Supporting Information

Comprehensive profiling of diverse genetic reporters with application to whole-cell and cellfree biosensors

Antonia Lopreside^{1,2}, Xinyi Wan^{1,3}, Elisa Michelini², Aldo Roda² and Baojun Wang^{1,3*} ¹School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK ²Department of Chemistry "G. Ciamician", Alma Mater Studiorum, University of Bologna, Italy ³Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3FF, UK **Correspondence can be addressed to BW (baojun.wang@ed.ac.uk)*

Table of Contents

Experimen	ital Procedure	2
	Plasmid circuit construction	2
	Reporter gene expression assay in vivo	2
	Reporter gene expression assay in vitro	3
	Calculation of sensor detection limit	4
	Mathematical modelling and data fitting	4
Figure S1:	Representative plasmid maps for the sensor genetic circuits constructed and tested <i>in vivo</i> and <i>in vitro</i> in this study.	ו 5
Figure S2:	Cell phone images of diverse reporters within whole-cell mercury sensor. Related to Figures 2 and 3B–C	6
Figure S3:	Induction fold of different reporters within whole-cell mercury sensor. Related to Figures 2 and 3B–C.	7
Figure S4:	Dose-response curves of whole-cell mercury sensor with diverse genetic reporters. Related to Figures 2 and 3B–C.	8
Figure S5:	Dose-response curves of whole-cell quorum sensing molecule sensor with diverse output genetic reporters. Related to Figure 3E–F	; 9
Figure S6:	Dose-response curves of sensors in vivo with lux operon as reporter	0
Figure S7:	Characterization of <i>lux</i> operon within quorum sensing molecule sensor using different media and incubation temperature	1
Figure S8:	Cell phone images of diverse reporters within whole-cell quorum sensing molecule sensor. Related to Figure 3E–F	2
Figure S9:	Dose-response curves of cell-free mercury sensor with diverse output genetic reporters. Related to Figure 4B–C	3
Figure S10): Dose-response curves of cell-free quorum sensing molecule sensor with diverse output genetic reporters. Related to Figure 4E–F14	4
Figure S11	1: Characterization of diverse genetic reporters within mercury and quorum sensing molecule cell- free biosensors. Related to Figure 4	6
Table S1:	List of genetic parts and sequences used in this study1	7
Table S2:	List of oligonucleotides used in this study24	4
Table S3:	List of abbreviations used in this study	6
Reference	s	7

Experimental Procedure

Plasmid circuit construction

Compared to previously studied plasmids pBW316J101-luxR¹ and pXWJ109Hg-gfp², the constitutive promoters with receptors were inverted and oriented in the opposite direction to the inducible promoters and reporters by PCR and BioBrick[™] assembly. For tuning the intracellular receptor densities, the constitutive promoters that drive the expression of the mercury receptor MerR and the quorum sensing molecule receptor LuxR were replaced via PCR.

mCherry was amplified from BioBrick[™] part BBa_J06504 by PCR with addition of a ribosome binding site (RBS) BBa_B0030. *mScarlet-I* with BBa_B0030 was synthesized through Integrated DNA Technologies (gBlocks® Gene Fragments) and was amplified by PCR. *gfp* was amplified from a previously studied plasmid pXWJ109Hg-gfp² by PCR. *deGFP* was amplified from plasmid Pr-deGFP (#67743, Addgene) by PCR with addition of BBa_B0030. *lacZ* was amplified from *E. coli* MG1655 genome by PCR with addition of BBa_B0030. *NanoLuc* was amplified from plasmid pCDNA-NanoLuc³ with addition of BBa_B0030. *lux* operons from *P. luminescens* and *A. fischeri* were amplified from the gift plasmids provided by Prof Belkin Shimshon (Hebrew University of Jerusalem).

Reporter gene expression assay in vivo

For reporter gene characterization, the engineered *E. coli* were first inoculated from a single colony on a freshly streaked solid LB plate to 5 mL LB medium, and cultured overnight at 37°C with shaking (160 rpm). Then the cells were diluted 100-fold from the overnight culture into fresh LB medium. For liquid culture induction, the diluted culture was loaded into a 96-well 2.0 mL deepwell plate with round bottom (E2896-2110, Starlab), and induced with 40 μL inducers to a final volume of 1.6 mL per well. The microplate was sealed with an air permeable film (AXY2006, SLS), and incubated in a shaker incubator (MB100-4A, Allsheng) with continuous shaking (1,000 rpm, 37°C). After 30, 60, 90,120, 180, 240, 300 and 360 min incubation, 200 µL of induced culture were dispensed in 96-well microplates with clear-bottom (655096, Greiner Bio-One). A plate reader (BMG FLUOstar) was used to measure fluorescence (bottom reading), absorbance and bioluminescence (top reading). 485 nm excitation and 520 ± 10 nm emission wavelengths were used for measuring green fluorescent reporters with Gain = 1,000. For red fluorescent reporters measurement, 584 nm excitation and 620 \pm 10 nm emission wavelengths with Gain = 2,000 were used. Bioluminescent signal was acquired with 0.1 s of signal integration for each well and Gain = 1,500. Colorimetric signal was acquired by absorbance measurement of A_{650} . NanoLuc-conducted bioluminescent and LacZ-conducted colorimetric measurements were acquired in lysing and non-lysing conditions using the same concentration of substrates (X-gal = 0.04 mg mL⁻¹ from 2% X-gal stock solution and 0.2 μ L of furimazine stock solution per 200 µL culture). B-PER™ Bacterial Protein Extraction Reagent (78243, ThermoFisher Scientific) and PBS (K813-500ML, VWR) were used in lysing and non-lysing

conditions respectively to dilute the substrate. A 50 μ L-volume of diluted substrate was added in each well with a final volume of 250 μ L. NanoLuc-derived bioluminescent kinetics were measured for 30 min after substrate addition and the highest signal was chosen for data analysis. Colorimetric signal measurement was preceded by 30 min incubation at 37°C, with orbital shaking at 300 rpm in the plate reader. To determine the cell density, absorbance (A_{600}) was also read prior to each reporter measurement. For *lux* operon reporter, the bioluminescent signal was measured immediately after absorbance measurement without the addition of substrates.

The plate reader data acquired using Omega MARS 3.20 R2 were exported to Microsoft Excel 2013 and GraphPad Prism 6.01 for data analysis and presentation. The medium backgrounds of fluorescence, absorbance or luminescence were determined from blank wells loaded with LB medium and were subtracted from the readings of other wells. The relative fluorescence, absorbance or luminescence unit (RFU, RAU or RLU) at different time points for a sample culture was determined by the blank corrected output signal divided by A_{600} , and after subtracting its triplicate-averaged counterpart of the negative control cultures (reporter-free) at the same time. Unless indicated otherwise, each reporter within different sensors was tested with three biological replicates. All the data shown are mean values with standard deviation as error bars.

Fluorescent, bioluminescent and colorimetric signals were also acquired with a cell phone (OnePlus5) integrated camera (1/2.8" 16MP Sony IMX 398 sensor, 1.12 µm pixel size and F1.7 aperture). The microplates with cultured cells after each measurement were placed onto the surface of a Safe Imager™ (S37102, Invitrogen) blue-light transilluminator, and were covered with an amber filter in a dark environment. Fluorescent signals were acquired with the blue light on while the bioluminescent signals were acquired with the light off. The images with fluorescent or bioluminescent signals were captured with 30 s integration time.

Reporter gene expression assay in vitro

E. coli S30 Extract System for Circular DNA (L1020, Promega) was used for *in vitro* characterization of different reporters. Engineered *E. coli* with different reporters were first inoculated from a single colony on a freshly streaked solid LB plate to 2 mL terrific broth (TB) medium (12 g L⁻¹ peptone, 24 g L⁻¹ yeast extract, 12.54 g L⁻¹ K₂HPO₄, 2.31 g L⁻¹ KH₂PO₄, 4 mL L⁻¹ glycerol), and cultured for 8 h at 37°C with shaking (160 rpm). Then 75 μ L of each culture was diluted into 30 mL of fresh TB, and was incubated overnight at 37°C with shaking (160 rpm). The 75 μ L of expression PURE IITM Plasmid Midiprep Kit (D4201, Zymo Research) following the manufacturers' protocols, and then were further purified using Monarch® PCR & DNA Cleanup Kit (T1030S, NEB). The plasmids were eluted in nuclease free H₂O.

All cell-free reactions were prepared in a black 384-well microplate with clear bottom (for fluorescence and absorbance measurement, 788096, Greiner Bio-One) or a white 384-well microplate with clear bottom (for bioluminescence measurement, 788095, Greiner Bio-One) on ice, with 4 μ L cell-free mixture topped with 5 μ L of Chill-Out Liquid Wax (CHO1411, Bio-Rad) in each well. The plate was sealed with a transparent EASYseal plate sealer (676001, Greiner Bio-One) for fluorescence (bottom reading) and absorbance measurement, or covered with a transparent lid for bioluminescence measurement (bottom reading) to ease the addition of the substrate furimazine. The plate was incubated and measured continuously by BMG FLUOstar plate reader at 37°C without shaking. The settings for measuring the fluorescence and bioluminescence were the same as for the *in vivo* characterization. Absorbance (A_{670}) was used for measuring the colorimetric reporter.

The plate reader data were processed using Omega MARS 3.20 R2, Microsoft Excel 2013 and GraphPad Prism 6.01. To calculate the RFU, RAU and RLU at different time points, the background of output signals was subtracted from each cell-free reaction by using its triplicate-averaged counterpart of the negative control (reporter-free) at the same time. All the data shown are mean values with standard deviation as error bars.

Calculation of sensor detection limit

The limit of detection (LOD) is the lowest analyte concentration likely to be reliably distinguished from the basal signal and at which detection is feasible.⁴ The calculation has been described previously.²

Mathematical modelling and data fitting

Biochemical models were developed for individual transcription factor receptor modules to abstract their ligand-dependent dose response behaviors. The ordinary differential equation-based deterministic model was used for accurately modelling the gene regulation and expression across the full input or output range of the sensor systems.⁵ It has been described previously.¹

Figure S1: Representative plasmid maps for the sensor genetic circuits constructed and tested *in vivo* and *in vitro* in this study.

Plasmids maps showing the mercury (A) and quorum sensing molecule (B) sensor circuits with *gfp* as the output reporter. For the sensors with other reporters (except *lux* operon), *gfp* was replaced by *mCherry*, *mScarlet-I*, *degfp*, *lacZ* or *NanoLuc*. For the sensors using *lux* operon as output reporter, *gfp* with its RBS was replaced by the *lux* operon with RBS. Sequence details are listed in Table S1.

	30 min	60 min	90 min
mCherry			
mScarlet-l			
GFP			
deGFP			
NanoLuc-Lysed	0.0000	0,00 0 0	
NanoLuc-Not Lyse			10000000000000000000000000000000000000
LacZ-Lysed			
LacZ-Not Lysed			
	120 min	180 min	240 min
mCherry		**********	
mScarlet-l			
GFP			
deGFP			
NanoLuc-Lysed	00000,00000	0000000000	CC00000000
NanoLuc-Not Lysed		0000	
LacZ-Lysed			
LacZ-Not Lysed			
	300 min	360 min	24 h
mCherry			
mScarlet-I		**********	
GFP			
deGFP			
NanoLuc-Lysed	eeccoo co oooo		
NanoLuc-Not Lyse			
LacZ-Lysed			
LacZ-Not Lysed			

Figure S2: Cell phone images of diverse reporters within whole-cell mercury sensor. Related to Figures 2 and 3B–C.

The last well in each cell phone image shows the reporter-free negative control cultures.

The mercury sensors with different reporters were induced with 0.1 μ M HgCl₂. Values are mean ± s.d. (n = 3 biologically independent experiments).

All data shown have the same unit of nM HgCl₂. -: LOD cannot be calculated due to no significant difference observed between the mercury induced and non-induced samples.

Figure S4: Dose-response curves of whole-cell mercury sensor with diverse genetic reporters. Related to Figures 2 and 3B-C.

(A) Dose-response curves of whole-cell mercury sensor with diverse output genetic reporters. Top left, schematic of the mercury sensor. Values are mean ± s.d. (n = 3 biologically independent experiments). (B) Limits of detection (LOD) of whole-cell mercury sensors with different reporters.

-: LOD cannot be calculated due to no significant difference observed between the 3OC₆HSL induced and non-induced samples.

Figure S5: Dose-response curves of whole-cell quorum sensing molecule sensor with diverse output genetic reporters. Related to Figure 3E–F.

(A) Dose-response curves of whole-cell quorum sensing molecule sensor with diverse output genetic reporters. Top left, schematic of the quorum sensing molecule sensor. Values are mean \pm s.d. (n = 3 biologically independent experiments). (B) Limits of detection (LOD) of whole-cell quorum sensing molecule sensors with different reporters.

Figure S6: Dose-response curves of sensors in vivo with lux operon as reporter.

(A,B) Dose response curves (A) and normalized response curves (B) of a mercury sensor with *lux* operon from *P. luminescens* as output reporter. (C,D) Dose response curves (C) and normalized response curves (D) of a quorum sensing molecule sensor with *lux* operon from *P. luminescens* as output reporter. Values are mean \pm s.d. (n = 3 biologically independent experiments). a.u., arbitrary units.

Figure S7: Characterization of *lux* operon within quorum sensing molecule sensor using different media and incubation temperature.

Lux-*PI*, LuxCEABE from *P. luminescens*. Lux-*Af*, LuxCEABE from *A. fischeri*. M9-Gly., M9 medium with glycerol as carbon source. M9-Gluc., M9 medium with glucose as carbon source. All data were collected 3 h post induction and incubation. Values are mean \pm s.d. (n = 2 biologically independent experiments). a.u., arbitrary units.

Figure S8: Cell phone images of diverse reporters within whole-cell quorum sensing molecule sensor. Related to Figure 3E–F.

The last well in each cell phone image shows the reporter-free negative control cultures.

Reporters	20 min	40 min	60 min	120 min	180 min	240 min
mCherry	-	-	-	0.01 – 0.10	0.01 – 0.10	0.01 – 0.10
mScarlet-I	-	-	0.01 – 0.10	0.01 – 0.10	0.01 – 0.10	$5.00 imes 10^{-3} - 0.01$
GFP	0.01 - 0.10	$5.00 imes 10^{-3} - 0.01$	$\begin{array}{c} 1.00 \times 10^{-3} - \\ 5.00 \times 10^{-3} \end{array}$	$\begin{array}{c} 1.00 \times 10^{-3} - \\ 5.00 \times 10^{-3} \end{array}$	< 1.00 × 10 ⁻³	< 1.00 × 10 ⁻³
deGFP	0.01 - 0.10	$5.00 imes 10^{-3} - 0.01$	$\begin{array}{c} 1.00 \times 10^{-3} - \\ 5.00 \times 10^{-3} \end{array}$	$5.00 imes 10^{-3} - 0.01$	$\begin{array}{c} 1.00 \times 10^{-3} - \\ 5.00 \times 10^{-3} \end{array}$	$\begin{array}{c} 1.00 \times 10^{-3} - \\ 5.00 \times 10^{-3} \end{array}$
LacZ	0.10 - 1.00	$\begin{array}{c} 1.00\times 10^{-3} - \\ 5.00\times 10^{-3} \end{array}$	$\begin{array}{c} 1.00 \times 10^{-3} - \\ 5.00 \times 10^{-3} \end{array}$	$\begin{array}{c} 1.00 \times 10^{-3} - \\ 5.00 \times 10^{-3} \end{array}$	$\begin{array}{c} 1.00 \times 10^{-3} - \\ 5.00 \times 10^{-3} \end{array}$	0.01 - 0.10
NanoLuc	0.01 - 0.10	1.00 × 10 ⁻³ – 0.01	1.00 × 10 ⁻³ – 0.01	0.01 - 0.10	1.00 × 10 ⁻³ – 0.01	$1.00 imes 10^{-3} - 0.01$

All data shown have the same unit of μ M HgCl₂.

Α

-: LOD cannot be calculated due to no significant difference observed between the mercury induced and non-induced samples.

Figure S9: Dose-response curves of cell-free mercury sensor with diverse output genetic reporters. Related to Figure 4B–C.

(A) Schematic and normalized dose-response curves of cell-free mercury sensors. Values are mean \pm s.d. (n = 3 technical replicates). (B) Limit of detection (LOD) of the sensor tested in A. As only a few concentrations of mercury were tested, the LOD were shown as a range.

Α

mCherry	_	_	_	0.04 - 0.40	0.02 - 0.04	0.02 - 0.04
mScarlet-I	-	-	0.40 - 4.00	0.04 - 0.40	0.02 - 0.04	$\begin{array}{c} 4.00 \times 10^{-3} - \\ 0.02 \end{array}$
GFP	-	0.40 - 4.00	0.04 - 0.40	0.04 - 0.40	0.40 - 4.00	0.40 - 4.00
deGFP	0.02 - 0.04	$4.00 imes 10^{-3} - 0.02$	< 4.00 × 10 ⁻³			
LacZ	-	0.02 - 0.04	$4.00 imes 10^{-3} - 0.02$			
NanoLuc	4.00 × 10 ⁻³ −	< 4.00 × 10 ⁻³	< 4.00 × 10 ⁻³	< 4.00 × 10 ^{−3}	4.00 × 10 ⁻³ −	< 4.00 × 10 ⁻³

All data shown have the same unit of µM 3OC₆HSL.

-: LOD cannot be calculated due to no significant difference observed between the 3OC₆HSL induced and noninduced samples.

Figure S10: Dose-response curves of cell-free quorum sensing molecule sensor with diverse output genetic reporters. Related to Figure 4E–F.

(A) Schematic and normalized dose-response curves of cell-free quorum sensing molecule sensors. Values are mean \pm s.d. (n = 3 technical replicates). (B) Limit of detection (LOD) of the sensor tested in A. As only a few concentrations of $3OC_6HSL$ were tested, the LOD were shown as a range.

Figure S11: Characterization of diverse genetic reporters within mercury and quorum sensing molecule cell-free biosensors. Related to Figure 4.

(A,D) Schematics of the mercury or quorum sensing molecule sensor modules (J23115-*merR*-P_{*merT*} or J23101-*luxR*-P_{*lux2*}) coupled to diverse genetic reporters. (B,E) Dynamic output responses of the sensors responding to two concentrations of HgCl₂ (B) or 3OC₆HSL (E). (C,F) Fold of induction over time of the mercury or quorum sensing cell-free sensors with different reporters responding to 0.1 μ M HgCl₂ (C) and 0.4 μ M 3OC₆HSL (F) respectively. Induction fold was calculated using the output with induction divided by the output without induction. Values are mean ± s.d. (n = 3 technical replicates). a.u., arbitrary units.

Table S1: List of genetic parts and sequences used in this study

Underlined sequences indicate -35 and -10, or -24 and -12 promoter regions. Sequences in blue are MerR binding sites, sequences in yellow are LuxR binding sites.

Name	Туре	DNA sequence (5'-3')
J23101	Constitutive promoter ¹	TTTACAGCTAGCTCAGTCCTAGGTATTATGCTAGC
J23109	Constitutive promoter ²	<u>TTTACA</u> GCTAGCTCAGTCCTAGG <u>GACTGT</u> GCTAGC
J23115	Constitutive promoter ¹	<u>TTTATA</u> GCTAGCTCAGCCCTTGG <u>TACAAT</u> GCTAGC
J23117	Constitutive promoter ¹	<u>TTGACA</u> GCTAGCTCAGTCCTAGG <u>GATTGT</u> GCTAGC
P _{mer} ⊤	Inducible promoter ⁶	TTCCATATCGC <u>TTGACT</u> ACGTACATGAGTACGGAAG <u>TAAGGT</u> TACGCTATCCAAT CC
P _{lux2}	Inducible promoter ¹	AG <mark>ACCTGTAGGATCGTACAGGT</mark> TTACGCAAGAAAATGGTTTGTTA <u>CTTTCG</u> AATA AA
B0030	RBS ⁵	ATTAAAGAGGAGAAA
R0032	RBS⁵	TCACACAGGAAAG
B0015	Terminator ⁷	CCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTAT CTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGT GGGCCTTTCTGCGTTTATA
L3S2P55	Terminator ⁸	CTCGGTACCAAAGACGAACAATAAGACGCTGAAAAGCGTCTTTTTCGTTTTGGT CC
merR	Gene ⁶	ATGGAAAATAATTTGGAAAACCTGACCATTGGCGTTTTTGCCAAGGCGGCCGGGG TCAACGTGGAGACAATCCGCTTCTATCAGCGCAAGGGCCTGTTGCGGGAACCGGA CAAGCCTTACGGCAGCACCGCCTGTGGGGGTCCAGGGGGGGG
luxR	Gene ¹	ATGAAAAACATAAATGCCGACGACACATACAGAATAATTAAT
mCherry	Gene*	ATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTTCATGCGCT TCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGA GGGCGAGGGCCGCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAG GGTGGCCCCCTGCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCT CCAAGGCCTACGTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTT CCCCGAGGGCTTCAAGTGGGAGCGCCGTGATGAACTTCGAGGACGGCGGCGTGGTG ACCGTGACCCAGGACTCCTCCTTGCAGGACGGCGAGTTCATCTACAAGGTGAAGC TGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGG CTGGGAGGCCTCCTCCGAGGGCGCCCCGTAATGCAGAAGAAGACCATGGG ATCAAGCAGAGGCTGAAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGA CCACCTACAAGGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAACGTCAACAT

		CAAGTTGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAA CGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGACGAGCTGTACAAGTAA
mScarlet-I	Gene ⁹	ATGGTGAGTAAAGGAGAAGCTGTGATTAAAGAGTTCATGCGCTTCAAAGTTCACA TGGAGGGTTCTATGAACGGTCACGAGTTCGAGATCGAAGGCGAAGGCGAAGGCGAGGGCCG TCCGTATGAAGGCACCCAGACCGCCAAACTGAAAGTGACTAAAGGCGCCCGCTG CCTTTTTCCTGGGACATCCTGAGCCCGCAATTTATGTACGGTTCTAGGGCGTTCA TCAAACACCCAGCGGATATCCCGGACTATTATAAGCAGTCTTTTCCGGAAGGTTT CAAGTGGGAACGCGTAATGAATTTTGAAGATGGTGGTGCCGTGACCGTCACTCAG GACACCTCCCTGGAGGATGGCACCCTGATCTATAAAGTTAAACTGCGTGGTACTA ATTTTCCACCTGATGGCCCGGTGATGCAGAAAAAGACGATGGGTTGGGAGGCGTC TACCGAACGCTTGTATCCGGAAGATGGTGTGTGCAAAGGCGACATTAAAATGGCC CTGCGCCTGAAAGATGGCGGCCGCTATCTGGCTGACCGCAAACCGGTACAAAG CCAAGAAACCTGTGCAGATGCCTGGCGCGTACAATGTGGACCGCAAACTGGACAT CACCTCTCATAATGAAGATTATACGGTGGTAGAGCAATATGAGCGCTCCGAGGGT CGTCATTCTACCGGTGGCATGGATGAACTATACAAA
gfp	Gene ⁷	ATGCGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAG ATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATGC AACATACGGAAAACTTACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTT CCATGGCCAACACTTGTCACTACTTTCGGTTATGGTGTTCAATGCTTTGCGAGAT ACCCAGATCATATGAAACAGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTA TGTACAGGAAAGAACTATATTTTTTCAAAGATGACGGGAACTACAAGACACGTGCT GAAGTCAAGTTTGAAGGTGATACCCTTGTTAATAGAATCGAGTTAAAAGGTATTG ATTTTAAAGAAGATGGAAACATTCTTGGACACAAATTGGAATACAACTATAACTC ACACAATGTATACATCATGGCAGACAAACAAAAGAATGGAATCAAAGTTAACTTC AAAATTAGACACAACATTGAAGATGGAAGCGTTCAACTAGCAGACCATTACAAC AAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGC CACACAATCTGCCCTTTCGAAAGATCCCAACTAGGAGACCACTATCACT CTTGAGTTTGTAACAGCTGCTGCCTGCCAACGAAAGAGAGAG
degfp	Gene ¹⁰	ATGGAGCTTTTCACTGGCGTTGTTCCCATCCTGGTCGAGCTGGACGGCGACGTAA ACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAA GCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACC CTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACA TGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCG CACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCGAGGTGAAGTTC GAGGGCGACACCCTGGTGAACCGCCATCGAGCTGAAGGGCATCGACTTCAAGGAGG ACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTA TATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGAACCGCCAC ACCATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGAACACCCCCA CCGGCGACGGCCCCGTGCTGCTGCCGCCGACCACTACCAGCAGAACACCCCCA CCTGAGCAAAGACCCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTG ACCGCCGCCGGGATCTAA
NanoLuc	Gene ¹¹	ATGGTCTTCACACTCGAAGATTTCGTTGGGGACTGGCGACAGACA
LacZ	Gene (Amplified from <i>E. coli</i> MG1655 by PCR)	ATGACCATGATTACGGATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAA ACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTG GCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTG AATGGCGAATGGCGCTTTGCCTGGTTTCCGGCACCAGAAGCGGTGCCGGAAAGCT GGCTGGAGTGCGATCTTCCTGAGGCCGATACTGTCGTCGTCCCCTCAAACTGGCA GATGCACGGTTACGATGCGCCCATCTACACCAACGTGACCTATCCCATTACGGTC AATCCGCCGTTTGTTCCCACGGAGAATCCGACGGGTTGTTACTCGCTCACATTTA ATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGGATTATTTTTGATGGCGT TAACTCGGCGTTTCATCTGTGGTGCAACGGGCGCTGGGTCAGGTCAGGAC

		AGTCGTTTGCCGTCTGAATTTGACCTGAGCGCATTTTTACGCGCCGGAGAAAACC GCCTCCCGGGATGGTGCTGCGCTGGAGTGACGGCAGTTATCTGGAGAGTCAGGA TATGTGGCGGATGAGCGGCGTTTCCGTGGACGCGCGCTGCTGACGCGGCACCGCGC ACACAATCAGCGATTTCCATGTGCCACTCGCTTTAATGATGATTCAGCCGGC CTGTACTGGAGGCTGAAGTTCAGATGTGCGACGCGCGCGC
		TGCACGGCAGATACACTTGCTGATGCGGTGCTGATTACGACCGCTCACGCGTGGC AGCATCAGGGGAAAACCTTATTTATCAGCCGGAAAACCTACCGGATTGATGGTAG TGGTCAAATGGCGATTACCGTTGATGTTGAAGTGGCGAGCGGATACACCGCATCCG GCGCGGATTGGCCTGAACTGCCAGCTGGCGCAGGTAGCAGAGCGGGTAAACTGGC TCGGATTAGGGCCGCAAGAAAACTATCCCGACCGCCTTACTGCCGCCTGTTTTGA CCGCTGGGATCTGCCATTGTCAGACATGTATACCCCGTACGTCTTCCCGAGCGAA
		AACGGTCTGCGCTGCGGGACGCGCGAATTGAATTATGGCCCACACCAGTGGCGCG GCGACTTCCAGTTCAACATCAGCCGCTACAGTCAACAGCAACTGATGGAAACCAG CCATCGCCATCTGCTGCACGCGGAAGAAGGCACATGGCTGAATATCGACGGTTTC CATATGGGGATTGGTGGCGACGACTCCTGGAGCCCGTCAGTATCGGCGGAGTTTC AGCTGAGCGCCGGTCGCTACCATTACCAGTTGGTCTGGTGTCAAAAATAA
		AGGAGGGGCAAATATGACTAAAAAAATTTCATTCATTATTAACGGCCAGGTTGAA ATCTTTCCCGAAAGTGATGATGATTTAGTGCAATCCATTAATTTTGGTGATAATAGTG TTTACCTGCCAATATTGAATGACTCTCATGTAAAAAACATTATTGATTG
lux operon (P. luminescens)	Gene with RBS**	GATTTTATGTTCTAAAGGCGGCCTTTATGATGTTGTAGAAAATGAACTTGGTTCT CGCCATATCATGGATGAATGGCTACCTCAGGATGAAAGTTATGTTCGGGCTTTTC CGAAAGGTAAATCTGTACATCTGTTGGCAGGTAATGTTTCATTATCTGGGATCAT GTCTATATTACGCGCCAATTTTAACTAAGAATCAGTGTATTATAAAAACATCGTCA ACCGATCCTTTTACCGCTAATGCATTAGCGTTAAGTTTTATTGATGTAGACCCTA ATCATCCGATAACGCGCTCTTTATCTGTTATATATTGGCCCCCACCAAGGTGATAC
		ATCACTCGCAAAAGAAATTATGCGACATGCGGATGTTATTGTCGCTTGGGGAGGG CCAGATGCGATTAATTGGGCGGTAGAGCATGCGCCATCTTATGCTGATGTGATTA AATTTGGTTCTAAAAAGAGTCTTTGCATTATCGATAATCCTGTTGATTTGACGTC

CGCAGCGACAGGTGCGGCTCATGATGTTTGTTTTTACGATCAGCGAGCTTGTTT TCTGCCCAAAACATATATTACATGGGAAATCATTATGAGGAATTTAAGTTAGCGT TGATAGAAAAACTTAATCTATATGCGCATATATTACCGAATGCCAAAAAAGATTT TGATGAAAAGGCGGCCTATTCTTTAGTTCAAAAAGAAAGCTTGTTTGCTGGATTA AAAGTAGAGGTGGATATTCATCAACGTTGGATGATTATTGAGTCAAATGCAGGTG TGGAATTTAATCAACCACTTGGCAGATGTGTGTACCTTCATCACGTCGATAATAT TGAGCAAATATTGCCTTATGTTCAAAAAAATAAGACGCAAACCATATCTATTTT CCTTGGGAGTCATCATTTAAATATCGAGATGCGTTAGCATTAAAAGGTGCGGAAA GGATTGTAGAAGCAGGAATGAATAACATATTTCGAGTTGGTGGATCTCATGACGG AATGAGACCGTTGCAACGATTAGTGACATATATTTCTCATGAAAGGCCATCTAAC TATACGGCTAAGGATGTTGCGGTTGAAATAGAACAGACTCGATTCCTGGAAGAAG ATAAGTTCCTTGTATTTGTCCCATAATAGGTAAAAAGTATGGAAAATGAATCAAA ATATAAAACCATCGACCACGTTATTTGTGTTGAAGGAAATAAAAAAATTCATGTT CGTCTGGTTTTGCCCGCAGGATGGATCATTTTGCTGGTCTGGCCGGAATATTTATC GCGGAATGGATTCATGTGATCCGCTATGATTCGCTTCACCACGTTGGATTGAGT TCAGGGACAATTGATGAATTTACAATGTCTATAGGAAAGCAGAGCTTGTTAGCAG TGGTTGATTGGTTAACTACACGAAAAATAAATAACTTCGGTATGTTGGCTTCAAG CTTATCTGCGCGGATAGCTTATGCAAGCCTATCTGAAATCAATGCTTCGTTTTTA ATCACCGCAGTCGGTGTTGTTAACTTAAGATATTCTCTTGAAAGAGCTTTAGGGT TTGATTATCTCAGTCTACCCATTAATGAATTGCCGGATAACCTAGATTTTGAAGG GATTTAGCTTCTACAATTAATAACATGATGTATCTTGATATACCGTTTATTGCTT TTACTGCAAATAACGATAATTGGGTCAAGCAAGATGAAGTTATCACATTGTTATC AAATATTCGTAGTAATCGATGCAAGATATATTCTTTGTTAGGAAGTTCGCATGAC TTGAGTGAAAATTTAGTGGTCCTGCGCAATTTTTATCAATCGGTTACGAAAGCCG CTATCGCGATGGATAATGATCATCTGGATATTGATGTTGATATTACTGAACCGTC ATTTGAACATTTAACTATTGCGACAGTCAATGAACGCCGAATGAGAATTGAGATT GAAAATCAAGCAATTTCTCTGTCTTAAAATCTATTGAGATATTCTATCACTCAAA TAGCAATATAAGGACTCTCTATGAAATTTGGAAACTTTTTGCTTACATACCAACC TCCCCAATTTTCTCAAACAGAGGTAATGAAACGTTTGGTTAAATTAGGTCGCATC TCTGAGGAGTGTGGGTTTTGATACCGTATGGTTACTGGAGCATCATTTCACGGAGT TTGGTTTGCTTGGTAACCCTTATGTCGCTGCTGCATATTTACTTGGCGCGCGACTAA AAAATTGAATGTAGGAACTGCCGCTATTGTTCTTCCCACAGCCCATCCAGTACGC CAACTTGAAGATGTGAATTTATTGGATCAAAATGTCAAAAGGACGATTTCGGTTTG GTATTTGCCGAGGGCTTTACAACAAGGACTTTCGCGTATTCGGCACAGATATGAA TAACAGTCGCGCCTTAGCGGAATGCTGGTACGGGCTGATAAAGAATGGCATGACA GAGGGATATATGGAAGCTGATAATGAACATATCAAGTTCCATAAGGTAAAAGTAA ACCCCGCGGCGTATAGCAGAGGTGGCGCACCGGTTTATGTGGTGGCTGAATCAGC TTCGACGACTGAGTGGGCTGCTCAATTTGGCCTACCGATGATATTAAGTTGGATT ATAAATACTAACGAAAAGAAAGCACAACTTGAGCTTTATAATGAAGTGGCTCAAG AATATGGGCACGATATTCATAATATCGACCATTGCTTATCATATAAACATCTGT AGATCATGACTCAATTAAAGCGAAAGAGATTTGCCGGAAATTTCTGGGGGCATTGG TATGATTCTTATGTGAATGCTACGACTATTTTTGATGATTCAGACCAAACAAGAG GTTATGATTTCAATAAAGGGCAGTGGCGTGACTTTGTATTAAAAGGACATAAAGA TACTAATCGCCGTATTGATTACAGTTACGAAATCAATCCCGTGGGAACGCCGCAG GAATGTATTGACATAATTCAAAAAGACATTGATGCTACAGGAATATCAAATATTT GTTGTGGATTTGAAGCTAATGGAACAGTAGACGAAATTATTGCTTCCATGAAGCT CTTCCAGTCTGATGTCATGCCATTTCTTAAAGAAAAACAACGTTCGCTATTATAT TAGCTAAGGAGAAAGAAATGAAATTTGGATTGTTCTTCCTTAACTTCATCAATTC AACAACTGTTCAAGAACAAAGTATAGTTCGCATGCAGGAAATAACGGAGTATGTT GATAAGTTGAATTTTGAACAGATTTTAGTGTATGAAAATCATTTTTCAGATAATG GTGTTGTCGGCGCTCCTCTGACTGTTTCTGGTTTTCTGCTCGGTTTAACAGAGAA AATTAAAATTGGTTCATTAAATCACATCATTACAACTCATCCTGTCCGCATA TTAGTGATTGCGAAAAAAAAAGATGAAATGCATTTTTTTAATCGCCCGGTTGAATA TCAACAGCAACTATTTGAAGAGTGTTATGAAATCATTAACGATGCTTTAACAACA GGCTATTGTAATCCAGATAACGATTTTTATAGCTTCCCTAAAATATCTGTAAATC CCCATGCTTATACGCCAGGCGGACCTCGGAAATATGTAACAGCAACCAGTCATCA TATTGTTGAGTGGGCGGCCAAAAAAGGTATTCCTCTCATCTTTAAGTGGGATGAT TCTAATGATGTTAGATATGAATATGCTGAAAGATATAAAGCCGTTGCGGATAAAT ATGACGTTGACCTATCAGAGATAGACCATCAGTTAATGATATTAGTTAACTATAA

		CGAAGATAGTAATAAAGCTAAACAAGAGACGCGTGCATTTATTAGTGATTATGTT
		CTTGAAATGCACCCTAATGAAAATTTCGAAAATAAACTTGAAGAAATAATTGCAG
		AAAACGCTGTCGGAAATTATACGGAGTGTATAACTGCGGCTAAGTTGGCAATTGA
		AAAGTGTGGTGCGAAAAGTGTATTGCTGTCCTTTGAACCAATGAATG
		AGCCAAAAAAATGTAATCAATATTGTTGATGATAATATTAAGAAGTACCACATGG
		ACAATATTACGGAAATTGATGACATACCTGTATTCCCCAACATCGGTTTTTAAGTT
		TACTCGCTTATTAACTTCTCAGGAAAACGAGATTGAAAGTTGGTTTACCAGTAGC
		GGCACGAATGGTTTAAAAAGTCAGGTGGCGCGTGACAGATTAAGTATTGAGAGAC
		TCTTAGGCTCTGTGAGTTATGGCATGAAATATGTTGGTAGTTGGTTTGATCATCA
		AATAGAATTAGTCAATTTGGGACCAGATAGATTTAATGCTCATAATATTTGGTTT
		AAATATGTTATGAGTTTGGTGGAATTGTTATATCCTACGACATTTACCGTAACAG
		AAGAACGAATAGATTTTGTTAAAACATTGAATAGTCTTGAACGAATAAAAAATCA
		AGGGAAAGATCTTTGTCTTATTGGTTCGCCATACTTTATTTA
		TATATGAAAGATAAAAAAATCTCATTTTCTGGAGATAAAAGCCTTTATATCATAA
		CCGGAGGCGGCTGGAAAAGTTACGAAAAAGAATCTCTGAAACGTGATGATTTCAA
		GTGTGCTTTTAAGCTTAACCGAAGCGTTTGATAGTTGATATCCTTTGCCTAATTGT
		AAGTGGAATGCTTGCGTTATATAAATCTGAATGACATCTACACTTTACAAAATTC
		TCCAAAACATCCACATTTGGGTACTTGATAGAGGTTTATGGGGTTGGCTTAACAT
		TGTTCTCATTGTTATTATTGGCTCAAAGCAAAAGGAGATAACATGAAAAAATTGG
		CAGTTATGCTTGCATTGGGAATGATTAGCTTTGGTGCAATGGCAGTTGATGGGTA
		TAAAGATGCAAAGTTTGGCATGACAGAAGAAGAGTTTCTTTC
		GATTTTGAAAAATTTGAGGGAGATTCTCGAATAGAAGAAGTATCACTTTATTCAT
		GTTCTGACTTTTCGTTTGCTAACAAAAAGCGTGAAGCAATGGCATTTTTTTAAA
		ΑΑΑΤΟ GTTAAC GAAAAAGTAC GGAGATGGATCATO GTATUCATO AAAAGAAGAAGAAT
		AGGAATTAAAGGAATTAAAGGAATTTGCCCTATAG
		GATTTTGATAATTATGCATATAAAGAAGTTAAACTAAATAATGATAATAGAGTAA
		AATTATCTGTCATTACTGAAAGTTCAGTTTCAAAAACATTAAATATCAAAGATAG
		AATTAATCTAAATTTAAATCAGATTGTGAATTTTTTATATACCGTTGGTCAACGA
		TGGAAAAGTGAAGAATATAATCGGCGACGAACCTATATCCGTGAGTTAAAAAACAT
		ATCTTGGTTATTCTGATGAAATGGCAAGATTAGAAGCGAATTGGATTGCAATGTT
		ATTGTGCTCTAAAAGTGCTTTGTATGACATTGTTAATTATGATTTGGGCTCTATA
		CACGTATTAGATGAATGGCTTCCACGTGGTGATTGCTATGTTAAAGCACAACCGA
1		
Iux operon (A.		
lischen	KD3	
		TCTATCTCAAAGAATAATGAATCATGCCGACGTGGTTATTGCCTTGGGGGGGG
		GAGGCGATTAAATGGGCGGTAAAATATTCACCACCGCATGTCGATATTCTGAAAT
		TTGGACCAAAGAAAAGCTTAAGTATTATTGAAGCTCCTAAAGATATAGAAGCCGC
		AGCAATGGGGGTTGCTCATGATATTTGTTTCTATGACCAGCAAGCCTGCTTCTCT
		ACTCAAGACGTTTATTATATAGGAGATAATTTACCTTTATTTTTAAATGAACTTG
		AAAAACAGCTAGATCGATACGCGAAAATTTTACCAAAAGGTTCAAATAGTTTTGA
		TGAAAAAGCGGCGTTTACTCTTACTGAAAAAGAAAGTCTATTTGCTGGATATGAA
		GTGAGAAAGGGAGATAAGCAAGCTTGGTTAATAGTCGTATCACCTACAAATAGCT

TTGGAAATCAACCGCTATCACGAAGTGTGTGTGTTCATCAAGTATCTGATATTAA AGAGATAATTCCTTTTGTTAATAAAAATAGAACACAAACTGTTTCTATTTATCCT TGGGAAGCGTCATTAAAATATCGAGATAAATTAGCAAGAAGTGGAGTTGAAAGAA TTGTTGAATCAGGCATGAATAATATTTTCAGAGTTGGAGGGGCTCATGATTCATT ATCTCCTCTCCAGTACCTAGTTAGGTTTGTATCGCATGAGAGACCATTTAATTAT ACGACAAAAGATGTTGCGGTTGAAATCGAACAAACACGTTACTTAGAGGAAGATA AGTTTTTAGTTTTTGTCCCATAGTTAAAGGAAATTATATGAAAGATGAAAGTGCT TTTTTTACGATTGATCACATCATCAAGCTTGATAATGGTCAGTCTATCCGAGTTT GGGAAACACTCCCTAAAAAGAACGTACCAGAGAAAAAACATACAATACTTATTGC TTCGGGTTTTGCTAGAAGAATGGATCATTTTGCAGGTCTTGCTGAGTATTTATCT ACTAACGGTTTTCATGTCATTCGCTACGATTCTTTGCATCATGTTGGATTAAGCA GTGGATGTATAAATGAATTTACGATGTCGATTGGAAAAAATAGCCTGCTTACAGT CGTAGATTGGCTTACAGATCATGGTGTCGAACGAATAGGGCTGATTGCTGCTAGT TTGTCAGCGAGAATCGCCTATGAGGTAGTAAATAAAATTAAATTATCATTTTTAA TTACGGCCGTAGGTGTCGTTAATCTTAGAGATACATTAGAAAAAGCATTGGAGTA TGACTATTTGCAATTACCTATTTCAGAGTTACCAGAAGATCTTGACTTTGAAGGT CATAATTTAGGATCGGAGGTCTTTGTTACAGATTGCTTTAAACATAATTGGGACA CGTTAGACTCGACACTTAATAGTGTTAAAGGATTAGCGATTCCATTTATTGCTTT TACTGCAAACGATGATAGTTGGGTAAAGCAAAGTGAAGTTATAGAGCTCATTGAT AGCATTGAATCTAGTAATTGTAAGCTCTATTCGCTAATTGGAAGTTCACATGATC CTTAGCATTAGATGATGGTTTATTGGATTTAGAGATAGACATTATTGAACCTCGA TTTGAGGACGTTACAAGTATTACTGTTAAGGAGCGTAGATTAAAAAATGAAATTG AAAATGAATTATTAGAATTGGCTTAAATAAACAGAATCACCAAAAAGGAATAGAG TATGAAGTTTGGAAATATTTGTTTTTCGTATCAACCACCAGGTGAAACTCATAAG CAAGTAATGGATCGCTTTGTTCGGCTTGGTATCGCCTCAGAAGAGGTAGGGTTTG ATACATATTGGACCTTAGAACATCATTTTACAGAGTTTGGTCTTACGGGAAATTT ATTTGTTGCTGCGGCTAACCTGTTAGGAAGAACTAAAACATTAAATGTTGGCACT ATGGGGGTTGTTATTCCGACAGCACACCCAGTTCGACAGTTAGAAGACGTTTTAT TATTAGATCAAATGTCGAAAGGTCGTTTTAATTTTGGAACCGTTCGAGGGCTATA CCATAAAGATTTTCGAGTATTTGGTGTTGATATGGAAGAGTCTCGAGCAATTACT ATAGTGATTACATTCCAATTTCCTAAGGTTGATGTATATCCCAAAGTGTACTCAAA AAATGTACCAACCTGTATGACTGCTGAGTCCGCAAGTACGACAGAATGGCTAGCA CACAGATGGAACTCTATAATGAAATTGCGACAGAATATGGTCATGATATATCTAA AATAGATCATTGTATGACTTATATTTGTTCTGTTGATGATGATGCACAAAAGGCG CAAGATGTTTGTCGGGAGTTTCTGAAAAATTGGTATGACTCATATGTAAATGCGA CCAATATCTTTAATGATAGCAATCAAACTCGTGGTTATGATTATCATAAAGGTCA ATGGCGTGATTTTGTTTTACAAGGACATACAAACACCAATCGACGTGTTGATTAT AGCAATGGTATTAACCCTGTAGGCACTCCTGAGCAGTGTATTGAAATCATTCAAC GTGATATTGATGCAACGGGTATTACAAACATTACATGCGGATTTGAAGCTAATGG AACTGAAGATGAAATAATTGCTTCCATGCGACGCTTTATGACACAAGTCGCTCCT TTCTTAAAAGAACCTAAATAAATTACTTATTTGATACTAGAGATAATAAGGAACA AGTTATGAAATTTGGATTATTTTTTTCTAAAACTTTCAGAAAGATGGAATAACATCT GAAGAAACGTTGGATAATATGGTAAAGACTGTCACGTTAATTGATTCAACTAAAT ATCATTTTAATACTGCCTTTGTTAATGAACATCACTTTTCAAAAAATGGTATTGT ATTGGTTCATTAAATCAAGTAATTACCACCCATCACCCTGTACGTGTAGCAGAAG AAGCCAGTTTATTAGATCAAATGTCAGAGGGACGCTTCATTCTTGGTTTTAGTGA CTGCGAAAGTGATTTCGAAATGGAATTTTTTAGACGTCATATCTCATCAAGGCAA CAACAATTTGAAGCATGCTATGAAATAATTAATGACGCATTAACTACAGGTTATT GTCATCCCCAAAACGACTTTTATGATTTTCCAAAGGTTTCAATTAATCCACACTG TTACAGTGAGAATGGACCTAAGCAATATGTATCCGCTACATCAAAAGAAGTCGTC ATGTGGGCAGCGAAAAAGGCACTGCCTTTAACATTTAAGTGGGAGGATAATTTAG AAACCAAAGAACGCTATGCAATTCTATATAATAAAACAGCACAACAATATGGTAT TGATATTTCGGATGTTGATCATCAATTAACTGTAATTGCGAACTTAAATGCTGAT AGAAGTACGGCTCAAGAAGAAGTGAGAGAATACTTAAAAGACTATATCACTGAAA CTTACCCTCAAATGGACAGAGATGAAAAAATTAACTGCATTATTGAAGAGAATGC AGTTGGGTCTCATGATGACTATTATGAATCGACAAAATTAGCAGTGGAAAAAACA GGGTCTAAAAATATTTTATTATCCTTTGAATCAATGTCCGATATTAAAGATGTAA AAGATATTATTGATATGTTGAACCAAAAAATCGAAATGAATTTACCATAATAAAA TTAAAGGCAATTTCTATATTAGATTGCCTTTTTAAATTTCTGTTGATATTAGGTA TTACTGGAGAGGGTATGACTGTCCATACTGAATATAAAAGAAATCAAATCATTGC TAGTTCAGAAATTGATGATCTTATCTTTATGACGAAACCACAAGAGTGGTCATTT GAAGAGCAAAAAGAAATACGGGATAAATTAGTTCGTGAGGCTTTTTATTTTCACT TTTACACACTATTGATGAAATACCCGTGTTTCCAACATCTGTTTTTAAATATAAG AAATTACATACTGTCACAGCCGAGGACATTGAAAATTGGTATACAAGTAGTGGAA CTCGTGGAGTAAAAAGTCATATTGCACGTGATCGTCTTAGCATTGAACGCTTGCT TGGTTCTGTCAACTTCGGAATGAAATACGTTGGAGATTGGTTTGAGCATCAAATG GAATTGATAAATTTAGGACCAGATAGATTCAATACAAATAATATTTGGTTTAAAT ATGTCATGAGTTTGGTCGAGTTACTTTATCCGACTGAATTTACAGTTGATAATGA CAAAATAGATTTTGAAAAAACAGTAAAACATCTATTTAGAATTAAGAATAGTAAA AAAGACATTTGCTTAATTGGGCCACCATTTTTTGTGTATCTTTTGTGCCAATATA TGAAAGAAAACAATATTGAATTTAAAGGAGGAGATAGAGTACATATTATTACTGG TGGAGGATGGAAATCTAATCAGAATGACTCTTTAGATCGTGCTGATTTTAATCAA TTATTAATGGATACTTTCCAACTCGACAAGATTAATCAAATTAGAGATACCTTTA ATCAAGTTGAGCTTAATACTTGTTTTTTTGAAGATGAATTTCAAAGAAAACATGT TCCACCGTGGGTATATGCTCGGGCTCTTGATCCTGAAACCCTTGAAACCCGTAGCA GATGGTGAGATCGGGTTGTTAAGTTATATGGACGCCTCATCAACTGCTTACCCTG CTTTTATTGTTACTGATGATATCGGTATTGTAAAAGAAATTAGAGAACCAGATCC TTACCCAGGGGTAACTGTTGAGATTGTTCGGCGCTTAAATACACGTGCGCAAAAA GGATGCGCGCTCTCTATGGCTAATGTCATACAAAAGAATATCAAGGATTAAGTTA TGATTGTTGATGGTAGAGTTTCAAAAATAGTATTAGCGTCAATAAGAAATAATAT ATATAAGGTATTTATTACTGTAAATTCACCAATAAAGTTCATCGCTGGACAATTT GTAATGGTCACGATTAATGGGAAAAAATGCCCTTTTTCAATTGCGAATTGCCCGA CAAAAAATTACGAAATAGAATTGCATATTGGTAGTTCGAATAGAGACTGCTCATT GGATATTATCGAATATTTTGTCGATGCTCTTGTTGAGGAAGTCGCAATTGAGTTA GATGCTCCCCATGGAAACGCTTGGTTACGGTCTGAAAGTAATAACCCATTGCTAT TAATTGCGGGAGGTACAGGTTTATCATATATAAATAGCATTCTAACAAATTGCTT AAATAGGAATATACCTCAAGATATTTATCTTTACTGGGGAGTAAAAGACAGTTCT CTTTTGTATGAAGATGAAGAGTTACTAAACTTATCACTAAACAACAAAAACTTTC ATTATATTCCTGTTATTGAAGATAAAAGTGAAGAATGGATAGGGAGAAAAGGCAC AAAAAGCAAAGTCAGAACAGATGTTTGCCGATGCTTTTGCATACGTATAA

*: http://parts.igem.org/Part:BBa_J06504

**: gift from Prof Belkin Shimshon (Hebrew University of Jerusalem)

Table S2: List of oligonucleotides used in this study

Underlined sequences are the enz	vme cutting site and the sec	puences in bold are the coding	sequence regions of the r	eporter aenes.
-				

Primer (set)	Sequence (5'– 3')	Usage
mCherry_F	CG <u>TCTAGA</u> GATTAAAGAGGAGAAATACTAG ATGGTGAGCAAGG	To add Xbal cutting site and B0030 to the front of <i>mCherry</i>
mCherry_R	GC <u>ACTAGT</u> ATTA TTACTTGTACAGCTCGTCCATGCCGC	To add SpeI cutting site to the end of <i>mCherry</i>
ScarLet-I_F	CG <u>TCTAGA</u> GATTAAAGAGGAGAAATACTAG ATGGTGAGTAAAGG	To add Xbal cutting site and B0030 to the front of <i>mScarlet-I</i>
ScarLet-I_R	GC <u>ACTAGTATTAGTATAGTTCATCCATGCCACCTTAGTATAGTTCATCCATGCCACC</u>	To add SpeI cutting site to the end of <i>mScarlet-I</i>
GFP_F	CG <u>GAATTC</u> GCGGCCGC <u>TCTAGA</u> GATTAAAGAGGAGAAATACTAG ATGGAGCTTTTCACTGGCGTTGTTCCC	To insert BioBrick prefix and B0030 to the front of <i>gfp</i>
GFP_R	GC <u>ACTAGT</u> ATTA TTAGATCCCGGCGGCGGTCACG	To add Spel cutting site to the end of <i>gfp</i>
deGFP_F	CG <u>GAATTC</u> GCGGCCGC <u>TCTAGA</u> GATTAAAGAGGAGAAATACTAG ATGGAGCTTTTCACTGGCGTTGTTCCC	To insert BioBrick prefix and B0030 to the front of <i>degfp</i>
deGFP_R	GC <u>ACTAGT</u> ATTA TTAGATCCCGGCGGCGGTCACG	To add Spel cutting site to the end of <i>degfp</i>
NanoLuc_F	CG <u>GAATTC</u> GCGGCCGC <u>TCTAGA</u> GATTAAAGAGGAGAAATACTAG ATGGTCTTCACACTCGAAGATTTCGTT GGG	To insert BioBrick prefix and B0030 to the front of <i>NanoLuc</i>
NanoLuc_R	GC <u>ACTAGT</u> ATTA TTACGCCAGAATGCGTTCGCACAGC	To add Spel cutting site to the end of <i>NanoLuc</i>
Rbs30_spacer_F	CTGGAATTCGCGGCCGCTTCTAGAGATTAAAGAGGAGAAATACTAG	To introduce P0020
Rbs30_spacer_R	ATTACCGCCTTTGAGTGAGC	
PmerT_J23115_F	GCTACTAGTATTTATAGCTAGCTCAGCCCTTGG	
PmerT_R	GGAATTCGCGGCCGCTTCTAGAGATATAAACGCAGAAAGGCCC	To introduce Prost
PmerT_J23109_F	GCTACTAGTATTTACAGCTAGCTCAGTCCTAGG	
Additional B0015 Terminator	GCTTCTAGAGCTCGGTACCAAAGACGAACAATAAGACGCTGAAAAGCGTCTTTTTCGTTTTGGTCCTACT AGAGTTCCATATCGCTTGACTACG	To introduce the additional B0015 terminator
mCherry_F	CG <u>TCTAGA</u> GATTAAAGAGGAGAAATACTAG ATGGTGAGCAAGG	To add Xbal cutting site and B0030 to the front of <i>mCherry</i>

mCherry_R	GCACTAGTATTA TTACTTGTACAGCTCGTCCATGCCGC	To add Spel cutting site to the end of <i>mCherry</i>
J23101_fromJ23117_F	CCTAGGACTGAGCTAGCTGTAAATCACACTGGCTCACCTTC	To mutate J23117 to J23101 promoter by point mutation
J23101_fromJ23117_R	GCTAGCTCAGTCCTAGGTATTATGCTAGCTACTAGAGATTAAAGAGG	To mutate J23117 to J23101 promoter by point mutation
E_X_r30_lacZ_fwd	CCG <u>GAATTC</u> GCGGCCGCT <u>TCTAGA</u> GATTAAAGAGGAGAAATACTAG ATGACCATGATTACGGATTCACTGG CC	For amplifying <i>lacZ</i> from <i>E. coli</i>
S_lacZ_rev	GCT <u>ACTAGTATTATTTTGACACCAGACCAACTGGTAATGGTAGCGACCGGCGCTCAGCTGAAACTCCGCC</u> GATACTGACGGGCTCC	MG1655 genome
GB_ORF8-B15_fwd2	GCCCTATAGTAATACTAGAGCCAGGC	
GB_Plux2_rev	ATTTGCCCCTCCTCTAGTTTTATTCGAAAG	
GB_PmerT_rev	ATTTGCCCCTCCTCTAGTAGGATTGGATAGCGTAACC	
GB_LuxC_fwd	ACTAGAGAGGGGGGCAAATATGACTAAAAAAATTTC	For amplifying the sensor
GB_ORF8_rev	CTCTAGTAT TACTATAGGGCGAATTCCTTTAATC	AQUA cloning ¹²
GB_VFLuxC_fwd	ACTAGAGAGGGGGGGCAAAT ATGAATAAATGTATTCCAATG	
GB_VFLuxG_rev	CTCTAGTATTATTA TACGTATGCAAAAGCATC	
GB_VFLuxG-B15_fwd	CATACGTATAATAATACTAGAGCCAGGC	
-Xbal_luxD_fwd	TGCCGGATAACCTAGATTTTGAAGGC	For removing the Xbal and
-Xbal_luxD_rev	TGGCCTTCAAAATCTAGGTTATCCGGC	EcoRI sites in the <i>lux</i> operon
-EcoRI_ORF8_rev	CTATAGGGCAAATTCCTTTAATCCC	(<i>P. luminescens</i>) using AQUA
-EcoRI_ORF8_fwd	GGATTAAAGGAATTTGCCCTATAG	cloning ¹²

Abbreviation	Full name / explanation
3OC₀HSL	N-(β-ketocaproyl)-L-homoserine lactone
CFS	cell-free system
deGFP	a GFP derived from an enhanced GFP with optimized translation ability in CFS
DMSO	dimethyl sulfoxide
fM	femtomolar
GFP	green fluorescent protein
GFPmut3	a GFP derived from <i>Aequorea victoria</i> with improved fluorescence emission at excitation 488 nm
HgCl ₂	mercury (II) chloride
LacZ	β-galactosidase
LB	lysogeny broth
LOD	limit of detection
LucFF	firefly luciferase
LuxCDABE/LuxAB	bacterial luciferase operon
LuxR	quorum sensing molecule-responsive transcription activator
mCherry	a monomeric RFP derived from <i>Discosoma sp.</i>
MerR	mercury (II)-responsive transcription activator-repressor
mScarlet-I	a monomeric RFP derived from synthetic construct based on mCherry and multiple other naturally occurring RFPs and chromo proteins
NanoLuc	luciferase engineered by directed evolution from the deep sea shrimp <i>Oplophorus</i> gracilirostris
PBS	phosphate-buffered saline
PURE	purified recombinant elements
RFP	red fluorescent protein
TX-TL	transcription-translation
X-gal	5-Bromo-4-chloro-3-indolyl β-D-galactopyranoside

Table S3: List of abbreviations used in this study

References

- (1) Wang, B.; Barahona, M.; Buck, M. Amplification of Small Molecule-Inducible Gene Expression via Tuning of Intracellular Receptor Densities. *Nucleic Acids Res.* **2015**, *43* (3), 1955–1964.
- (2) Wan, X.; Volpetti, F.; Petrova, E.; French, C.; Maerkl, S. J.; Wang, B. Cascaded Amplifying Circuits Enable Ultrasensitive Cellular Sensors for Toxic Metals. *Nat. Chem. Biol.* **2019**, *15* (5), 540–548.
- (3) Cevenini, L.; Calabretta, M. M.; Lopreside, A.; Tarantino, G.; Tassoni, A.; Ferri, M.; Roda, A.; Michelini, E. Exploiting NanoLuc Luciferase for Smartphone-Based Bioluminescence Cell Biosensor for (Anti)-Inflammatory Activity and Toxicity. *Anal. Bioanal. Chem.* **2016**, *408* (30), 8859–8868.
- (4) Armbruster, D. A.; Pry, T. Limit of Blank, Limit of Detection and Limit of Quantitation. *Clin. Biochem. Rev.* **2008**, *29 Suppl 1* (August), S49-52.
- (5) Wang, B.; Kitney, R. I.; Joly, N.; Buck, M. Engineering Modular and Orthogonal Genetic Logic Gates for Robust Digital-like Synthetic Biology. *Nat. Commun.* **2011**, *2* (1), 508.
- Wang, B.; Barahona, M.; Buck, M. A Modular Cell-Based Biosensor Using Engineered Genetic Logic Circuits to Detect and Integrate Multiple Environmental Signals. *Biosens. Bioelectron.* 2013, 40 (1), 368–376.
- (7) Wang, B.; Barahona, M.; Buck, M. Engineering Modular and Tunable Genetic Amplifiers for Scaling Transcriptional Signals in Cascaded Gene Networks. *Nucleic Acids Res.* 2014, 42 (14), 9484–9492.
- (8) Chen, Y. J.; Liu, P.; Nielsen, A. A. K.; Brophy, J. A. N.; Clancy, K.; Peterson, T.; Voigt, C. a. Characterization of 582 Natural and Synthetic Terminators and Quantification of Their Design Constraints. *Nat. Methods* **2013**, *10* (7), 659–664.
- (9) Bindels, D. S.; Haarbosch, L.; Van Weeren, L.; Postma, M.; Wiese, K. E.; Mastop, M.; Aumonier, S.; Gotthard, G.; Royant, A.; Hink, M. A.; et al. MScarlet: A Bright Monomeric Red Fluorescent Protein for Cellular Imaging. *Nat. Methods* **2016**, *14* (1), 53–56.
- (10) Siegal-Gaskins, D.; Tuza, Z. A.; Kim, J.; Noireaux, V.; Murray, R. M. Gene Circuit Performance Characterization and Resource Usage in a Cell-Free "Breadboard." ACS Synth. Biol. 2014, 3 (6), 416–425.
- (11) Eggers, C. T.; Valley, M. P.; Klaubert, D. H.; Unch, J.; Encell, L. P.; Wood, K. V.; Hall, M. P.; Benink, H. A.; Otto, P.; Zimmerman, K.; et al. Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate. *ACS Chem. Biol.* **2012**, 7 (11), 1848–1857.
- (12) Beyer, H. M.; Gonschorek, P.; Samodelov, S. L.; Meier, M.; Weber, W.; Zurbriggen, M. D. AQUA Cloning: A Versatile and Simple Enzyme-Free Cloning Approach. *PLoS One* 2015, *10* (9), e0137652.