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Abstract

The rotational spectrum of the most stable con-
former of ethylene glycol (HO(CH3)2OH) has been
recorded between 360-890 GHz using a frequency-
modulation sub-millimeter spectrometer. The re-
finement and extension of the spectroscopic param-
eters over previous efforts provides predicted cat-
alog frequencies for ethylene glycol with sufficient
accuracy for comparison to high-frequency astro-
nomical data. The improvement in the cataloged
line positions, and the need for improved accu-
racy enabled by high-frequency laboratory work,
is demonstrated by an analysis of ethylene glycol
emission at 890 GHz in the high-mass star-forming
region NGC 63341 in ALMA Band 10 observa-
tions. The need for accurate rotational spectra at
sub-millimeter wavelengths/THz frequencies is dis-
cussed.

Introduction

Of the more than 200 molecules detected in the in-
terstellar medium (ISM) to date, more than 80%
were discovered through observations of their pure
rotational transitions.! With few exceptions,?
the detection and characterization of molecules in
the ISM is preceded by high-resolution spectro-
scopic investigations in the laboratory. Depending
on the molecular structure, many thousands of line
frequencies may be measured and fit using common

software packages® to a Hamiltonian,” providing
a set of rotational constants (A4, B, C) as well as
higher-order terms that account for the effects of
centrifugal distortion, internal motion, fine and hy-
perfine coupling, etc. These constants can then
be used together with the Hamiltonian to predict
energy levels and associated transition frequencies
not directly measured within the laboratory. The
accuracy of these predictions outside the range of
the laboratory measurements varies substantially
depending on the structure of the molecule and the
extent of the extrapolation. 8

Substantial laboratory efforts were undertaken
about a decade ago to enable analysis of high-
resolution spectra from the Heterodyne Instru-
ment for the Far Infrared!® (HIFI) instrument on
the Herschel Space Observatory,'' which operated
from 480-1910 GHz. While transformative, the ob-
servations obtained with Herschel /HIFI primarily
contained spectra of either small molecules such
as HCIT 1213 or of bright, abundant species such
as CH30H.'*16 In general, high-frequency lab-
oratory spectra of larger, more complex species
have not been a priority, as the observational tools
needed to observe them at high frequencies have
not been available.

Recent observations in Band 10 (787 — 950 GHz)
with the Atacama Large Millimeter /sub-millimeter
Array (ALMA) have demonstrated that these pri-
orities must now shift to larger molecules. The
small single-dish antennas on Herschel or the



Stratospheric Observatory for Infrared Astronomy
(SOFIA)!7 result in large beams on the sky, heav-
ily diluting the signal from compact star-forming
regions such that (in general) the spectra are dom-
inated by bright, abundant species like CH3OH.
Interferometric observations with ALMA, however,
have beams well-matched to the molecular emis-
sion, and are producing line-confusion limited spec-
tra that are rich with emission from large, complex
species that are not yet well studied in the labora-
tory. 18

One such species is ethylene glycol (EG;
HO(CH3)20OH); prior laboratory work on the most
stable conformer aGg’ of this species included spec-
tra up to 370 GHz. %20 Here, we extend this work
to 890 GHz and show that not only is EG present
and bright in our ALMA Band 10 spectra, but that
identification of these lines would not be possible
via extrapolation from the lower-frequency work.

Experimental Section

Laboratory Spectroscopy and Analysis

The rotational spectrum of the most stable con-
former of EG has been recorded with a frequency-
modulation sub-millimeter spectrometer.?! Spec-
tral coverage between 360 and 890 GHz was at-
tained by combination of a Gunn diode (J.E. Carl-
strom Co2?) emitting in the range 80-115 GHz and
a number of passive multipliers (VDI, RPG)?? in
cascade. The resulting output radiation power was
ca. 1mW, 0.1mW, and 10 gW at 360-390, 520—
620, and 780-890 GHz, respectively. The Gunn’s
radiation was phase-locked to a harmonic of a fre-
quency synthesizer (Schomandl, ND 1000) and fre-
quency modulated at f = 48kHz by the 75 MHz
reference signal. A free-space glass absorption cell
(3.25m long, 5cm in diameter) filled with EG va-
pors at a static pressure of ca. 15 mTorr was used
for the measurements. Phase-sensitive detection
at twice the modulation frequency was employed,
so that the 2f spectrum profile was observed. A
liquid-helium-cooled InSb bolometer (QMC Instr.
Ltd. type QFI/2) was used as detector. We es-
timate the measurement uncertainty on any given
line to between 25 and 50kHz, depending on the
linewidth and the signal-to-noise ratio (SNR) of the
spectrum at that frequency.

From a spectroscopic point of view, the aGg’ con-
former of EG (shown in Fig. 1) is a nearly-prolate
asymmetric-top rotor with an internal large ampli-

tude motion. Because of the tunneling between two
equivalent positions of the hydroxy groups, each ro-
tational energy level Jg, k. is split into two sub-
levels, labeled as 0 or 1. The state 1 is slightly
higher in energy than the state 0. EG possesses a
permanent electric dipole moment of 2.33 D, with
components p, = 2.080(3) D, up = 0.936(7) D,
and p, = —0.47(1) D.' Since the inversion mo-
tion causes the change in sign of u, and pu., these
two components allow transitions between the tun-
neling states 0 and 1; on the other hand, b-type
transitions take place within the states.

The rotational-torsional energy levels can be de-
scribed using the formalism introduced by Chris-
ten and Miiller?’. Rather than fitting two sets
of spectroscopic constants (one for each tunnel-
ing state) along with the energy difference between
levels 0 and 1, as is often performed for these
types of analyses, Christen and Miiller 2° have rear-
ranged the Hamiltonian so that a unique set of ro-
tational constants and the energy difference are fit
along with their centrifugal dependencies. The lat-
ter (Reduced Axis System; RAS) and former (In-
ternal Axis Method; IAM) approaches have been
demonstrated to be equivalent; the use of RAS
method has been preferred in this and previous
works2%2% because it is implemented in the SPFIT
program.®?6 An extensive description of the RAS
Hamiltonian is given in the original papers.?2%:2°

Based on the spectroscopic parameters reported
previously,?Y the rotational spectrum of aGg’-
EG were predicted and investigated at frequencies
above 360 GHz. Mostly, rotational-torsional tran-
sitions have been recorded line-by-line, scanning
a few MHz around the predicted position. Spec-
tral predictions were continuously updated by re-
fining the spectroscopic constants on the basis of
our newly recorded transitions, in order to avoid
possible misassignment. Indeed, discrepancies up
to 36 MHz were found between older and actual line
frequencies. The observed lineshapes were domi-
nated by Doppler broadening; the pressure of EG
vapors was maintained at a value which allowed
the observation of spectra with good SNR without
causing significant pressure broadening. The un-
certainty in line center frequencies was evaluated
on a line by line basis, accounting for the effects of
Doppler broadening on the linewidths.

In total, 228 distinct frequencies', correspond-

!The list of newly observed transitions, along with their
residuals from the final fit, is provided as supplementary
material.



Table 1: Spectroscopic parameters determined for aGg’ EG.

Parameter Present work Previousl® Parameter Present work Previous®

A 15361.18508(25)  15361.18562(29) | E* 3478.89772(49)  3478.89747(56)

B 5588.242432(61)  5588.242718(74) | Ej —0.169548(16) —0.169681(20)

c 4614.489630(58)  4614.489567(76) | E% —0.1623385(41)  —0.1623042(63)

Dy x103 7.365648(69) 7.5593(12) B %103 —0.036267(76) —0.1178(16)

Dk —0.03196862(60)  —0.0315764(75) | E%, %103 0.013813(61) 0.0965(16)

Dk 0.0762076(15) 0.0736018(17) | E%,  x10° —4.169(15) —5.689(38)

dy x103 —2.332058(37) —2.32800(12) | B3, x10° —0.980(52)

do x103 —0.175901(53) —0.16925(13) | E3 —0.0204125(28)  —0.0204279(39)

Hy %106 —0.012345(19) —0.011136(45) | E3; %106 —0.9083(34) —0.9255(36)

Hyx %108 0.29653(41) 0.32928(99) | B3, x103 —0.01254(33)

Hiy  x10° —1.7613(19) —1.8174(21) B3, x10° —2.925(51)

Hg x 108 2.9962(34) 3.0003(39) E3;;,  x10'? —9.35(85)

hy %109 —4.338(12) —3.611(19) E; %100 —0.1020(76) 0.623(19)

ha %109 —0.0990(90) 0.318(18) E}; %107 —0.02659(77)

hs x10° 0.1005(38) Fye —30.40354(16) —30.39749(27)

Ly x 1012 0.3077(25) Fre.x —0.023612(71) —0.02977(19)

Lysx %102 —3.694(57) Fypey <103 0.76356(77) 0.7526(10)

Lk x1012 3.74(84) Frexre x10° —1.89(20) —4.59(20)

Lixry x10° 0.0578(21) Fregre x10° 0.249(13) —0.766(41)

Lx %109 —0.1200(21) Fope  x103 —0.2899(11) —0.3686(25)

I x1012 0.1557(17) Fopey  x10° 6.79(13)

Iy x1012 0.0186(13) Fa —143.08505(38)  —143.08745(52)

I3 x10'2 0.01645(84) Fuy  x10° 1.9355(12) 2.1674(41)

Iy x101° 1.00(42) Fop g x10° —0.1883(96) —0.471(14)
Far x10° 7.83(16)
Fouy, %103 —1.4641(27) —0.821(12)
Foapy  x10° —0.03102(79)

Lines it

rms 0.064

o 0.86

Notes: Units are in MHz, except the dimensionless standard deviation o. Values in parenthesis denote one standard deviation
and apply to the last digits of the constants. [a] Christen and Miiller 2°.

Figure 1: The aGg’ and gGg’ conformers of EG. The capital GG indicates the gauche arrangement of the OH
groups with respect to rotation at the C—C bond, while lowercase letters a (anti) or g indicate the position
of hydroxyl hydrogen atoms with respect to rotation at the C—O bonds. Clockwise and counterclockwise
rotations are indicated by the symbols g and g¢’, respectively. The two isomeric forms are separated by a
rotational barrier of 740 K.?*



ing to 370 transitions, have been added to the ex-
isting dataset and all the experimental data have
been fitted together in a least-square procedure in
which each datum was weighted accordingly to its
uncertainty. We probed rotational energy levels
up to J' = 86 and K/ = 29, thanks to which we
were able to substantially improve the centrifugal
analysis of aGg¢’-EG. For instance, the whole set
of centrifugal distortion terms up to the 8th order
of the rotational Hamiltonian (L and [ constants)
has been determined for the first time with good
accuracy. Some centrifugal dependencies of Corio-
lis (Fp. and F,p) and energy difference (E*) terms
have also been included in the analysis. To limit
strong correlations among the spectroscopic pa-
rameters, however, we tried to keep the number of
floating constants low, as long as the standard de-
viation of the fit remained at values around 1. On
the whole, our newly determined parameters agree
well with those previously reported?” but their as-
sociated errors are slightly smaller in our work, as
can be seen from Table 1. The overall standard
deviation (¢ = 0.86) seems to indicate that the
analyzed data are well-reproduced within their ex-
pected accuracy. Our new spectral predictions of-
fer a solid base to assist astronomical searches of
aGg’-EG even at high frequencies.

Regrettably, a thorough knowledge of the rota-
tional spectrum of EG is still a distant goal. This is
because (i) the spectrum of the second most stable
conformer gGg’ (which is estimated to be only 160
290 K more energetic than aGg’?%2%27) has been
studied up to 579 GHz but extrapolations to higher
frequencies were suggested to be not reliable? and
(ii) transitions belonging to low-lying vibrational
excited states remain completely unassigned. The
potentially substantial impact of such vibrational
states on the crowding of astronomical spectra has
previously been demonstrated.?®

Observations and Analysis

The observations presented here are from ALMA
projects #2017.1.00717.S, #2017.1.00661.S, and
#2015.A.00022.T. The calibration and reduction
are presented in detail elsewhere, %2931 and will
only be briefly discussed here. The observations
were centered at «(J2000) = 17:20:53.36, 4(J2000)
=-35:47:00.0, and have been smoothed to provide a
uniform angular resolution of 0.26” x 0.26” across
all datasets. More than a dozen portions of fre-
quency coverage span the range from 130898 GHz

with velocity resolutions of ~0.3-1.0kms™!. The
continuum has been identified from (relatively)
line-free channels and subtracted from the spectra
following the methods described in Brogan et al.3!.

We have simulated the spectrum of EG up to
900 GHz using both the new spectroscopic param-
eters derived here, and the literature values from
which current database entries are derived.?? The
spectra are simulated following the formalisms of
32 which include corrections for optical
depth based on the background continuum tem-
peratures we have measured during the continuum
subtraction. Intensities were converted to bright-
ness temperature on the Planck scale, as errors in-
troduced from the Rayleigh-Jeans approximation
become large at high frequencies and small angu-
lar scales.

For complex molecules such as glycolaldehyde
(HOCH2CHO) with optically thin emission, we
have found that a single column density with an
excitation temperature of T,, = 135K, linewidth
of AV = 3.2kms™!, and v, = -Tkms™! well re-
produces the observed spectral profiles.'® For opti-
cally thick molecules, such as CH3OH and EG how-
ever, the excitation temperature and column den-
sity can vary more significantly across the ALMA
Bands due to varying penetration depths of the ob-
servations into the cloud.'™® A complete treatment
of these species is not only beyond the scope of this
work, but would require a multidimensional radia-
tive transfer model due to the spatial complexity
of the region. Therefore, here we limit ourselves to
only discussing the impact that the frequency ac-
curacy of the predictions has on line identification
in high frequency ALMA data. A comparison of
EG emission simulated using the existing literature
constants to those derived in this work is shown in
Figure 2.

Turner

Discussion

In Band 7 (Fig. 2 Top), well within the frequency
range of the previous laboratory work, there is,
as expected, near perfect agreement between not
only spectra simulated with our refined constants
compared to those of Christen and Miiller ?°, but
also between both simulations and the observa-
tions. The middle panel shows ALMA Band 10
data with only the newly measured lines overlaid.
Both the top and middle panels demonstrate the
need for robust line catalogs, as even relatively
complex species such as EG contribute substan-
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Figure 2: (Top) ALMA spectra of NGC 63341 in Band 7, with simulated lines of EG from the analysis
carried out in this work overlaid in red and using the constants derived in Christen and Miiller ?° inverted
and in blue. The simulation was performed at T,, = 135K, AV = 3.2kms~!, and v, = -Tkms~1. There
is essentially perfect frequency agreement between the datasets. (Middle) ALMA spectra of NGC 63341
in Band 10, again with simulations from this work in red. (Bottom) ALMA spectra of NGC 6334I in
Band 10, again with simulations from this work in red and using the constants derived in Christen and
Miiller 2 inverted and in blue, zoomed in to show the frequency disagreement.

tially to the total line density in ALMA observa-
tions of hot cores.

The bottom panel demonstrates the need for high
frequency laboratory work. The simulation based
on the prior work is significantly offset from the
true line positions, as shown by the excellent agree-
ment between our new predictions and the obser-
vations. This would result either in a faulty conclu-
sion that EG is not present in the Band 10 spectra,

or perhaps that it is velocity shifted to an incorrect
Ulsr-

Many of the lines in our Band 10 spectra are
shifted by ~5MHz (2kms~! at 890 GHz). Yet,
notably, stepping down in frequency to observa-
tions in ALMA Band 9 (602-720 GHz), the two
datasets are once again in excellent agreement with
each other and with the observations (Fig. 3). In-
deed, because extrapolation errors are dependent
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Figure 3: ALMA spectra of NGC 63341 in Band
9, with simulated lines of EG from the analysis
carried out in this work overlaid in red and using
the constants derived in Christen and Miiller2° in-
verted and in blue. The simulation was perfomed
at T,, = 135K, AV = 32kms™ !, and v, = -
7kms~!. There is essentially perfect frequency
agreement between the datasets.

on the quantum numbers and the accuracy with
which the corresponding energy levels are known,
rather than directly upon frequency, the situation
can be quite challenging to assess. For example,
higher-frequency transitions of one type, e.g. b-
type transitions, arising between two energy levels
that are well-characterized from lower-frequency
measurements of a-type transitions may be accu-
rately predicted. On the other hand, transitions
very near in frequency but arising from poorly con-
strained energy levels might be highly inaccurate.
Additionally, uncertainties in higher-order distor-
tion terms scale non-linearly with increasing values
of the quantum numbers,

As a result, it is often not clear the extent to
which extrapolations become dangerous. Extrap-
olating a factor of 1.9 times higher in frequency
(to 700 GHz) than the original work by Christen
and Miiller?° results in predictions that can be
used to accurately analyze observational data, be-
cause these energy levels are well-constrained by
the laboratory measurements. A factor of 2.4 (to
875 GHz), however, is too far, as demonstrated by
our Band 10 analysis.

Most spectral fitting programs, including SP-
FIT/SPCAT, provide estimated uncertainties on
the line positions that could be used for a zeroth-
order approximation of the safety of extrapolation.
Yet, these are often statistical errors derived from
the fit itself, and are not representative of the over-

all uncertainty of the prediction. For example, the
EG signal just below 876250 MHz in Fig. 2 arises
from the 2929,0 — 2828’1 and 2929,1 — 2828,0 transi-
tions. Using the errors in the constants reported
by Christen and Miiller 22, SPCAT provides an un-
certainty of ~0.3 MHz for these line centers, a fac-
tor of ~15 lower than the actual error. The most
reliable and robust method for ensuring that suf-
ficiently accurate data are available is to measure
these species in the laboratory at the required fre-
quencies.

Conclusions

Here, we have extended the investigation of the ro-
tational spectrum of the lowest-energy conformer
(aGg’) of ethylene glycol to 890 GHz. The analy-
sis and assignment was significantly aided by prior
lower-frequency work. Extrapolating frequencies
based on that lower-frequency work proved robust
for analyzing astronomical spectra from ALMA to-
ward the high-mass star-forming region NGC 63341
up through ~800 GHz. In ALMA Band 10, how-
ever, these predictions diverged substantially, re-
quiring our new laboratory measurements to make
a secure detection. This demonstrates the need for
new high-frequency laboratory experiments to en-
able the robust analysis of data in corresponding
ALMA observations.

Associated Content

Supporting Information. List of newly ob-
served transitions and their residuals from the fi-
nal fit, SPCAT input and output files (aGg.int,
aGg.var, aGg.cat).
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