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Abstract
Many biological, social andman-made systems are better described in terms of temporal networks, i.e.
networks whose links are only present at certain points in time, rather than by static ones. In
particular, it has been found that non-Markovianity is a necessary ingredient to capture the non-trivial
temporal patterns of real-world networks. However, our understanding of howmemory can affect the
properties of dynamical processes taking place over temporal networks is still very limited, being
especially constrained to the case of short-termmemory.Here, by introducing amodel for temporal
networks inwhichwe can precisely control the link density and the strength and length ofmemory for
each link, we unveil the role played bymemory on the dynamics of epidemic spreading processes.
Surprisingly, we find that the average spreading time in our temporal networks is often non-
monotonically dependent on the length of thememory, and that the optimal value of thememory
lengthwhichmaximizes the spreading time depends on the strength of thememory and on the density
of links in the network. Through analytical arguments we then explore the effect that changing the
number and length of network paths connecting any two nodes has on the value of optimalmemory.

1. Introduction

When a system is composed ofmany individual entities and pairwise interactions between them, then it is
natural to describe its underlying structure as a complex network.We then say that it is on this backbone that all
relevant dynamical processes take place [1, 2]. Often in real world systems this underlying structure is in its self
dynamic, and so it is better described in terms of networks inwhich links among afixed set of nodes change over
time [3–6]. Examples of such temporal networks include human contacts, which vary as individualsmove over
space [7–9], online social interactions that take place at certain points in time [10], or functional brain networks
where correlations among the different areas of the human brain fluctuate over time [11, 12]. Recentlymany of
these, and similar, systems have been empirically investigated, and themain dynamical properties required of
temporal networks in order for them to better describe reality have started to be uncovered [13]. In particular, it
has been found that non-Markovianity is necessary to capture the non-trivial temporal patterns of real-world
networks [14–18], and can play an important role in processes occurring on temporal networks. It has been
shown that non-Markovianity can affect the dynamics of randomwalks [19], the speed of information [16], and
theway diseases spread in systemswith non-exponential inter-event times [20–25]. Also non-Markovianity
turns out to be useful in the definition offlow-based communities [26].

While the presence ofmemory has been found to be important, the influence that the strength (intensity)
and length (range or order) of thismemory can have on dynamical processes are still poorly understood. To shed
light on the role ofmemory on spreading processes on temporal networks, we here propose amodel for time-
varying networks where the dynamics of the links is non-Markovian and is generated by a discrete autoregressive
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process of tuneable order. The key feature of ourmodel, whichwe call theDiscrete Autoregressive Networkmodel
of order p, orDARN(p)model, is that it allows us to precisely control not only the graph density, but also the
strength and length ofmemory of each link. By considering a standard susceptible-infected (SI) epidemic over
networks generated by the proposedmodel, we study how the range of thememory affects the rate at which
infection is spread across the network. Themain result of ourwork is to show thatmemory can play either of two
opposing roles: it can slow-down or speed-up the spreading depending on the features of the network,
explaining thefindings ofmany other studies [14–17, 27, 28]. In particular, it turns out that that the average
spreading time is often non-monotonically dependent on thememory length, and there is a given value of the
memory length forwhichwe obtain themaximal average time until the entire network is infected. TheDARN(p)
model as presented is analytically tractable enough to allow for amore in depth study of the influence ofmemory
thanwould be practical through numerics alone.We are in fact able to predict through analytical arguments the
position of thismaximum for a range of values of the variables associatedwith themodel.We then explore the
effect that changing the number and length of network paths connecting two nodes has on the value for the
memory lengthwhichmaximizes the average passage time of the infection.

2.Methods

2.1.Modeling temporal networkswithmemory
Generating temporal networks is conceptually simple and a great deal of work has been done in this area [3, 29].
One takes a set of nodes and defines someway for them to interact over time (be it discrete or continuous).
Without the direct use of empirical data, this can be done in a number of different ways, eachwith their own
advantages and disadvantages. For instance,much attention has been devoted to temporal networks generated
by the interactions of individuals in agent basedmodels [13, 30–33].While suchmodelsmight intuitively reflect
reality on some level, they are often difficult toworkwith, without relying entirely on simulations. In order to
keep precise control over key aspects of a temporal network, such as the strength and length ofmemory, while
maintaining analytical tractability, we propose amodel for generating temporal networks by assigning each link
its own independent stochastic process. Given a set of nodes  , with  =∣ ∣ N , we assign to each possible pair

Îi j, a discrete time stochastic process for the element of the adjacencymatrix Xt
ij such that Î "{ }X t0, 1t

ij .
For our purposes, we take links to be undirected, and for any two different links, (i, j) and (k, l), the two random
variablesXt

ij andXt
kl are independent and identically distributed. Thuswe can talkmore generally about the

single processXtwithoutworrying aboutwhich linkwe are referring to. Themost important ingredient of our
model is that the processXt is in general not only non-Markovian, but has a precisely controllable amount of
memory. This in practicemeans that the presence of link (i, j) at time t2 can depend on the presence of the link at
time t1 for any t2>t1. In particular,Xt is chosen as a special case of the discrete autoregressive process offixed
order p, fromnowon referred to asDAR(p) [6, 34, 35], which allows us to control both for the strength of the
memory and for its length. The principle here can be explained as follows. To determine the state of the link at
time t, i.e. its presence (sampling ofXt gives 1) or its absence (Xt gives 0),first we decide, with probability q,
whether to copy one of the previous link states, or to determine the presence of the link through a Bernoulli trial
with probability y.Whenwe draw a state from the past, this state can be chosen in anyway, but aswe shall see in
the following, here for simplicity we pick uniformly from the last p steps of the time series. In terms of random
variables this can bewritten as:

= + -- ( ) ( )( )X Q X Q Y1 . 1t t t Z t tt

where, for each ~ ~( ) ( )t Q q Y y, Bernoulli , Bernoullit t andZt is a randomvariable with sample space {1,K,
p}. A natural choicemay be onewhere the probabilitymass function fZ (z) decreases when going from z=1 to
z=p, however for the sake of simplicity we here take ~ ( )Z pUniform 1,t .When q=0 the link has no
memory, while for ¹q 0 the process in equation (1) is clearly non-Markovian, however, since thememory is
finite, in that we only consider p previous values, we can view aDAR(p) process as a pth orderMarkov chainwith
an enlarged space of states [36].We can then define the so-called ‘p-state’ of link (i, j) at time t, by combining the
state of the link at time t alongwith its previous p−1 states as the vector = ¼- - +( )S X X X, , ,t

ij
t
ij

t
ij

t p
ij

1 1 . The set
of p-states for each of the links is sufficient to completely describe the dynamics of the network. In a network
withNnodes generated by ourmodel, one can show that the expected degree á ñk of a randomly chosen node at
any point in time is given purely as a function of y as á ñ = -( )k y N 1 (see appendix A). In summary, ourmodel
for temporal networks, whichwe name theDiscrete AutoregressiveNetworkmodel of order p, orDARN(p)
model, depends on three parameters, namely: y, q and p. Thefirst parameter y controls the density of the
network. The second, q, tunes the strength of thememory term in the process with respect to thememoryless
term. Thefinal parameter, p, controls the length of thememory, which can be thought of as the number of time
steps before the autocorrelation function decays exponentially (see appendix B for a discussion of the
autocorrelation function, and appendix C for the initialization of the network).
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2.2. Spreading processes on temporal networks
Wehave considered the simplest possiblemechanism for propagating a disease, or somemessage: the SImodel,
which is a special case of the SISmodel with a recovery rate of zero [37, 38, 25].We have adapted this for
temporal networks by only allowing infection to pass between nodes at timeswhen a link is present (see
appendixD). Let us define t to be the set of infected nodes at a time t. In our simulationswe start with  =∣ ∣ 10

andwe study the dynamics of the epidemics for different values of the three parameters controlling our network
model, namely the link density y, the strength of thememory q, and its length p.

3. Results

3.1. Spreading dynamics on a large network
Infigure 1(a)weplot the fraction ∣ ∣ Nt of infected nodes at time t obtained, for infectivityλ=0.5, in a
temporal networkwithN=1000 nodes produced by aDARN(p)model with y=0.002 and q=0.9. This is
compared to the case of a temporal networkwithoutmemory, generated by setting q=0 in ourmodel.We can
see that the infection spreading in the temporal networkwith nomemory is faster thanwhen anymemory is
taken into account (i.e. when ¹q 0). In the cases wherememory is present, the infection spreading appears to
depend heavily on both q and p. It is apparent that increasing thememory length p changes how long it takes for
the infection to spread across the network, and that increasing q exacerbates this behavior.We also observe that
for large values of p the curves converge to that of the q=0 case, and this is in agreement with the fact that the
dynamics of ourmodel in the limit of large p are the same as those of a random temporal networkwith no
memory (see appendix E).

In order to gain further insights into the spreading behavior as a function of thememory variables we
quantify the speed of the spreading by looking at the expected time taken until all of the nodes in the network are
infected. As before, we consider a temporal networkwithN=1000 nodes andwe fix an infection spreading rate
λ=0.5. The SImodel is run until the first timewhere allNnodes are infected. This value is then averaged over
100 000 iterations of the process to return the average time τ until full infection of the network. Figure 1(b)
shows τ as a function of thememory length p, and for different values of q. For y=0.006, we observe a
monotonic decrease of τ as a function of pwhen q=0.85.However, whenwe increase the strength of the
memory to q=0.95, the time taken until the entire network is infected shows a non-monotonic dependence of
thememory length, with the presence of amaximumat pmax=2.Whenwe further decrease the network
density to y=0.002, thesemaximamove to pmax=2 and pmax=3 respectively.

3.2. Theoretical results
Ourmodel is in essence a generalization of the ER randomgraphmodel to the case of temporal networkswith
memory. As such, in our networks there are no correlations between pairs of different links. Since each link is

Figure 1.Effects of thememory length of a temporal network on a spreading process. (a)The average fraction of infected nodes over
time for a disease spreading according to the SImodel withλ=0.5 on temporal networkswithmemory, as generated by theDARN
(p)model in equation (1)with y=0.002, q=0.9 and various values of p. Each network hasN=1000 nodes. Results are averaged
over 10 000 realizations of the process. (b)The average time τ until all the nodes in a temporal network are infected, given an SImodel
withλ=0.5, is shown as a function of thememory length p for y=0.002 and y=0.006, and q=0.95 and q=0.85. Each temporal
network hasN=1000 nodes. Results are averaged over 100 000 realization of the process. Resulting error bars are smaller than the
markers.
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independent, we can analyze themodel by first analyzing a single link. The dynamics of a link can be explained in
terms of the transitionmatrix of the higher orderMarkov chain corresponding to theDAR(p) process.While the
transitionmatrix for afirst orderMarkov chain expresses the probabilities ofmoving between the possible states
over a time step, namely here   ( ) ( ) ( )0 0 , 0 1 , 1 0 and ( )1 1 , a pth order transitionmatrix expresses
the probability ofmoving between p-states representing the possible histories of the system. If

= ¼- - +( )S X X X, ,t t t t p1 1 is the p-state of our processXt at time t, then, for any a b Î, , where set  is the set
of all 2p possible p-states, we can look at the probability b a= =+( ∣ )S SProb t t1 . This defines the entries of the
pth order 2p×2p transitionmatrixTαβ. Towrite down this transitionmatrix it is useful to introduce an
ordering into the possible states of the system. Since there are 2p possible states, we assign to each a Î a
unique label a Î -( ) [ ]l 0, 2 1p . To do this we note that by definitionα=(α1,K,αp)with eachαiä {0, 1}.
Hence, a convenient unique labeling is to take a a= å =

-( )l 2i
p

i
p i

1 . For ease of notation, unless explicitly stated,
αwill refer to its label l(α). In this waywe canwrite the pth order transitionmatrix as:

a
d b

a a
d b

a
= + - + + - - -ab

-
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎢
⎣⎢

⎥
⎦⎥
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎢
⎣⎢

⎥
⎦⎥
⎞
⎠⎟

( ) ( ) ( ) ( ) ( )T q
h

p
q y q

h

p
q y1 , 2

2
1 1 ,

2
, 2p 1

where h(x) is theHammingweight of the number x (the number of 1s in its binary representation), δ(x, y)=1 if
x=y and 0 otherwise, and⌊ ⌋x is the largest integer value smaller than x. Note also that, for the sake of simplicity,
thismatrix is indexed from zero, not one. Taking two nodes, one of which is initially infected, we study the
expected time taken for the second node to become infected. Since the infection process ismodeled as a Bernoulli
randomvariableΛt∼Bernoulli(λ), the infection is passed at the first value of t such thatΛt Xt=1.We can cast
this process as aMarkov chain by considering a ‘dual-state’ L( )S ,t t , where St andΛt are the p-state of the link
and its infectivity state at time t, respectively. Let us call the set of all possible dual-states ̃ , thenwe note that
 = +∣ ˜ ∣ 2p 1, andwe set a i a= Î( ) ˜ ˜, , whereα is defined as for the transitionmatrix in equation (2) and ι=1
if an infection is passed and zero otherwise. The corresponding label function is then a a i= +˜( ˜ ) ( )l l 2p .We
can then define the transitionmatrix ab˜ ˜P in block form as:

l l
l l

=
-
-

⎛
⎝⎜

⎞
⎠⎟

( )
( ) ( )P

T T

T T

1

1
, 3

where the sub-matrix T has elements given by equation (2).
Consider the setA of dual-states where an infection is passed, i.e. a a a= Î = =+{ ˜ ˜ ˜ ˜ }A : 1, 1p1 1 .We are

now interested in how long it takes our system to reach a state inA.We canfind the average hitting time tã from
each starting state a Ï˜ A as theminimal solution of the following equations [39]:

åt t= +a
b

ab b
Ï

( )˜
˜

˜ ˜ ˜P1 . 4
A

This is effectively saying that, if we start in state ã, the average time taken to reach a state inA is the average time
taken to reach a state inA from any b̃ weighted by the probability ofmoving to b̃ from ã, plus the one time step
it would take tomake thatmove. This equation can be simplified (see appendix F), thenwe can average over the
initial states of the system to get:

åt t aá ñ = =
a

a
=

-

( ( ) ) ( )l SProb , 5p
0

2 1

0

p

where the last term refers to the probability that the label of the initial p-state S0 of the processXt corresponds to
the label of the p-stateα.

Equations (4) and (5) can be solved directly for small values of p (see appendix A for details). The plots in the
two panels offigure 2(a) shownot only that the theoretical predictions are in very good agreementwith the
simulations, but also that the non-monotonic behavior observed infigure 1(b) for networks withN=1000
nodes can emerge even in the case of a single link. In particular, we find that tá ñp has amaximumat pmax=8
when y=0.03 and at pmax=6when y=0.07. Equation (5) can be used to explore how pmax depends on the
values of the parameters y and q, and on the infectivityλ. Infigure 2(b) (upper panel)we see that, atfixedλ, the
value of pmax decreases with y, while it increases with thememory strength q. In this way, for small y and large q,
the length of thememory pwhich produces themaximal value of tá ñp can be very large. For instance, when
y=0.01 and q=0.95we get pmax=13. Figure 2(b) (lower panel) shows that pmax decreases with the infectivity
of the SI process for each value of y.

3.3. Phase diagramof themodel
Wehave, in the previous section, found the solution to the average time taken for an infection to pass across a
single link, and hence along any chain of consecutive links. Real world networks are oftenmore complicated
than these simple chains; given any two nodes in the network theremay bemultiple paths connecting them, and
in addition these pathsmay not be of the same length.Hence, tofind the average time taken to pass an infection
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between any two nodes in a general networkwemust allow the infection to spread alongmultiple paths of any
length. In light of this wemust adapt the framework used in the study of the single link, in particular equation (4)
must be extended to deal withmultiple paths of any length (see appendixG). To do this, let us index each link in
the network asℓ, with = ¼ -ℓ ( )N N1, 2, , 1 2.We can then define the dual-state of theℓth link as ãℓ, as we
did in the single link case. The dual-state of the entire network can then bewritten as a a a= ¼˜ ( ˜ ˜ ), ,1 2 .We can
then generalize equation (4) in terms of ab˜ ˜P , whichwe refer to as the transition tensor, between any two network
dual-states, as


åt t= +a
b

ab b
Ï

( )˜
˜

˜ ˜ ˜P1 , 6

where is the now the set of network dual-states wherewe stop our infection process. In principle, this equation
can be used for networks with any number of nodesN, to study pmax as a function of y, q, andλ, as was done in
figure 2(a), although computational constraints do not allow this for largeN. The equation can be simplified to
find the average passage time of an infection overmultiple paths of the same length (see appendixH). However,
sincewe are interested in themost general case ofmultiple pathswith different lengths, let us now focus on a
networkwithN=3 nodes, the smallest possible example of this type, having paths of length 1 and length 2
between any two nodes. Equations (6) can be used to determinewhen amaximum in the time taken to pass an
infection between any two nodes in a temporal networkwithN=3 should occur as a function of p. For each
value ofλ, by comparing themean passage time for p=1, 2 and¥, wefind sufficient conditions for the
existence of amaximumof tá ñp at p other than 1 (see appendix A). This defines a curvewhich breaks the (q, y)
plane into two sections, the upper section being the onewhere tá ñp is non-monotonic. These curves are
displayed forλ=0.3, 0.5 and 0.7 infigure 3 for a single link (left) and for theN=3 node network (right). The
regionswhere amaximummust be present are clearly dependent onλ and on the number of nodes in the
network. ForN=3we observe that approximately half of the (q, y) planemust result in amaximum for
λ=0.3, however increasingλ reduces this fraction. For example, at afixed value y=0.5, whenλ=0.3 then
nearly half of the possible q valuesmust produce amaximum,whenλ=0.5 this fraction decreases to
approximately 0.2, and forλ=0.7 then only 0.1 of the values of qmust result in amaximumaccording to our
criterion. The size of the regionswhere amaximummust be present in general decreases with the number of
nodes in the network. Together with the shape of the curves infigure 3, this explains why in large and sparse
networks, such as thoseconsidered infigure 1(b), we observe a non-monotonic behavior of tá ñversus p only for
highmemory strength q and low graph density y.

4.Discussion

Memory plays an important role inmany processes in physics. In our networkedworld, interactions change in
time. Such temporal changesmust be taken into account when studying dynamical processes, be they the
spreading of epidemics [25], the diffusion of ideas [40], themovement of people or patterns in broader social
interactions [15]. Themodel we have introduced is a simple way to includememory in a temporal network and

Figure 2.Theoretical results for the spreading over a single link. (a)The theoretical prediction (Theo) of equation (5) is in good
agreement with the simulated values (Sim) of the average passage time τ of the infection over a single link as a function of thememory
length p. Shown are cases with infectivityλ=0.5, q=0.95 and two values of y, namely y=0.03 and y=0.07. The average passage
time τ as a function of p has amaximumat the value p=pmax, where pmax is dependent on y. (b)The theoretical values for pmax are
reported as a function of y for infectivityλ=0.5 and formultiple values of q (upper panel), and as a function ofλ formultiple values
of y, when q isfixed to 0.95 (lower panel).
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can be further extended inmany directions, for instance to include correlations among links, or to allow for
different links to have differentmemory characteristics. The results we have obtained, and themethods
developed in doing so, pave theway for a radical change in howwe consider the influence ofmemory in
networks, and highlights howunexpected the results can bewhenwe do.
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AppendixA. The average degree of aDAR(p)network

The average degree of a networkwithNnodes, where each link is an independentDAR(p) process, is itself a
randomprocess, defined by:

ååá ñ =
>

( )k
N

X
2

. A1t
i j i

t
ij

whereXt={X ij
t } is the adjacencymatrix of the network at time t. The average of this over time, whichwe

simply denote by á ñk is then:

åå ååá ñ = = = -
> >

( )k
N

X
N

y y N
2 2

1 .
i j i

t
ij

i j i

where the second line comes from the time averaged quantity Xt
ij being equal to y [34].

Figure 3.Phase diagram for the presence of a non-monotonic dependence of spreading time onmemory length. For each value of the
infectivity λ, the region above the curve denotes the values of the parameters q, ywhere theremust be a value of p>1 such that τ has a
localmaximum. The left panel refers to the case of a single link, while the right panel refers to the case of aDARN(p)model withN=3
nodes.
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Appendix B. Autocorrelation functions ofDAR(p)processes

It is well known thatDAR(p)processes have an autocorrelation function given by the Yule-Walker equations
[34, 35]. The value rk of the autocorrelation function at time shift k is given by:

år r=
=

- ( )q

p
. B1k

i

p

k i
1

Using the facts that ρ0=1 and ρ−t=ρtwe find thefirst p values of ρk, i.e. the values for k�p. Expanding and
rearranging equation (B1) gives

å år r r- - =
=

-

=

-

( )p

q
1. B2k

i

k

i
i

p k

i
1

1

1

Wecan then rewrite these equations inmatrix form as

 r d d d= = - - - -( ) ( ) ( )M M
p

q
j i j p i1 1 . B3ij ij

We then notice the following:

å = - - - - = - +
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )M

p

q
i p i p

q
1 ,

1
1 1. B4

j
ij

Since this does not depend on i, we see that ρk=ρ is a constant for all k�p, with:

r = - +
-⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟ ( )p

q

1
1 1 . B5

1

This then allows us to solve equation (B1) for the autocorrelation function up to anyfinite time. Resulting
autocorrelation functions are shown infigure A1 for various values of the parameters.

AppendixC. Initialization of the temporal network

In our numerical simulations, we choose the initial condition of each randomvariable by sampling a p-vector
from the joint stationary distribution of theDAR(p) process. This is done in the followingwayWefirst sample
each element of the p-state vector S ij

0 of link (i, j) at time t=0 from the Bernoulli randomvariableYt.We then
allow the process in equation (1) to run until the autocorrelation function of each link has decayed below some
threshold value. Once this point is reachedwe consider this to be the state S ij

0 of each link in the network. This
defines the time t=0 at whichwe start to run any dynamical process on the network. Any theoretical results will
use the steady state of theMarkov chain directly.

Figure A1.The autocorrelation function ρk as a function of time k for q=0.95 and various values of p. The function isflat for the first
p time steps, and then decays exponentially.
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AppendixD. The SImodel on a temporal network

In the SImodel, the nodes of the network can be in one of two possible states, namely susceptible (S) or infected
(I). The infection can be passed over each link of the network connecting an infected to a susceptible, with the
infection processmodeled as a Bernoulli randomvariableΛt∼Bernoulli(λ).We define t to be the set of
infected nodes at a time t, and take some initial subset  Ì0 of nodes in the infected state, then at each time t
for all infected nodes Îi t each neighboring node jä∂ i (t), where ¶ Î =( ) ≔ { }j t j a: 1t

ij becomes
infectedwith probabilityλ.We take all infection spreading to happen simultaneously on the network at time t. If
there aremultiple infected neighbors to a susceptible node then theywill all attempt to pass an infection, and the
susceptible nodewill become infected if at least one of these neighbors succeeds. Since there is no recovery, this
change in state in the SImodel is permanent.

Appendix E. The longmemory limit of the network

To explore the limiting behavior of ourmodel, let usfirst consider the conditional probability

f= = ¼ = = - +- - - -( ∣ ) ( ) ( ) ( )P X X x X x q y q p1 , ., 1 , E1t t t t p t p t1 1

where

åf =
=

-( ) ( )p
p

x
1

. E2t
i

p

t i
1

Since equation (E2) is a sample expectation of a stationaryDAR(p) process, and =X yt [34], we can see that
f ( )p yt as  ¥p . Now it remains to prove thatfluctuations away from the stationary state can be ignored.
Consider the time series forft (p), as given by

f f= +
-

+
-( ) ( ) ( )p p

x x

p
. E3t t

t t p
1

Since - Î -- { }x x 1, 0, 1t t p we can then set the following bounds:

 f- +( ) ( )y
t

p
p y

t

p
. E4t

Given that the passage of an infection over a link in ourmodelmust happen infinite time (except in trivial cases
such asλ=0) thenwe know that as  ¥p wemust have that f ( )p yt . Given that the conditional
probability of observing a link does not change in time, the large p limit of theDAR(p)process is then
indistinguishable from aBernoulli process with probability y. Since each link in our network is independent
then each linkwill follow aBernoulli process, and so the network becomes amemoryless randomnetworkwith
link probability y.

Appendix F. Average passage time for a single link

Equation (4) can be solved directly as a set of 2p+1 linear equations. Given that this grows rapidlywith p, wewish
tomake use of some inherent symmetry to reduce the number of equations, and thereby allow us tofind
solutions for higher values of p.

Consider equation (4), we know that for all jä Awehave j>2p, so this can be broken up into


å åt t t= + +

> Ï

( )P P1 . F1i
A

j
ij j

A

j j A
ij j

A

2 2 ;p p

Looking at ourmatrix P in equation (3)we can rewrite this as:


å åt l t l t= + - +

< -

( ) ( )T T1 1 . F2i
A

j
ij j

A

j
ij j

A

2 2p p 1

As beforewe note that all the elements ofA arememory states with leading value 1, sowe can define thematrix
TL
ij =Tij if j<2p−1 and 0 else. This allows us towrite


å åt l t l t= + - +

<

( ) ( )T T1 1 . F3i
A

j
ij j

A

j
ij
L

j
A

2 2p p

Hencewe only need to solve for thefirst 2p values, allowing us towrite the equation inmatrix form as:

t l l t= + - +(( ) ) ( )T T1 1 . F4L
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Giving

t l l= - - - -( ( ) ) ( )T TId 1 1. F5L 1

Then, defining thematrix F as:

l
a

d b
a a

d b
a

F = - + - + + - - -ab
-

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎢
⎣⎢

⎥
⎦⎥
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎢
⎣⎢

⎥
⎦⎥
⎞
⎠⎟( ) ( ) ( ) ( ) ( ) ( )q

h

p
q y q

h

p
q y1 1 , 2

2
1 1 ,

2
. F6p 1

Wecanwrite

t = - F -˜ ( ) ( )Id 1, F71

This greatly simplifies any calculation of average passage times for single links.

AppendixG. Temporal networks described by tensors

In this workwemodel each link in a network as aMarkov chain, and so each link has a transitionmatrix
associatedwith it. If eachMarkov chain has a state space  with  s=∣ ∣ then the temporal networkwithN
nodes can be described as aMarkov chainwith state space N (meaning the cartesian product of  with its selfN
times)with  s=∣ ∣N N . Rather than attempt to directly impose an ordering on the states and generate a
transitionmatrix we instead form a transition tensor of rank 2N. This tensor is formed by having one source
index and one target index for each link in the network; each index represents a label for a state in  , and so
varies from1 toN (or 0 toN−1).We then define the transition tensorT as

a b= ab
= ¼

⎛
⎝⎜

⎞
⎠⎟⋂ ( )T P . G1

i N
i i

1, ,

With a and b the sets of source and target indices for each link.
We use this approach to transformquantities derived from the transitionmatrix into a tensor form in the

sameway.When calculating the average hitting time of aMarkov chain, we do so from some starting state, as
labeled by a single index. For our new formulation, each state is labeled by a vector of indices, and so each
possible starting state is labeled by a vector of indices. In this way equation (4) becomes


åt tá ñ = + á ña
b

ab b
Ï

( )T1 , G2

as in equation (6). The two equations can be seen to become equivalent upon flattening equation (G2) so thatT
becomes anσN×σNmatrix and tá ñbecomes a vector of lengthσN.

AppendixH. Average passage time formultiple links in parallel

Solving for the average passage time over a single link allows us to extrapolate the average passage time along any
number of links in series by using the linearity of expectation. Real systems howeverwill often havemultiple
paths, eventually of different lengths. Herewe examine the simplest case ofm paths of unit length in parallel.
Naively solving equation (6) for the case ofm links in parallel requires us to handle a 2m(p+1)×2m(p+1)matrix.
However, in the sameway aswith the single link, we can greatly simplify this.Wewish tofind the average time
taken for an infection to pass across any ofm direct links from a source node to a target node. Let us start with the
tensor equation equation (6). If wewrite a a i=˜ ( ),i i i

s and b b i=˜ ( ),
i i i

t then

 
å åt t t= + = + La
b

ab b
b l

ab i i b
Ï Ï

( )˜
˜

˜ ˜ ˜
( )

P T1 1 . H1
,

,s t

Here the tensors abT and Li is t are defined by

 l l= L = -ab a b i i
i i

=

-( ) ( )( ) ( )T T 1 . H2
i

m
h m h

1
,i i

s t
t t

Where i( )h t is the number of ones in it . Let us now assert that no linkwill start in an infecting state, and sowe
t t=a i a i( ) ( ), ,1 2 for any two i1 and i2, hence wemaywrite tã as ta.Thenwe introduce two index partitioning sets
I1 and I1 so that Ì ¼{ }I m1, .,1 and È¼ ={ }m I I1, ., 1 2. So that

å å å åt t c b i= + L Ïa
b b i

ab i i b
Î Î

(( ) ) ( )T1 , . H3
I I I I

t

, i i
t

s t

1 2 1 2
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Withχ being the indicator function. Due to the lack of dependence ofΛ on its source state, we canwrite this as


å å åt t= +a

b b
ab b

Î Î >- -

( ) ( )T L I I1 , , H4
I I I I, 2 2

1 2

i
p

i
p

1 2 1
1

2
1

for some function L(I1, I2), by noticing that we only care about the value of ii
t ifβi>2(p−1). It is then

straightforward to show that l= -( ) ( )∣ ∣L I I, 1 I
1 2

2 .We can now take our definition of TL and define
= -T T TR L andwrite

åå  

å å

t l t

l

= + -

= + + - = + F

a
b b

a b
b

a b b

b
a b a b

b
a b

Î Î

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

( ( ) ) ( )

∣ ∣T T

T T

1 1

1 1 1 . H5

I I I

L

I

R I

i

L R

i

, i

i i

i

i i

i i i i i i

1 2 1 2

2

Giving us an equation in terms of elements of a single 2p×2pmatrix.

Appendix I. Average passage time for a small network

Wewish tofind the average passage time for an infection between any two nodes in a three node complete
network. To do this, wemustfirst write down ab˜ ˜P . First we define the set of possible dual-statesH of a linkwhere
an infection is passed. Then define the ‘infected’ transitionmatrix ¢ab˜ ˜P to be ab˜ ˜P (as in equation (3)) if a Ï˜ H ,

and d¢ =ab ab˜ ˜ ˜ ˜P otherwise, and the ‘waiting’ transitionmatrix =ab ab˜˜ ˜P T if a a=˜ ( ), 0 and b b=˜ ( ), 0 and

d=ab b a˜˜ ˜ ˜( )P ,0 if a a=˜ ( ), 1 .We thenwrite

c a c a= ¢ ¢ + - ¢ab a b a b a b a b( ( ˜ ) ( ( ˜ )) ˜ ) ( )˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜P P P P P1 . I1H H
1 1

1 1 2 2 2 2 3 3

Where links 1 and 3 are connected to the infection source, and links 2 and 3 are connected to the infection target.
Our setA from equation (4) has nowbecome a a a= Î{ ˜ }A H: ,2 3 .

Appendix J. Conditions for the existence ofmaximumpoints

Equations (4) and (6) for the average passage time can be solved numerically for p=1 and p=2.We can then
use the obtained values, namely tá ñ1 and tá ñ2, alongwith the solution tá ñ¥ in the  ¥p limiting case, to look
for values ofλ, q and y thatmust result in a non-monotonic behavior of tá ñp as a function of p. These occur
when t tá ñ < á ñ1 2 and t tá ñ < á ñ¥ 2. It is important to note that this is only a sufficient condition for the
existence of inflection points.Whilst when this condition holds theremust be non-monotonic behavior in tá ñp,
it is possible to observe nonmonotonicity without it, sowhatwe can extract in this way is only a subset of the
possible cases wheremaximawill be observed.
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