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Abstract
Dynamic processes are crucial in many empirical fields, such as in

oceanography, climate science and engineering. Processes that evolve
through time are often well described by systems of ordinary differ-
ential equations (ODEs). Fitting ODEs to data has long been a bot-
tleneck, because the analytical solution of general systems of ODEs is
often not explicitly available. We focus on a class of inference tech-
niques that uses smoothing to avoid direct integration. In particular,
we develop a Bayesian Smooth-and-Match strategy that approximates
the ODE solution while performing Bayesian inference on the model
parameters. We incorporate in the strategy two main sources of un-
certainty: the noise level of the measured observations and the model
approximation error. We assess the performance of the proposed ap-
proach in an extensive simulation study and on a canonical dataset
of neuronal electrical activity.
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1 Introduction
Many processes that evolve through time can be described by systems of
ordinary differential equations (ODEs). For example, the change, dx(t), of
the concentration level of a specific molecule in the cell follows a law that is
described by some function gβ[x(t)], with a set of parameters β governing
this law, where β1 is the rate at which new ones are produced by the cell
and some limit β2 on the capacity to contain them. What we observe, in
practice, are not the changes dx(t), representing the derivative of the main
process, but instead the actual concentration levels at finite sampling times,
i.e., observations from the main process x(t). This means that, in order
to relate the data at our disposal to the parameters of interest, we need a
solution for the system of differential equations. However, in most cases, no
closed form solutions are available and numerical techniques are thus needed.
Moreover, the observations may very well be affected by noise that perturbs
the observed temporal dynamic of the process.

There are several techniques in the applied mathematics literature on this
topic (see Robinson (2004) for an introduction). Most of them involve numer-
ical integration, a straightforward approach to the problem that, however,
does not take into account the uncertainty about the chosen statistical model
nor the noise level of the observations. Also, methods relying on this type of
solvers require the explicit computation of the solution at every step of any
inference algorithm, severely hindering the procedure in practice. A way to
avoid direct numerical integration or differentiation is smoothing the data,
which, after all, are noisy draws from the true solution. An example of a one-
step kernel-based nonparametric smooth estimator was recently proposed in
Hall and Ma (2014). Another recent contribution to one-step methods to pa-
rameter estimation is given in Dattner and Gugushvili (2018), which provides
both point and interval estimates for the parameters of interest of the ODE
system. In general, the idea of smoothing to avoid integration falls under the
class of collocation methods, including some two-steps (Liang and Wu, 2012;
Gugushvili and Klaassen, 2012; Dattner and Klaassen, 2013; Vujačić, Dat-
tner, González and Wit, 2015) and iterative procedures (Ramsay, Hooker,
Campbell and Cao, 2007; Vujačić, Mahmoudi and Wit, 2016). Typically
the first step consists of recovering a temporary solution of the system by
smoothing or interpolating the data using e.g. cubic splines, nonparametric
filters or local polynomial regression (Varah, 1982; Madár, Abonyi, Roubos
and Szeifert, 2003; Brunel, 2008), and then applying nonlinear least squares
to infer the parameters of the ODEs. The properties, such as consistency
and asymptotic normality, of methods relying on nonlinear least squares with
known initial conditions are discussed in Xue, Miao and Wu (2010). Other
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methods have involved reproducing kernel Hilbert space approaches by map-
ping the ODE problem into a Hilbert space (González, Vujačić and Wit,
2013, 2014).

Bayesian approaches have involved similar two-steps procedures Camp-
bell and Steele (2012); Bhaumik and Ghosal (2015, 2017). Many Bayesian
approaches to ODE estimation rely on assuming that the solution of the
system can be described as a Gaussian Process (GP) Chkrebtii, Campbell,
Calderhead and Girolami (2016). They encode naturally a source of ran-
domness in the solution and simultaneously provide a class of flexible priors
for the functions used to smooth the data coming from the ODE system.
Calderhead et al. (2009) used GPs by means of adaptive gradient matching,
with some drawbacks that were later addressed in Dondelinger et al. (2013).
An advantage of these Bayesian methods is the complete probabilistic phras-
ing of the problem, allowing for a statistical quantification of the uncertainty
about the solution obtained. The core of these procedures are, in fact, prob-
abilistic solvers that can be sampled to explore the parameter space while
obtaining indirectly a solution of the system (Conrad, Girolami, Särkkä, Stu-
art and Zygalakis, 2017). For some other implicit and explicit probabilistic
solvers see Barber (2014). Applications of these methods on real life datasets
are presented in Honkela, Girardot, Gustafson, Liu, Furlong, Lawrence and
Rattray (2010) and Titsias, Honkela, Lawrence and Rattray (2012).

In this manuscript we propose a two-step Bayesian strategy that over-
comes direct integration and that filters noise in the data, simultaneously.
We achieve this by using a penalized splines approach to smooth the data
and reconstruct the state variables of the ODEs. Normal priors on the ODE
parameters result in adopting a ridge regression technique for regularized in-
ference on the parameters governing the system. Our approach is entirely
modular, which means that it can approach large, complex systems, as our
framework allows for separate improvements, extensions or modifications.

The rest of the manuscript is organized as follows. In Section 2 we in-
troduce the model and the distributional assumptions on the data, together
with the prior distributions. In Section 3, we describe extensive simulation
studies and present numerical and graphical results. In Section 4, we describe
the analysis of a small dataset involving neuronal electrical activity modelled
by means of a FizHugh-Nagumo system of ordinary differential equations. In
Section 5, we provide a discussion of the method presented in this manuscript
and we outline some future developments.
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2 Dynamic model formulation
A p-dimensional dynamic process x is observed over n time points with
noise. Each component xk(t) of the process x(t) is sampled at time points
{ti}i=1,...,n, with ti a generic element from the finite set of ordered time points
ti ∈ [a, b]. Without loss of generality we will assume that a = 0 and b = 1.
We furthermore assume the dynamic process x(t) to be well described by an
ordinary differential equations (ODEs) model defined as:{

x′(t) = g(x(t))

x(0) = ξ
(1)

where x′(t) is the first derivative with respect to time of the continuous pro-
cess x(t) = (x1(t), . . . ,xp(t)), ξ = (ξ1, . . . , ξp) is a vector of initial conditions
for the system and g : Rp → Rp some integrable function of x(t).

We will assume that the component functions gk can be written as

gk(x) =

bk∑
j=1

βkjhkj(x),

where the hkj are assumed to be known integrable functions. In case the
dynamical system is well-known, it could be that the functions hkj are given
by certain field-specific principles. In case the system is unknown, then the
functions hkj could be chosen as part of some convenient basis of integrable
functions. We focus only on ODE models that are linear in the parameters:
the choice of the functions gk leads to parametric linear regression problems,
as in Dattner and Klaassen (2015).

A solution of the system (1) can be given in integral form

xβ,k(t) = ξk +

∫ t

0

gk(x(s)) ds

= ξk +

bk∑
j=1

βjHjk,xβ(t), (2)

where Hjk,xβ is the integral of hkj(x(.)), which itself depends on the solution
x = xβ of the ODE. We can collect all the elements Hjk,xβ(ti) in a np ×∑p

k=1 bk regression matrix Hxβ , such that

xβ = ξ +Hxββ,

where x contains the np stacked values xβ,k(ti) for i = 1, . . . , n and k =
1, . . . , p.
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The observed process is called y, where the collection {y1, . . . ,yp} con-
tains n-dimensional vectors consisting of noisy observations yik of xβ,ik =
xβ,k(ti), where i indexes time and k indicates one of the p state vectors. In
particular, we assume that the observations {yik} are independent and given
by

yik|β ∼ N
(
xβ,ik, σ

2
k

)
(3)

with σ2
k a parameter describing the noise level in the data for component

xk(t).
Assuming an underlying Bayesian framework, the unknown system pa-

rameters βk are assumed to follow a conjugate normal distribution

βk|λβk ∼ Nbk
(
0, [λβkIbk ]

−1) ,
The chosen prior, effectively, reproduces Bayesian ‘ridge regression’, with
λβ,k acting as a penalizing term for which we assume a prior distribution

λβk |αβ, γβ ∼ Gam(αβ, γβ).

where (αβ, γβ) are chosen to reflect weakly informative priors. For ξ we select
a flat normal distribution, whereas for each σ2

k an improper reference prior
p(σ2

k) = 1/σ2
k.

2.1 An alternative smoothing model

Full Bayesian inference of β, which governs the dynamic system, is rather
complicated. The main reason is that Hxβ defined in (2) is only implic-
itly defined. An explicit form of the posterior of β would, therefore, be
only possible for the simplest ODEs with explicit solutions. Alternatively,
a Metropolis-Hastings sampler would require for each proposal β′ the asso-
ciated solution xβ of the dynamic system in order to accept or reject the
proposal.

Alternatively, we will define a Bayesian version of the smooth-and-match
estimator (Gugushvili and Klaassen, 2012). It will break the dependence of
the inference of β on the solution xβ, by replacing it by a smoothed version
of the data, which, after all, are noisy versions of the true solution xβ. It has
an empirical Bayes flavour, as we effectively estimate the nuisance parameter
Hx “off-line”.

A smooth approximation model for xk, as an alternative to the true model
(1), can be given by a cubic spline with qk knots of the form

xθ,ik(t) = xθ,k(t) =

qk+2∑
h=1

θhkψh(t), (4)
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where ψ is a cubic splines basis on [0, 1] (Wood, 2006, p. 122). This approx-
imating spline for state variable k takes the value xθ,k(ti) = θTk ψ(ti) at the
observation times ti. In particular, the observations yik under this model are
assumed to be independent and depend on the parameters θk and noise level
σ2
k as

yik ∼ N(xθ,ik, σ
2
k),

where the smoothing parameters themselves are constrained by means of an
informative, smoothness inducing hyper-distribution,

θk|λθk ∼ Nqk+2

(
0, [λθkSψ]−1

)
,

where Sψ is the usual matrix of integrals of cross-products of the second
derivatives of ψ (Gu, 2013, p. 37). Although the first two rows and columns
of Sψ are zeros, pseudo-inversion can be performed to avoid singularity of the
matrix (Wood, 2006, p. 127). This ensures that non-linearity in the compo-
nents is captured without, however, producing curves that would overfit the
noise.

The selection of the hyper-parameter λθk is done by a further conjugate
hyper-distribution,

λθk |αθk , γθk ∼ Gam(αθ, γθ)

for some weakly informative hyperparameters (αθ, γθ). More specifically, we
select values of the hyperparameters that encourage undersmoothing of the
data (Gugushvili and Klaassen, 2012), with enough variance for the Gamma
distribution to be able to shift to a more penalized curve if needed.

2.2 Bayesian Smooth-and-Match strategy

We have now two models for the data. The spline smoothing step (4) is a
convenient approach for building an approximation of regression matrixHxβ

by Hxθ . Borrowing a terminology from Gugushvili and Klaassen (2012),
we call this a Bayesian Smooth-and-Match strategy. The procedure consists
of two steps:

1. Smoothing step. Perform Bayesian penalized spline smoothing to sam-
ple {xθ} through a Gibbs sampler on θ|y;

2. Matching step. Plug-in the sampled {xθ,k}, computed with the updated
sampled values for θk from the previous step: this provides a way to
compute the matrix Hxθ , required by the Bayesian regression sampler
for β|y.
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The two steps of the inference strategy are not completely disconnected. The
vector σ2 connects both parts and acts as a measure of uncertainty both from
the smoothing and the regression.

Dropping hyper-parameters from the notation, the joint posterior distri-
bution of the parameters in our model is:

p(θ, ξ,β,λθ, λβ,σ
2|y) ∝

p∏
k=1

psmth
(
yk|θk, σ2

k

)
p(θk|λθk) p(λθk)p(σ2

k)

×
p∏

k=1

preg
(
yk| ξk,βk, Hxθ ,k, σ

2
k

)
p
(
βk|λβk

)
p
(
λβk
)
p(ξk),

which is also represented in the graphical model in Figure 1.
More sophisticated smoothing could be performed (Morrissey, Juárez,

Denby and Burroughs, 2011), but we consider a simpler approach because
we are only interested in recovering the components Hx, which are used
as regressors in the second step of the procedure, since, from a frequentist
point of view, a consistent estimator of the ODE parameters can be obtained
under mild conditions when following this plug-in approach (Gugushvili and
Klaassen, 2012). Although we rely on a simpler smoothing technique, we
still operate in a Bayesian framework and thus we readily obtain measures
of uncertainty about parameters in our model: in particular, after obtaining
samples from the posterior distribution, we can compute quantities such as
posterior standard deviations and credible intervals. The ODE parameters
of the model are all updated with Gibbs samplers, using standard conjugated
priors; the chains mix well and no block-sampling updates are needed. We
give more details about the implementation in the Appendix, while scripts of
method and code reproducing our simulations are available at the following
link: https://github.com/savranciati/ODEsnm.

Figure 1: Graphical representation of the ODE system (left) and smoothing
model (right) in relation to the data y.
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2.3 Relationship with other methods

One prominent feature of our model formulation is the vector of observations
y appears twice: once in the smoothing model and secondly as the noisy
solution of the ODE system. As we mentioned, this has close resemblance to
an empirical Bayes approach. However, specifically in the field of inference
of ODE systems, this approach is particularly common.

The GPODE model in Barber and Wang (2014) is a probabilistic gen-
erative model and its graph representation contains two nodes for the same
quantity, namely, the ODE solution x(t). The authors model the functions
x(t) as coming from a Gaussian process (GP) and exploit the fact that differ-
entiating a GP produces a derivative x′(t) that is still a GP with an analyti-
cally explicit kernel. Then, they marginalize over the components x(t) with a
standard convolution integral and assume data y to be normally distributed.
After that, they reintroduce x(t) and couple it with the obtained derivatives
to measure the distance between the deterministic ODEs of the system and
the ones estimated with the data.

This approach has some problems. As pointed out in Macdonald, Higham
and Husmeier (2015), having two nodes assigned to the same quantity is
methodologically inconsistent. To solve the issue, they introduce a dummy
variable that mimics x(t), thus removing the inconsistency. However, the
two nodes are still conceptually describing the very same quantity and a
natural definition of this dependency would be an undirected edge between
them: this addition, unfortunately, changes the graph from a directed acyclic
graph (DAG) to a chain graph, which is not a probabilistic generative model
anymore. To preserve its essence, they keep the two nodes separate from
one another but highlight the consequences of this choice: when in the case
of partially observed systems some of the noisy vectors yk are not available,
the model itself might not be identifiable because of the likelihood not de-
pending anymore on the parameters of the ODEs after marginalizing over
the unobserved quantities.

As we face the same issue with our proposed strategy, we are also limited
to situations where all the components of the process y(t) are observed. We
decide to couple the two versions of y only by assuming they share the same
variance σ2, as described in Figure 1. Although this seems reasonable in
principle, it has a drawback, which is most evident when we try to simulate
data. In fact, we start with a deterministic solution x of an ODE system,
and we perturb it with some noise σ2 to obtain an observed vector y. Now,
recovering the noise level in the data through smoothing is not strictly equiv-
alent anymore to estimating σ2 through the regression model involving design
matrix Hx̂. However, as x̂ is consistent, asymptotically they are equivalent
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in a frequentist sense. Moreover, such undesired ‘mismatch’ effect should not
present itself as a serious problem when dealing with real world observations,
bearing in mind the two sources of error flow into one another.

3 Simulation study
In this section, we analyze the performance of our proposed estimation strat-
egy by applying it to three different ODE systems, starting from a simple one
component logistic growth model, then moving to a two component Lotka-
Voltera model and ending with a three component epidemic model for HIV
viral fitness.

For each ODE system, we simulate nine scenarios: we consider three sam-
ple sizes, n = 25, n = 100, n = 500, and three degrees of contamination of the
data with Gaussian noise: low, medium and high. The noise level is quan-
tified through the signal-to-noise ratio (SNR), that is the ratio between the
standard deviation of the deterministic simulated solution and the standard
deviation of the noise term we use to perturb it.

We compare the performance of our Bayesian Smooth-and-Match strat-
egy, labelled as BSM, with the collocation method implemented in the R
package CollocInfer (Ramsay, Hooker, Campbell and Cao, 2007). CollocIn-
fer is an adaptive gradient matching method based on spline smoothing.
Tuning parameters for the collocation method, such as the number of knots,
order of the basis for the splines, and the penalization term, are selected
with the functions provided in the R package. The collocation method also
needs initial guesses for the regression coefficients and we provide starting
points drawn randomly from uniform distributions over ranges around the
true value of the parameters.

For each scenario and each ODE system, we apply both algorithms to 100
independently simulated datasets. We summarize the results as the average
across these replicates. The uncertainty about the estimated parameters is
quantified through the mean squared error (MSE), computed on the 100 sim-
ulated datasets. Given the sensitivity of CollocInfer to the provided starting
values, we check if convergence is achieved by the algorithm; we discard
datasets that result in degenerate estimates for the parameters and do not
consider these values when computing the MSE. A measure of the number
of actual datasets (NAD) used for the CollocInfer method is provided in the
tables. For our BSM method, all datasets are used. As for the visual repre-
sentation of the results, Figures 4 to 6 show a mosaic plot with the results
for one of the 100 datasets.
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3.1 Logistic population growth

We consider first the one component logistic growth model (McKendrick and
Pai, 1912), frequently employed in ecology and biology to describe growth
dynamics of a population. The system is defined as:

dx(t)

dt
= ax(t)

(
1− x(t)

K

)
,

where a is the growth rate and K the carrying capacity of the population
involved. We consider another, linear representation of previous equation,
that is,

dx(t)

dt
= β1x(t) + β2[x(t)]2,

which is linear in the parameters β1 = a and β2 = −a/K. Together with the
initial condition ξ1, these are the parameters of interest. The true values for
ξ1, β1 and β2 used in the simulations are reported in Table 2.

In our BSM procedure, we select the number of knots for the smoothing
step equal to q1 = 2, aiming for some undersmoothing of y = (yi, . . . , yn), as
suggested by Gugushvili and Klaassen (2012). The functions used to build
the regression matrix are h1(x) = x and h2(x) = x2.

In every scenario, the number of actual datasets (NAD) used to com-
pute the results for CollocInfer is less than 100, meaning that a significant
number of degenerate solutions were discarded in the process. As expected,
Table 2 shows that increasing noise levels produces higher MSE for both
methods. The average posterior mean of ξ1 is stable throughout all the sce-
narios, showing some bias only when SNR is small. CollocInfer does not
provide an estimate for the initial condition ξ1. With BSM we can recover
the first parameter β1 accurately in almost every scenario, showing better
results in comparison with CollocInfer. The CollocInfer algorithm seems to
be more stable when retrieving the second parameter β2. The uncertainty
parameter σ2, only estimated by BSM, appears to be less sensitive to changes
in sample size n and more to SNR.

A visual description of the results is presented in Figure 4: in most of the
plots, the solid line describing the true curve, the dotted smoother of the data
(y1, . . . , yn) and the dashed ODE regression solution are indistinguishable
from each other. They start to become appreciably different in the right
part of the mosaic plot, which refers to scenarios with the highest level of
noise. When calculating the average L2 difference between the smoother and
the truth versus the ODE regression solution and the truth, we find that
the ODE regression solution outperforms the smoother (e.g. or n = 500 and
SNR = 1.3, the L2 distances are respectively 0.022 versus 0.007). The model
information helps to fit true function x more accurately.

9



3.2 Lotka-Volterra

In the second batch of simulations we consider the Lotka-Volterra system
(Edelstein-Keshet, 1988). This system of ODEs is used to model the tem-
poral dynamics of two competing groups, traditionally referred to as preys
and predators. By setting some of the parameters of the ODEs to zero or
imposing constraints, the Lotka-Volterra system can also describe systems
that characterize seasonal epidemic processes. The Lotka-Volterra model is
described by the following set of equations:

x′1(t) = β1x1(t) + β2x1(t)x2(t)

x′2(t) = β3x2(t) + β4x1(t)x2(t)

x1(0) = ξ1

x2(0) = ξ2.

We focus the inference procedure on the first ODE of the system, and thus on
the subset of parameters (ξ1, β1, β2). The advantage of our empirical Bayes
procedure is that the different equations can be inferred in an uncoupled way.
We explore the same nine simulation scenarios as in the logistic growth case.
We use as regressing functions the quantities h1(x) = x1 and h2(x) = x1x2.
We select the same number of knots, q1 = q2 = 5, for both splines.

In Table 3, averages of the posterior means and corresponding mean
square errors are reported for all the scenarios. We see both algorithms per-
forming well when the sample size is n = 25, regardless of the noise levels.
The number of actual datasets used to compute averages for CollocInfer also
shows that convergence was achieved for all the first three scenarios. When
evaluating the performance of the two methods, for n = 100, we notice BSM
performs slightly better in terms of bias of the estimated parameters β1 and
β2; also, CollocInfer shows slightly higher MSEs for the second estimated
parameter with respect to BSM. This difference is more prominent when
n = 500.

Figure 5 shows that the smoothing and the ODE regression curves are
most different in the low information scenario, i.e., n = 25 and SNR =
1.3. As expected, the ODE regression curve is closer to the truth than the
smoothing curve (L2 difference of 0.252 vs. 0.690, respectively, which reduces
to 0.084 vs. 0.094 in the high information scenario n = 500 and SNR = 13).

3.3 HIV viral fitness

The third batch of data is simulated from a set of ODEs modelling the
dynamics of HIV virus (Bonhoeffer, May, Shaw and Nowak, 1997). The
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system is defined as:

x′1(t) = β1 + β2x1(t) + β3x1(t)x3(t)

x′2(t) = β3x1(t)x3(t)− 0.5x2(t)

x′3(t) = 0.5β4x2(t) + β5x3(t)

x1(0) = ξ1

x2(0) = ξ2

x3(0) = ξ3,

where we focus on the first ODE and the subset of parameters (ξ1, β1, β2, β3).
The simulation settings are the same as before. True parameter values are
chosen as the ones used in Vujačić, Dattner, González and Wit (2015). The
numbers of knots are the same for all smoothing models, q1 = q2 = q3 = 20.
The regression matrixHxθ consists of the integrals of the following functions,
h1(x) = 1, h2(x) = x1 and h3(x) = x1x3.

We report the results in Table 4 and Figure 6. The parameter β2 proved to
be difficult to estimate with CollocInfer : we decided to fix it to the true value
for CollocInfer, while nevertheless estimating it via BSM. Except for n = 25
with the highest level of noise SNR = 1.3, BSM performs better than Col-
locInfer in inferring the parameters. Approximately 15% of all simulations
for the first three scenarios for CollocInfer do not converge. If the algorithm
converges, however, then the algorithm seems quite robust. The number of
discarded datasets gets lower as the sample size grows, as expected.

As we can see from the mosaic plot in Figure 6, for n = 100 and n =
500 there is an appreciable difference between the two curves with respect
to the true one, especially on the right-half portion of each plot. The L2

difference for the ODE regression and the true curves versus the smoothed
and true curves are, respectively, 16.179 and 11.743 for n = 100 and SNR=
1.3, meaning that the smoothing step provides a reconstructed curve slightly
closer to the true one. The opposite happens when the sample size gets to
500 and the noise level of SNR = 1.3: the L2 differences are 1.397 and 5.859,
respectively.

3.4 Reconstructing a complex ODE system

Whereas the above simulation systems considered only a small number of
equations, the method we propose is highly parallelizable and could in prin-
ciple consider large ODE systems. For this purpose, we simulate data from
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a synthetic ODE system with p = 10 equations. The system is defined as:

x′1(t) = α1x1(t)− β1x10(t) sin(x2(t))

x′2(t) = −α2x2(t) + β2x1(t) sin(x3(t))

x′3(t) = α3x3(t)− β3x2(t) cos(x4(t))

x′4(t) = −α4x4(t) + β4x3(t) cos(x5(t))

x′5(t) = α5x5(t)− β5x4(t) cos(x6(t))

x′6(t) = −α6x6(t) + β6x5(t) cos(x7(t))

x′7(t) = α7x7(t)− β7x6(t) cos(x8(t))

x′8(t) = −α8x8(t) + β8x7(t) sin(x9(t))

x′9(t) = α9x9(t)− β9x8(t) sin(x10(t))

x′10(t) = −α10x10(t) + β10x9(t) sin(x1(t)).

The initial conditions are xj(0) = ξj for j = 1, . . . , p, and we perform infer-
ence on all the parameters appearing in the ODEs. We assume we know the
structure of each equation, as in the other simulation settings, which means
using the appropriate regressing functions h1(x) and h2(x): i.e. for the first
ODE, h1(x) = x1 and h2(x) = x10 sin(x2). However, instead of the true
one, we fit a somewhat misspecified model: for each equation in the system
we consider a third regressing function h3(x), with an associated parameter
γj. In principle, every γj should be sampled from a posterior distribution
centered around zero, as the contribution from h3(x) is not present in the
data generating process, i.e. γj = 0 ∀j. More details about values for the
parameters used to generate data, and a list of the misspecified regressing
functions h3(x) for each equation, are provided in the Appendix. The idea
here is to use our approach to recover the structure of the ODE system, even
if there is some form of misspecification.

We summarize the results by looking at the 95% credible interval of all
the sampled parameters (α1, β1, γ1, . . . , α10, β10, γ10), and considering which
intervals contain or not the zero. In particular, parameters for the ODE
system {αj, βj}j=1,...,p have credible intervals centered around their true val-
ues without including 0: this is true for all the parameters except β3, β5,
α6, which have posterior medians close to their true values but intervals wide
enough to also contain zero. A visual example of the result is provided in Fig-
ure 2, where we report data for the fourth ODE of the system. Although the
smoothing step produces a curve (dotted line) too wiggly to capture the true
underlying function (solide line), the regression part of our approach (long-
dashed line) better recovers the overall behavior of the component x4(t).

The choice of p is mainly dictated by the ease of exposition of the system
in the context of this article. From a computational point of view, inference is
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Figure 2: Fourth ODE x4(t) from the synthetic system: observed noisy data
(dots), smoothing spline (dotted line), true solution of the ODE system (solid
line) and reconstructed solution (long-dashed line) for the first variable x·1;
n = 200 time points.

linear in the number of equations. Moreover, parallelization could in principle
result in only a sublinear growth of computational time.

4 Modelling neuron electrical activity
We analyze a synthetic neuron electrical activity example available from the
package CollocInfer (Hooker, Xiao and Ramsay, 2010). The so-called Fh-
Ndata data consist of 41 evenly-spaced observations in the time frame [0, 20]
from the following ODEs model

x′1(t) = c(x1(t)− x3
1(t)/3 + x2(t))

x′2(t) = −1
c
(x1(t)− a+ bx2(t))

x1(0) = ξ1

x2(0) = ξ2

(5)

known as the FitzHugh-Nagumo system (FitzHugh, 1961; Nagumo, Arimoto
and Yoshizawa, 1962), which describes pulse transmission for neuronal activ-
ity. The parameter values used to generate the data are a = 0.2, d = 0.2, c =
3, ξ1 = 0.5. The simulated values are then perturbed with variances equal to
0.25 for both the variables x1 and x2. The system in Equation 5 is not linear
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in the parameters. We thus consider another representation
x′1 = β4(x1(t)− x3

·1(t)/3 + x2)

x′2 = β1x1(t) + β2 + β3x2(t)

x1(0) = ξ1

x2(0) = ξ2,

and we focus on the second differential equation and the subset of parameters
ξ2, β1 = −1/c, β2 = a/c and β3 = −b/c. The regression matrix Hxθ consists
of the integrals of the following functions, h1(x) = x1, h2(x) = 1 and h3(x) =
x2. We compare our results with the point estimates obtained by Vujačić,
Dattner, González and Wit (2015).

In Figure 3, the reconstructed curves from both smoothing and matching
steps of the procedure are plotted. The dotted smoother captures some bias
in the boundary, in contrast to the long-dashed ODE regression solution. As
for the ODE parameters, we report their posterior means in Table 1. The
BSM algorithm recovers the true value of β1 with appreciable accuracy. For
β2 and especially β3, the algorithm returns slightly biased posterior means.
The posterior mean for σ2 is at 0.06 lower than the one used to perturb the
data, equal to 0.25. This probably suggests some level of overfitting.

Table 1: Results for the FhNdata: posterior means (posterior standard devi-
ations within brackets) from BSM in the second column and point estimates
from Vujačić, Dattner, González and Wit (2015) in the third column

Parameters Post. Mean (post. sd) Vujačić et al. (2015)
ξ2 = 0.5 0.696 (0.244 ) 0.569
β1 = −0.33 -0.322 (0.041 ) -0.333
β2 = 0.067 0.091 (0.025 ) 0.106
β3 = −0.067 -0.028 (0.066 ) -0.047
σ2 0.060 (0.019 )
Runtime: 10,000 MCMC iterations in 29.17 seconds.
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Figure 3: FitzHugh-Nagumo system for neuron electrical activity: observed
noisy data (dots), smoothing spline (dotted line) and reconstructed solution
(long-dashed line, only right plot) for the first variable (left plot) and the
second variable x2 (right plot)

5 Conclusions
We have proposed a Bayesian approach to indirectly solve an ODE system
while doing inference on its parameters. The employed strategy is suitable
for ODEs that are linear in their parameters, with observations available for
all the components of the system. It is compartmentalized into two main
stages: first, a smoothing step that approximates the solutions of the ODE
process through penalized spline smoothing of the noisy observations; second,
a match step, where the smoothed curves are numerically integrated in order
to construct an empirical Bayes ODE regression matrix as inputs for ridge
penalized regression.

The two phases of the procedure are jointly governed by σ2, a noise pa-
rameter common to both steps measuring the solution uncertainty. This pa-
rameter brings together the two main sources of uncertainty: measurement
error and the model approximation error. We evaluated the performance and
reliability of the strategy through various ODEs systems. We also tested the
approach on a dataset previously analyzed by (Vujačić, Dattner, González
and Wit, 2015). The Bayesian Smooth and Match (BSM) procedure that we
proposed has the advantages of being fast, simple to implement and providing
the ODE solution as a by-product of the inference procedure.

The ‘tuning’ parameters of the method are minimal: the number of knots
and their placement have no substantial impact on the reliability of the
smoothing step. Other spline methods, such as B-splines, thin plate plates,
etc., that do not require such a choice, can also be employed in the smoothing
step. An interesting alternative is to employ the P-splines approach proposed
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in Ventrucci and Rue (2016). It uses a penalized complexity prior, i.e., a prior
distribution injecting information not in terms of the penalty parameter λθ,
but about the polynomial order needed to reconstruct x. This is quite an
appealing approach because it is usually easier to elicit the information in
terms of equivalent polynomial order, especially in ODE context.

As far as the integration is concerned to obtain Hxθ , we rely on an easy
to implement, albeit ‘rough’, trapezoidal rule using the observed time points
as the grid to evaluate the integral. A better approximation can be achieved
by employing a finer grid, at the cost of increased computational time. Other
types of penalization, instead of the ridge, could be explored for the regression
step of the matching step, losing however the correspondence with Tikhonov
regularization.
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Table 2: Average posterior means (with MSE in brackets) for the parameters of the logistic population growth
model.

Parameters
Noise level

Sample low (SNR = 13) medium (SNR = 6.5) high (SNR = 1.3)
size BSM CollocInfer BSM CollocInfer BSM CollocInfer

n = 25
ξ1 = 0.1 0.098 (0.001 ) - 0.096 (0.002 ) - 0.078 (0.043 ) -
β1 = 2.5 2.531 (0.105 ) 3.819 (6.845 ) 2.560 (0.412 ) 5.054 (14.530 ) 2.317 (4.687 ) 4.727 (12.370 )
β2 = −0.125 -0.180 (0.271 ) -0.244 (0.091 ) -0.216 (1.035 ) -0.420 (0.228 ) -0.359 (9.864 ) -0.385 (0.215 )
�σ2 0.064 - 0.244 - 7.054 -
NAD 100 98 100 96 100 93

n = 100
ξ1 = 0.1 0.098 (0.001 ) - 0.096 (0.002 ) - 0.078 (0.046 ) -
β1 = 2.5 2.540 (0.092 ) 5.080 (15.480 ) 2.571 (0.364 ) 5.060 (15.267 ) 2.904 (9.403 ) 5.017 (14.886 )
β2 = −0.125 -0.193 (0.213 ) -0.124 (0.009 ) -0.238 (0.836 ) -0.124 (0.009 ) -0.740 (20.655 ) -0.130 (0.011 )
�σ2 0.065 - 0.245 - 6.364 -
NAD 100 92 100 92 100 94

n = 500
ξ1 = 0.1 0.098 (0.001 ) - 0.095 (0.002 ) - 0.077 (0.048 ) -
β1 = 2.5 2.542 (0.086 ) 2.633 (1.840 ) 2.573 (0.342 ) 4.336 (6.462 ) 2.852 (8.649 ) 5.441 (14.641 )
β2 = −0.125 -0.197 (0.188 ) -0.091 (0.046 ) -0.242 (0.742 ) -0.103 (0.003 ) -0.662 (18.647 ) -0.095 (0.008 )
�σ2 0.066 - 0.248 - 6.126 -
NAD 100 83 100 80 100 89

� results reported as multiplied by 102
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Table 3: Average posterior means (with MSE in brackets) for the parameters of the Lotka-Volterra ODE system.

Parameters
Noise level

Sample low (SNR = 13) medium (SNR = 6.5) high (SNR = 1.3)
size BSM CollocInfer BSM CollocInfer BSM CollocInfer

n = 25
ξ1 = 2.0 1.996 (0.001 ) - 1.965 (0.112 ) - 1.929 (0.448 ) -
β1 = 0.1 0.101 (0.001 ) 0.095 (0.001 ) 0.101 (0.001 ) 0.093 (0.001 ) 0.091 (0.001 ) 0.863 (0.001 )
β2 = −0.2 -0.201 (0.001 ) -0.197 (0.001 ) -0.197 (0.001 ) -0.192 (0.002 ) -0.170 (0.002 ) -0.183 (0.008 )
�σ2 0.040 - 2.295 - 12.234 -
NAD 100 100 100 100 100 100

n = 100
ξ1 = 2.0 1.996 (0.001 ) - 1.965 (0.112 ) - 1.930 (0.449 ) -
β1 = 0.1 0.089 (0.001 ) 0.063 (0.001 ) 0.088 (0.001 ) 0.060 (0.002 ) 0.086 (0.001 ) 0.061 (0.002 )
β2 = −0.2 -0.168 (0.001 ) -0.140 (0.004 ) -0.167 (0.001 ) -0.139 (0.004 ) -0.162 (0.002 ) -0.138 (0.004 )
�σ2 3.650 - 5.392 - 10.507 -
NAD 100 100 100 100 100 98

n = 500
ξ1 = 2.0 1.996 (0.001 ) - 1.965 (0.112 ) - 1.930 (0.447 ) -
β1 = 0.1 0.095 (0.001 ) 0.080 (0.001 ) 0.095 (0.001 ) 0.080 (0.001 ) 0.094 (0.002 ) 0.077 (0.001 )
β2 = −0.2 -0.182 (0.001 ) -0.138 (0.004 ) -0.182 (0.001 ) -0.138 (0.004 ) -0.180 (0.002 ) -0.138 (0.004 )
�σ2 1.405 - 2.89 - 7.407 -
NAD 100 100 100 100 100 99

� results reported as multiplied by 101
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Table 4: Average posterior means (with MSE in brackets) for the parameters of the HIV viral fitness ODE system.
For CollocInfer β2 is not estimated, but set to the true value due to stability problems.

Parameters
Noise level

Sample low (SNR = 13) medium (SNR = 6.5) high (SNR = 1.3)
size BSM CollocInfer BSM CollocInfer BSM CollocInfer

n = 25
ξ1 = 60 59.879 (1.35 ) - 59.519 (21.55 ) - 59.031 (86.12 ) -
β1 = 20 20.808 (2.79 ) 20.933 (1.001 ) 20.294 (21.89 ) 21.142 (7.130 ) 14.609 (175.49 ) 20.849 (8.869 )
β2 = −0.108 -0.113 (0.001 ) - -0.103 (0.005 ) - -0.030 (0.032 ) -
†β3 = −0.095 -0.106 (0.001 ) -0.106 (0.003 ) -0.109 (0.001 ) -0.109 (0.001 ) -0.159 (0.001 ) -0.106 (0.001 )
�σ2 0.169 - 2.346 - 20.398 -
NAD 100 84 100 85 100 85

n = 100
ξ1 = 60 59.882 (1.18 ) - 59.539 (18.82 ) - 59.079 (75.26 ) -
β1 = 20 21.714 (3.13 ) 19.700 (1.936 ) 21.457 (4.98 ) 19.634 (2.188 ) 20.281 (9.94 ) 19.772 (3.728 )
β2 = −0.108 -0.117 (0.001 ) - -0.115 (0.001 ) - -0.106 (0.001 ) -
†β3 = −0.095 -0.103 (0.001 ) -0.090 (0.001 ) -0.103 (0.001 ) -0.089 (0.010 ) -0.100 (0.001 ) -0.090 (0.009 )
�σ2 0.640 - 2.748 - 9.473 -
NAD 100 98 100 98 100 97

n = 500
ξ1 = 60 59.882 (1.18 ) - 59.538 (18.84 ) - 59.078 (75.35 ) -
β1 = 20 21.012 (1.16 ) 19.612 (1.791 ) 21.040 (3.17 ) 19.648 (1.412 ) 20.936 (8.99 ) 19.499 (2.437 )
β2 = −0.108 -0.114 (0.001 ) - -0.113 (0.001 ) - -0.112 (0.001 ) -
†β3 = −0.095 -0.100 (0.001 ) -0.088 (0.001 ) -0.100 (0.001 ) -0.089 (0.001 ) -0.101 (0.001 ) -0.087 (0.001 )
�σ2 0.437 - 2.312 - 8.326 -
NAD 100 99 100 99 100 100

† results reported as multiplied by 102

� results reported as multiplied by 10(−1)
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Figure 4: Logistic population growth simulations: observed noisy data (dots), smoothing spline (dotted line), true
solution of the ODE system (solid line) and reconstructed solution (long-dashed line) for the variable x·1. Different
sample sizes (n = 25, 100, 500) from the top to the bottom and noise levels (low, medium and high) from left to right
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Figure 5: Lotka-Volterra simulations: observed noisy data (dots), smoothing spline (dotted line), true solution of
the ODE system (solid line) and reconstructed solution (long-dashed line) for the first variable x·1. Different sample
sizes (n = 25, 100, 500) from the top to the bottom and noise levels (low, medium and high) from left to right
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Figure 6: HIV viral fitness simulations: observed noisy data (dots), smoothing spline (dotted line), true solution of
the ODE system (solid line) and reconstructed solution (long-dashed line) for the first variable x·1. Different sample
sizes (n = 25, 100, 500) from the top to the bottom and noise levels (low, medium and high) from left to right

26



A Appendix: Full conditionals for MCMC im-
plementation

A.1 Gibbs samplers for the first step (smooth)

At iteration (l + 1), for each k = 1, . . . , p, we sample new values for θk from
its full conditional distribution

p(θ
(l+1)
k | . . . ) ∝ psmth

(
yk|θk, σ2(l)

k

)
p
(
θk|λ(l)θk

)
,

which is a multivariate Normal distribution with the following mean vec-
tor and variance-covariance matrix

mθk = VθkΨk
yk

σ2(l)
k

Vθk =

[
Sθkλ

(l)
θk

+
Ψ>k Ψk

σ2(l)
k

]−1
where Ψk is the basis matrix of the corresponding spline for xk.

A.2 Gibbs samplers for the second step (match)

At iteration (l + 1), we sample new values for β from its full conditional
distribution

p(β(l+1)| . . . ) ∝ pregr

(
yk| ξ(l)k ,β,Θ

(l), σ2(l)

k

)
p
(
β|λ(l)β

)
which is a multivariate Normal distribution with the following mean vec-

tor and variance-covariance matrix

mβ = VβH
(l)
xθ

ỹk

σ2(l)
k

Vβ =

[
Sβλ

(l)
β +

H(l)>

xθ
H(l)

xθ

σ2(l)
k

]−1
where ỹk = yk − ξ(l)1 1n and H(l)

xθ
needs to be computed at each iteration

by numerically integrating the updated vectors x
(l)
·k using the trapezoidal

rule. The initial condition ξ(l+1)
k is sampled from a Normal distribution with

expected value mξ = y1k −H(l)
1,xθ
β(l) and variance Vξ = σ2(l)

k . As for the
penalizing term λβ its full conditional distribution is a Gamma distribution
with shape and rate parameters equal to
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sλβ =
b

2
+ αβ

rλβ =
β

(l)>

k Sββ
(l)
k

2
+ γβ,

where b is the number of elements in β and (αβ, γβ) the hyperparameters
governing its prior distribution. Finally, we sample σ2(l+1)

k from an Inverse
Gamma distribution with parameters

sσ2 = n

rσ2 =

(
ỹk −H(l)

xθ
β(l)
)>(

ỹk −H(l)
xθ
β(l)
)

2
+

(
yk − x

(l)
k

)>(
yk − x

(l)
k

)
2

.

A.3 Synthetic ODE system specifications

The model we fit, which is the true ODE system augmented with misspecified
regressing functions h3(x), is given by

x′1(t) = α1x1(t)− β1x10(t) sin(x2(t)) + γ1x5(t)

x′2(t) = −α2x2(t) + β2x1(t) sin(x3(t)) + γ2x4(t)

x′3(t) = α3x3(t)− β3x2(t) cos(x4(t)) + γ3x6(t)

x′4(t) = −α4x4(t) + β4x3(t) cos(x5(t)) + γ4x8(t)

x′5(t) = α5x5(t)− β5x4(t) cos(x6(t)) + γ5x1(t)

x′6(t) = −α6x6(t) + β6x5(t) cos(x7(t)) + γ6x4(t)

x′7(t) = α7x7(t)− β7x6(t) cos(x8(t)) + γ7x2(t)

x′8(t) = −α8x8(t) + β8x7(t) sin(x9(t)) + γ8x10(t)

x′9(t) = α9x9(t)− β9x8(t) sin(x10(t)) + γ9x4(t)

x′10(t) = −α10x10(t) + β10x9(t) sin(x1(t)) + γ10x3(t).

If γj = 0 ∀j the fitted model reverts to the true data generating process.
Values for the parameters of the system are: β1 = β4 = β6 = β7 = β10 = 0.08;
β2 = β5 = 0.07; β3 = β8 = β9 = 0.06 α2 = α3 = α4 = α5 = α6 = α9 = α10 =
0.05; α8 = 0.04; α1 = 0.03; α7 = 0.02.. The initial conditions are ξj = 0.10
for all j = 1, . . . , p. In the simulation study, we run our MCMC algorithm
for 10000 iterations with a 5000 burn-in window.
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