], are used for the processing of soil water con-
tent and water need forecasts, and simulation to 
test alternative irrigation scenarios. Note that the 
latter uses Panel VAR and RNN-LSTM, respective-
ly, a traditional and a cutting-edge technique for 
time series, thus highlighting the solution flexibility 
in exploring different ML techniques as they gain 
relevance. 

Irrigation Planning and Operation 
The water need estimation models provide what 
can be called the ideal irrigation. There are, howev-
er, other aspects that need to be considered when 
conceiving an actual irrigation plan, that is, a plan 

that can be put in place in the farm, which include: 
.	 Water availability: Water scarcity is a problem in various parts 

of the planet. Water quotas or supply schedules might not 
allow the ideal amount of water to be irrigated in time. If the 
needed amount of water is not available, the irrigation plan 
should allocate the existing water so that the best economic 
return to the farmer is achieved. 

.	 Costs of irrigation: Even if the water comes from private res-
ervoirs, irrigation is not free. Pumping the water to the fields 
consumes energy, and its cost has an impact on the farmer’s 
bottom line. For example, in certain regions of Brazil, the 
energy bill can account for up to 30 percent of the produc-
tion cost. A cost-aware plan should avoid irrigation when 
tariffs are higher. 

.	 Limitation of the irrigation systems: Irrigation methods dif-
fer in how much of the irrigated water actually reaches the 
plants: furrow irrigation has 60 percent efficiency, while sprin-
kler irrigation reaches 75 percent [12]. Other aspects of the 
irrigation infrastructure need to be considered when plan-
ning: maximum pumping capacity of the farm, uniformity of 
irrigation, and soil variability, among others. 
Figure 3 presents a modular approach that separates irriga-

tion planning from operation, completing the data flow shown 
in Fig. 2. There are three main modules: 
.	 Irrigation planning: Computes the timing and water volume 

of irrigation events that best address the crop needs, while 
being aware of operational constraints and economic inter-
ests. Linear and nonlinear programming techniques can be 
used, as well as approximate solutions such as those provid-
ed by metaheuristics [13]. 

.	 Irrigation operation: Communicates with the sensors and 
actuators installed in the farms, sending commands and 
monitoring the operation to ensure adherence to the plan. 
It controls the opening and closing of valves, the pressure 
at pumps, and so on, using the underlying IoT communica-
tion infrastructure to send commands. The use of standard 
IoT interfaces and protocols enables on-demand addition of 
sensors and actuators, smoothing the transition toward fully 
automated irrigation. 

.	 System Model: Computes an updated model of the system 
behavior as far as irrigation is concerned. IoT devices (e.g., 
soil sensors, water meters) in combination with data-driven 
techniques enable estimating the actual irrigation efficiency, 
and planning accordingly. 

Figure 2. Water need estimation process.

Figure 3. General data flow between irrigation services.



Discussion and Lessons Learned 
Physical Models vs. Machine Learning 

The increasing use of IoT in precision irrigation brings spatial 
and temporal accuracy gain, as sensors can potentially be 
placed in all manageable locations on a farm. Thus, site-specific 
particularities can easily be considered, leveraging the explo-
ration of data-driven approaches. In this context, the question 
of what would be the right combination of techniques to deliv-
er adequate soil water management emerges. Do traditional 
approaches, such as using physical models or triggering soil 
moisture sensors data [7], still take place? Or is this the time 
to avoid physical models and use cutting-edge ML algorithms 
acting directly to data? 

Our vision is that there is no unique ideal analytical approach 
for all cases, as crops differ significantly in irrigation methods 
and in crop, soil, and regional weather characteristics. More 
than that, depending on crop culture or region, not all data fea-
tures might be available or cost-effective. However, a discussion 
of the roles traditional and ML approaches can play in effective 
solutions can provide guidelines to discern the most appropri-
ate alternatives to each application case. 

Physical models have been extensively used in irrigation, 
bringing implicit agronomic knowledge, as they connect raw 
data features to specific and relevant features. Nevertheless, 
there are important limitations, as general models involve sim-
plifications that often ignore local particularities, while site-spe-
cific models work well only regionally, and few models have 
adequate performance levels for different regions. Finally, the 
few models of general application that are flexible enough to 
address different conditions [7] are often complex and require 
many data features that are difficult to obtain. 

On the other hand, pure ML approaches applied directly 
to IoT data seem promising, as cutting-edge deep learning is 
capable of capturing implicit knowledge from raw data in many 
application areas, as well as delivering highly customizable 
results [14]. For this reason, we believe that ML approaches 
will be extensively explored in scientific research in the coming 
years, allowing the emergence of truly cognitive smart irrigation 
systems. As such, our architecture approach, based on core 
components and deployment locations, gives the necessary 
flexibility not only to build customizable IoT-ML solutions, but 
also to assemble customizable data-driven solutions. For smart 
irrigation, we have shown that it is possible to use various com-
binations of analytical tools, including mixes of physical models, 
simulation (traditional approaches), and ML techniques. 

As ML gains momentum, existing physical models may lose 
room because ML could implicitly capture from raw data the 
same information physical models provide. Instead, IoT’s contin-
uous growth might enhance the utilization of physical models, 
as they can calculate their outputs with better spatial and tem-
poral granularity. Also, IoT tends to promote not only physical 
models but also ML. In summary, a futuristic vision may be 
that ML is well positioned for IoT-based applications. However, 
although ML seems to have a promising future for smart irri-
gation, we are still at the beginning of its exploration, and we 
need reliable data that now is still generated by physical models 
or a combination of data and ML techniques. 

All in all, considering the advantages and disadvantages of 
each side, we advocate that current solutions consider using 
both physical models and ML algorithms — physical models 
serving as feature engineering for ML approaches. We believe 
that physical models can aggregate agronomic knowledge that 
ML algorithms eventually cannot capture yet directly from raw 
data. Finally, as different physical models can potentially capture 
different aspects of reality, we recommend using multiple physi-
cal models, even for similar tasks. Then ML will hold the task of 
capturing valuable information from the features provided by the 
physical models to deliver more precise water need estimation.

Integrating Different Stakeholders 
The approach taken is the result of a joint and largely inter-
disciplinary effort, and the authors’ ambition is to generate an 
impact on a wide community of stakeholders with the envi-
sioned innovation. On one hand, the interoperability at the 
communication level provided by IoT is a key factor to promote 
a platform culture among not-computer-scientists, as it brings 
easy node deployment, data collection, and inter-researcher 
interaction. On the other hand, only with our flexible archi-
tecture approach due to the heterogeneities embedded in the 
agricultural scenario — heterogeneity of devices and simulation 
tools, but also farms and the stakeholders themselves — can the 
barriers be properly handled. Different stakeholders speak their 
own languages: for example, soil-moisture sensor data are num-
bers for computer scientists, bits for telecommunication profes-
sionals, voltage signals for electronic engineers, while the end 
users expect volumetric soil moisture values. As the calibration 
of these sensors is soil-type-dependent, geologists, agronomists, 
and other researchers must take part in the game of this con-
text-dependent calibration process. 

Altogether, the smooth interplay between actors with differ-
ent skills and habits is a key success factor. Each stakeholder 
needs specific and mostly mobile services, with the appropriate 
human-machine interface, if we want to deploy the appropriate 
level of automation with the man in the loop, as required in 
today’s agriculture. Services need to be organized like a chain 
of tools that mutually exchange information and understand 
each other thanks to a shared information model based on 
emerging ontologies. This shared data model fosters smooth 
and sustainable innovation because the tool chain may easily 
be extended to provide new capabilities and value propositions, 
and attract new stakeholders. 

Impacts
For IoT Professionals 

Our approach incorporates the ML pipeline into the IoT con-
tinuum by using a structure of services deployed as containers 
that exchange messages through the FIWARE NGSI unified data 
model. This scheme impacts IoT platform development and 
deployment in many aspects: 
.	 Automation: The platform provides a subscribe/notify mecha-

nism for building automated data pipelines.
.	 Traceability: The storing of meta-data information about the 

model specifications and context of data used in the estima-
tion allows keeping track of model forecasts, as well as quali-
ty indicators. 

.	 Pluggability: The integration of new or updated models is 
facilitated by the unified data model, consuming data and 
producing water need estimates in a standard way. 

.	 Flexibility: The pluggability allows IoT professionals to com-
pose different data workflows flexibly by using various com-
ponents. 

. 	Hybrid environments: The architecture allows the use of dif-
ferent ML frameworks to train models, as well as hardcoded 
physical models. 
All these aspects have been allowing a relatively simple 

deployment of our platform in all SWAMP pilots, each one 
with its characteristics and different specific goals. In Italy, the 
goal is to use farm data for water management and distribution 
(i.e., to share data outside the farm to create an even bigger 
system-of-systems). In Spain, the goal is to explore the limits of 
flexibility and precision in irrigation by going into a very fine-
grained irrigation system where each sprinkler is an IoT node. 
In Bahia, Brazil, there is a large-scale use case with huge cen-
ter-pivot irrigation systems, where the goal is to decrease oper-
ational costs through improved situational awareness. Near São 
Paulo, Brazil, the goal is to improve the quality of grapes and 
wine. 



For Farmers

Currently, in modern farms that rely on physical water need esti-
mation models and respect soil variability, farmers are provided 
with irrigation plans for long periods, such as weeks, months, or 
even the entire season. Based on their accumulated experience 
and daily work in the field, they continuously adapt the irriga-
tion plan to avoid crops suffering from water stress. In this sce-
nario, the irrigation plan plays the role of an offline longer-term 
forecast that needs to be fitted into the reality of the farm. In a 
fully automated future agriculture scenario, the IoT-based smart 
irrigation system will precisely control every aspect of the use 
of water, adapting it to shorter-term periods according to instan-
taneous information coming from the field, which can be daily 
or even based on intra-day micro adjustments in the irrigation 
plan. 

Between these two scenarios — current and future — lies a 
new IoT-enabled reality that will change the way farmers face 
irrigation. In any case, a requirement is that farmers always 
control the irrigation and are provided a wealth of real-time 
information to be able to make better decisions. To this end, 
we developed a smartphone app (Fig. 4) where farmers are 
informed of immediate water needs (Fig. 4a), measured and 
forecast water balance time series (Figure 4b), and the current 
soil moisture information for a 3-depth sensor probe (Fig. 4c). 
With this real-time status of the farm at hand, and equipped 
with the optimized irrigation plans computed by the system, the 
farmer can achieve better use of the water resources without 
harming productivity. 

As the system reliability and precision increase and earn the 
trust of farmers, they can slowly give more power to the system 
to make automated decisions. In other words, the application 
will allow farmers to express policies on how to behave whenev-
er a new irrigation plan is generated. 

Conclusion
In this article, we present our flexible IoT-ML platform and high-
light its scientific contribution over related work. The platform 
allows easy solution deployment involving IoT and ML com-
ponents working in an application. Our real case is a smart 

irrigation application, where we exemplify how a solution can 
be built and customized depending on site-specific needs. 
Special attention was given to how the platform enables more 
exploration of ML-based solutions and on how it can positively 
impact IoT professionals’ and farmers’ needs. SWAMP project 
pilots have just been deployed; they are operating properly, and 
data is being collected. The next step, expected by the end of 
2020, is to analyze the data and disseminate quantitative impact 
results. 
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Footnotes

1 SWAMP (www.swamp-project.org) is a European Union and Brazil research part-
nership that holds a pilot project to explore alternatives for implementing IoT into 
different types of environments and irrigation systems [15]. 
2 All websites cited throughout the text have been checked at Oct. 14 2019.
3 Physical models process mainly weather data to estimate water consumption, and 
as consequence, the amount of water to be replaced. 
4 Soil moisture sensors are monitored. When the water content approaches a criti-
cal level, an automated trigger starts the irrigation process.
5 Evapotranspiration is the main water consumption physical process, combining 
evaporation from soil and plant transpiration [7]. 
6 Panel VAR (Vector Autorregressive) and RNN-LSTM (Recurrent Neural Network, 
using Long Short-Term Memory architecture) are time series machine learning 
techniques. 




