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Modeling cancer drug response 
through drug-specific informative 
genes
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Recent advances in pharmacogenomics have generated a wealth of data of different types whose 
analysis have helped in the identification of signatures of different cellular sensitivity/resistance 
responses to hundreds of chemical compounds. Among the different data types, gene expression 
has proven to be the more successful for the inference of drug response in cancer cell lines. Although 
effective, the whole transcriptome can introduce noise in the predictive models, since specific 
mechanisms are required for different drugs and these realistically involve only part of the proteins 
encoded in the genome. We analyzed the pharmacogenomics data of 961 cell lines tested with 265 
anti-cancer drugs and developed different machine learning approaches for dissecting the genome 
systematically and predict drug responses using both drug-unspecific and drug-specific genes. These 
methodologies reach better response predictions for the vast majority of the screened drugs using 
tens to few hundreds genes specific to each drug instead of the whole genome, thus allowing a better 
understanding and interpretation of drug-specific response mechanisms which are not necessarily 
restricted to the drug known targets.

The identification of genomic and molecular features that are responsible for a particular clinical outcome is one 
of the goals of cancer research for precision medicine1. Not only specific features can be discovered as biomarkers 
for resistance or sensitivity to a particular drug, but combinations of those same genomic and molecular features 
can be used to predict the effect of a drug on a patient2.

Recently, different studies have screened a large number of cancer cell lines with hundreds of different com-
pounds and characterized their mutation profile, DNA methylation status, copy number alterations and gene 
expression in order to discover genomic features associated to a specific drug response3–6.

This wealth of data gave rise to a number of different methods capable of predicting the effect of a drug on 
different cancer cell lines, to a certain extent, using different predictive models, e.g. kernel methods, support 
vector regression, neural networks and random forests7–17. These works tackle the dual problem of improving 
the prediction of drug response in different cell lines while at the same time trying to identify the genomic and 
molecular markers underpinning specific tumors, representing a valuable resource in translational applications.

Integration of different data types has been observed to improve the prediction of drug response4, although 
possibly introducing redundancy in the information used for the predictive model9. From these works gene 
expression has emerged as the data type with the best predictive capability for the inference of drug response in 
different cell lines. The high dimensionality of gene expression datasets has to be taken into account when build-
ing predictive models18. Currently, the determination of the best combination of informative genes is a promising 
approach for the improvement of drug response prediction19–21. However this type of studies cannot be applied 
extensively on data generated from primary tumor samples, therefore most methods are trained and tested on 
small datasets of cancer cell lines, or built for few drugs, or focus on limited groups of genes which are often not 
effective in the prediction of drug response22.

In this work we show how known drug targets, and their interactome and functional context, do not generally 
hold a good predictive power. We therefore aimed at improving the prediction of drug response in cancer cell 
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lines by systematically searching for informative genes to be used as features in drug-unspecific and drug-specific 
predictive models. Following the hypothesis that the proteome is not involved in its entirety in the response to 
a given drug, we selected a smaller set of informative genes that better recapitulate drug response mechanisms. 
We exploited two different approaches for the gene selection: first, we selected genes whose expression profiles 
show high variance in a dataset of nearly 1000 different cancer cell lines each treated with more than 250 differ-
ent drugs, then we tried to select informative genes ad hoc for each screened drug, hence reducing, on average, 
the number of genes by two orders of magnitude. Both approaches outperform already available methods in the 
prediction of the resistance/sensitivity of cancer cell lines and both reduce the search space in terms of genes con-
sidered in the predictive model. We then show how the proposed approach can provide additional details on the 
response mechanisms of each single drug by providing both specific informative genes and unique drug-genes 
associations that represent a valuable starting point for follow-up experiments testing novel drug targets for 
anti-cancer treatment.

Results
Gene expression has been demonstrated to hold the best predictive power for pan-cancer drug response com-
pared to other types of data (e.g. mutations, copy number alterations and methylation data) which in turn were 
able to improve the predictive models in a cancer-specific fashion4 but could also represent a source of redundant 
information with gene expression9. In this work we show that gene expression data can be analyzed to systemati-
cally select subsets of informative genes that can be used for the prediction of pan-cancer drug response in terms 
of IC50 (drug concentration that reduces cell viability by 50%). We explore the predictive power of known drug 
targets, their close physical interactors and the pathways in which they are involved. We present two approaches 
which improve existing methods on a dataset of pharmacogenomics data of 961 cancer cell lines screened with 
265 drugs4. We finally show how even though drugs of the same classes share similar profiles of resistance/sensi-
tivity response across different cell lines, they rarely determine a drug-class-associated model able to predict the 
response of each drug in the same class.

Contribution of known drug targets and of their known interaction partners to the cellular 
drug response.  In a recent pharmacogenomics study a panel of 265 drugs was screened on 1001 cancer cell 
lines, for which gene expression, methylation, copy number alterations and single nucleotide variants were deter-
mined4. Most of the tested drugs (178) have known targets, which can be single proteins, groups of proteins, or, 
more broadly, pathways and cellular processes (e.g. DNA replication). However, we observed that the gene expres-
sion, quantified in 961 screened cell lines, of the known drug targets shows no correlation with the IC50 of the 
drugs on the same cells, meaning that the drug targets’ expression profiles possess poor capability of predicting 
the drug response (Fig. 1a). Despite gene expression showing the best predictive power in the original paper4, the 
effect of a drug on its target could also be altered by the pathogenic variants on the target protein (e.g. a mutation 
in the drug binding site). To some extent it is possible to predict the response to a particular drug by analyzing 
the state of germline and somatic variants23. However, we observed that for only 5 drugs out of 178 the presence 
of a pathogenic variant in the drug targets was found to be associated to resistance/sensitivity in the cell lines 
(Mann-Whitney U test, adjusted p < 0.05), number that increases to 10 when considering the 422679 mutations 
in the genome of all cancer cell lines (Mann-Whitney U test, adjusted p < 0.05, highlighted points in Fig. 1a). As 
observed in a previous study18, multi-gene predictors perform significantly better than single gene predictors, and 
the determination of the best combination of informative genes represents an ongoing and promising source of 
prediction improvement19–21. A first attempt used functional linked networks of genes centered on driver kinases 
in cancer cell lines, however the approach was focused on a small set of cell lines and drugs, reaching limited 
capability and performance22. We therefore tried to extend the analysis to the context of the drug targets, in terms 
of physical interactome24 and functional pathways25.

We applied an Elastic Net Regression (ENR), a linear modeling that solves the limitations of both LASSO and 
Ridge regressions that has been already successfully used for similar problems5,9,10, using the gene expression of a 
set of genes as features to predict the drug response in terms of IC50 (see Methods). The performance of ENR and 
of a non-linear approach, based on Random Forest, on this dataset has been already explored leading to compa-
rable results4, with the former allowing a more straightforward interpretation of the models. The set of genes for 
which we computed the correlation between IC50 and gene expression profiles is firstly composed by the drug 
target and its first neighbors in its physical interactome (P1), then extended to the second (P2) and finally to the 
third neighbors (P3). As comparison we considered the whole genome, the set of genes for which the expression 
has been measured, as features of the predictive model, comparing the results with those obtained by Iorio et 
al.4, that reached an average Pearson R of 0.42 between experimentally measured and predicted IC50 (Rpred-obs). 
Even though we observed that extending the neighborhood of the drug targets to second and third neighbors 
was improving the performance, these attempts reached a significantly lower Rpred-obs (0.22, 0.32 and 0.36 for 
respectively P1, P2 and P3 sets consisting of 23, 172 and 745 genes on average for each drug) than using the whole 
genome (Fig. 1b and Supplementary Table S1A). Moreover we observed a comparable performance with sets of 
random genes of the same size (Mann-Whitney U test, p ≥ 0.05, dashed lines in Fig. 1b), and this further demon-
strates the paucity of information provided by the physical interactome around the drug targets in predicting its 
response. Another different, and possibly more biologically meaningful, selection of the analyzed genes associ-
ated to the drug targets could take into account the pathways in which they are involved. Hence, for each drug 
we tried separately (F1), and then merged into a unique gene set (F2), the genes in the associated pathways. We 
observed slightly better performances than selecting the genes from the physical interactome (Rpred-obs of 0.36 and 
0.39 respectively for the F1 and F2 sets consisting of 87 and 737 genes on average for each drug, Supplementary 
Table S1A); the F2 set of genes reached better performance than the whole genome for 20 drugs out of the 178 
considered in this analysis. However the whole genome remained the best predictive set of genes (Fig. 1b). A 
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complete average performance comparison, using the same training and test sets in five 10-fold cross-validations 
after permuting the initial dataset, of all the combinations of gene sets (P1, P2, P3 and F2) and three different 
prediction methods (Elastic Net Regression, Random Forest and Support Vector Regression) can be found in 
Supplementary Table S1B. From this we can conclude that even though single genes can be found associated 
to drug response mechanisms, single-gene predictors based on either gene expression or presence-absence of 
variants in the drug targets cannot reliably predict the drug response in cancer cell lines. Moreover a multi-gene 
predictor based on the gene expression of known targets of anti-cancer drugs and on their physical/functional 
context, do not hold enough predictive power and is outperformed by a predictive model based on the whole 
genome. The fact that a random selection of genes allows to predict drug response with results comparable to the 
ones obtained with a selection of genes centered on the drug target is likely due to the fact that there are more 
genes regulating drug response other than the known drug targets and that an optimal gene combination able to 
predict a drug response must be sought with a more systematic approach. We designed two different approaches 
for the a priori selection of subsets of informative genes whose expression alone could provide a better estimate of 
IC50 values: i) an unspecific selection of genes to be used for every drug (termed DUG, Drug-Unspecific Genes), 
ii) a drug-specific subset of response-associated genes (termed DSG, Drug-Specific Genes) that can reflect drug 
peculiarities and different mechanisms of action and response (Fig. 2).

Predicting drug response using Drug-Unspecific Genes.  We considered the variance of the gene 
expression in order to reduce the number of genes used as features in a Drug-Unspecific Gene (DUG) predictive 
model (Fig. 2). We gave low priority to the genes with an expression that does not change significantly among the 
hundreds of different cancer cell lines and are therefore unable to discriminate well the different cancer cell line 
response. For each of the 17419 genes in the panel4 we ranked the variance of their expression profile in training 
cell lines. The top n genes (different n values were evaluated, as explained in the Methods section) were then used 
as features in a machine learning method to predict the IC50 for each tested drug in the test cell lines. The top 
5000 genes were selected as the optimal gene set since adding 5000 additional genes did not result in a noticeable 
improvement in the Rpred-obs (0.43 ± 0.03 against 0.43 ± 0.03, Supplementary Table S2C) and in mean absolute 
error (MAE of 0.95 ± 0.03 against 0.95 ± 0.03) at the cost of doubling the number of genes, therefore diluting 
the genes more associated with drug response, and increasing the calculation time. The selected genes were then 
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Figure 1.  Association of drug response with pathogenic variants in the known targets and their physical and 
functional context. (a) Correlation between IC50 of 178 drugs (Y axis) and the gene expression of their known 
targets (the correlations for multiple targets of the same drug have been averaged). Drugs for which at least 
one gene mutation can discriminate resistant and sensible cell lines (Mann-Whitney U test, adjusted p < 0.05) 
have been highlighted with different colors: drugs targeting cell cycle proteins (orange), drugs targeting the 
EGFR signaling pathway (blue) and drugs targeting ERK-MAPK signaling pathways (green). (b) Performance 
of the ENR-based predictive model, measured as the Pearson correlation between the predicted and observed 
IC50, of different selections of genes (the mean number n of genes across the permutations is reported inset) in 
predicting the IC50 of 178 drugs in the whole cell line dataset; no gene set could be selected for the remaining 
drugs due to uncertain drug targets. The initial dataset has been permuted before the 10-fold cross validation 
reaching a total of 10000 training and test sets, whose results are averaged out for each drug and reported in 
the colored distributions. The performance of the whole genome4 is colored in purple, known drug targets plus 
their direct interactors in yellow (P1), their interactors up to second-degree neighbors in orange (P2) and third 
degree neighbors in green (P3). The performance of the genes associated to the pathways in which the known 
drug targets are involved are colored in blue (F2). The vertical dashed line represents the average performance 
of the whole genome. The dashed curves represent the average Pearson correlation obtained with sets of random 
genes of the same size as the real selection of genes.
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clustered by Pearson correlation (with a threshold of 0.8) of the gene expression IC50 profiles across the 1001 
cell lines in order to remove redundancy. This resulted in a list of 4804 genes (DUG selected during the 10-fold 
cross-validation) that led to a performance of Rpred-obs 0.48 using a Support Vector Regression with Gaussian 
Kernel in a ten-fold cross-validation. Other tested methods, Random Forest and Elastic Net Regression, did not 
lead to optimal results (Supplementary Table S2C, Supplementary Table S2D for average performances using the 
same training and test sets in five 10-fold cross-validations after permuting the initial dataset). This final gene set 
is unspecific and has been used for all the drugs in the panel (drug-unspecific genes set, termed DUG, listed in 
Supplementary Table S2A). With this method 120 drugs out of 265 had a significantly better performance (t-test 
adjusted p < 0.05) than using the whole genome as feature set, which achieved a lower average Rpred-obs of 0.43.

For example, it was possible to have a great improvement in the prediction of the cellular response for 
drugs like Imatinib (Rpred-obs of 0.5 against the Rpred-obs of 0.34 reached using the whole genome, Supplementary 
Table S3). A functional enrichment analysis (see Methods) of this set of 4804 DUG revealed their involvement in 
general cellular functions, from the organization of the extracellular matrix, cell development and proliferation, 
to cell adhesion and migration and finally immune response (Supplementary Table S2B).

Predicting drug response using Drug-Specific Genes.  Although the previously described approach 
achieved a better prediction of the drug response with a reduced number of genes, their number is still too high 
to narrow down the list of pathways associated to the specific mechanisms of response to each drug, moreover 
the same subset of genes is used for every drug. We therefore created subsets of genes that are specific for each 
drug (termed Drug-Specific Genes, or DSG); these genes should be selected if they are observed as linked to the 
response of that particular drug over the whole set of cancer cell lines (Fig. 2). A DSG was then selected for a drug 
if its expression profile correlated (Pearson R > 0.4) with the IC50 profile of the drug over the portion of the data-
set of cancer cell lines selected as training set (see Methods). The genes selected for a specific drug (DSG) were 
then used as features in the training of Elastic Net Regression (ENR) model4. The ENR was then tested on the cell 
lines in the test set (see Methods). We randomly permuted 10000 times the cell line dataset for each drug, there-
fore creating each time a slightly different set of selected genes, training and test sets, averaging out deviations due 

Figure 2.  Experimental design of the DSG and DUG approaches. The Drug-Specific Genes (DSG) approach 
selects genes associated to the response of a particular drug, the gene expression of these genes are then used 
to train an Elastic Net Regression Model (DSG are selected in the training set only during the 10-fold cross-
validation phase). The Drug-Unspecific Genes approach selects genes from initial dataset depending on the 
variance of their expression. Different number of genes to be used as features and different machine learning 
methods have been tested selecting the Support Vector Regression as the best method evaluated with a 10-fold 
cross-validation (hyperparameters are tuned in a validation set inside the training set). For both approaches the 
performance is evaluated with the Pearson correlation between the predicted and observed IC50 values (Rpred-obs).
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to cell line ordering and systematic errors. On average, we selected 558 genes for each of the 223 drugs for which it 
was possible to find drug-specific genes (Supplementary Table S4A) therefore reducing the number of features to 
be used in the machine learning and improving the prediction of the drug response over using the whole genome 
with an average Rpred-obs of 0.45 (Fig. 3a and Supplementary Table S3). While we observed an improvement in the 
prediction of drug response when using a SVR instead of an ENR with DUG, we observed no improvement with 
SVR coupled with DSG in terms of Rpred-obs (Mann-Whitney p < 0.05, Supplementary Table S4B for average 
performances using the same training and test sets in five 10-fold cross-validations after permuting the initial 
dataset). This performance is comparable to the DUG approach even though this one uses on average one order of 
magnitude less genes (Fig. 4), therefore prioritizing informative genes that, in our opinion, will be useful to guide 
hypothesis-driven experiments aimed at detailing all the cellular pathways involved in the response to a particu-
lar drug. In order to evaluate the robustness of the selected DSG we calculated the performance loss, in terms of 
Rpred-obs, of each DSG set after removing every single gene, therefore assigning to each gene its contribution to the 
prediction of the response to a particular drug (Supplementary Table S5). We measured that on average, across 
the DSG sets, the performance loss was 0.02 Rpred-obs after removing the best gene in each DSG set.

Figure 3.  Comparison of different methods/approaches in predicting drug response. (a) Performance of 
different approaches in the prediction of drug response (IC50) measured as Pearson correlation between 
the experimentally measured and predicted IC50; TANDEM9 performance is colored in light grey, method 
described in Iorio et al.4 in dark grey, ENR-based DSG and SVR-based DUG approaches in yellow and blue 
respectively. Significantly different distributions of Pearson correlations are marked with a star (Mann-Whitney 
U test, p < 0.05). (b) Precision-Recall curve for the binarized drug response prediction for 120 drugs with the 
ENR-based DSG approach (colored in yellow), SVR-based DUG approach (colored in blue) and the method 
described in Nguyen et al.18 (colored in light grey), the performance of the three methods are reported in the 
inset boxplots as Precision, Recall, Specificity and Matthews Correlation Coefficient (MCC). (c) Schematic 
representation of Lapatinib and Parthenolide DSG localization in different cellular components; drugs are 
colored in orange and their known targets in green. Proteins belonging to the drug target pathways and selected 
as DSG are grouped by pathway and localization, “drug-unique” proteins are outlined with a golden color. 
Proteins are colored in blue or red if their gene expression has a respectively negative or positive correlation 
with the IC50 profile of the drug. The proteins in grey are known membrane transporters associated with the 
drug import or export (respectively blue and red)26.
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Improving the characterization of drug response mechanism.  Lapatinib is a clinically approved 
drug which targets ERBB2 and EGFR in the treatment of breast cancer. We reached a Rpred-obs of 0.41 with the 
selection of 399 Lapatinib-specific genes, against a Rpred-obs of 0.16 obtained with TANDEM9 (a method described 
below), 0.31 obtained with the whole genome and 0.42 obtained with DUG (Fig. 4, respectively colored in yellow, 
light grey, dark grey and blue bars, and Supplementary Table S3). The selected informative genes are involved 
in the regulation of the immune system, inflammatory response, endothelial cell apoptotic process and mRNA 
metabolism and many encode for membrane transporters associated with drug import/export26. Only 7% of the 
genes associated to the cellular pathways involving ERBB2 and EGFR belong to the set of Lapatinib-specific genes, 
reducing the search space to fewer genes linked to the drug targets (Fig. 3c). For example GRB7 plays an impor-
tant role in the signal transduction in response to EGF, promoting the activation of down-stream phosphorylation 

Figure 4.  Breakdown of different method’s performance at single drug and drug class level. Performance 
(measured as Pearson correlation between experimentally measured and predicted IC50) of different methods 
for each analyzed drug in the dataset; TANDEM9 performance is colored in light grey, method described in 
Iorio et al.4 in dark grey, DSG and DUG approaches in yellow and blue respectively. Drugs are grouped in 21 
functional groups (defined in the original study), and ordered by performance of the best method; for each drug 
the performances of the methods are ranked and displayed as overlapping barplot, in this way the improvement 
of the best methods is visible. The 21 groups are ranked clockwise by the average best prediction by the best 
methods, which is displayed by the inner circle (colored in a green to blue gradient). The red circle represents 
the results of the leave-one-out experiment (colored in a light to dark red gradient).
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pathways (e.g. AKT1 and MAPK1) and its basal pre-treatment expression levels anticorrelate with the cellular 
response to Lapatinib not only in breast cancer cell lines (Pearson R = −0.64) but across the whole cell line panel 
(Pearson R = −0.39). In fact, its key role is demonstrated by its up-regulation after treatment with Lapatinib 
which, together with the rewiring of different signaling networks, and the inhibition of the HER2 signaling path-
way, promotes cell survival and migration in breast cancer cell lines27,28.

Another example is Parthenolide, which is a drug in clinical development that targets NFKB1, and interferes 
with the assembly of the microtubule network29.

We reached a Rpred-obs of 0.38 with the selection of 565 Parthenolide-specific genes, against a Rpred-obs of 0.28 
obtained with TANDEM, 0.28 obtained with the whole genome and 0.29 obtained with DUG (Fig. 4, respectively 
colored in yellow, light grey, dark grey and blue bars, and Supplementary Table S3). The functions of the 565 
selected drug-specific genes are enriched in immune response, lymphocyte activation, leukocyte proliferation and 
somatic cell DNA recombination. Only 4% of the genes coding for proteins involved in the NFKB1 pathways were 
selected as DSG (Fig. 3c). ICAM-2, a key protein in leukocyte adhesion whose expression is targeted by NFKB130, 
has been selected in over 99% of the DSG permutations tests for Parthenolide (showing a negative Pearson corre-
lation of −0.33 across the whole cell line panel).

LRMP, a protein involved in the delivery of peptides to MHC class 1 molecules, and PSAP, among others, also 
show a strong association (selected over 99% of the permutation tests) to the response to Parthenolide with no 
experimental validation provided yet to the best of our knowledge. In both cases not only the new approach pro-
vided a significantly improved prediction of the drug effects but it also extended the list of genes to be prioritized 
for following experiments on genes involved in other cellular functionalities that are not directly linked to the 
known drug targets.

More generally, genes associated to the drug target pathway are not enriched in DSG genes coding for pro-
teins involved in the pathways of the known drug targets more than random sets of genes of the same size 
(Mann-Whitney U test, p > 0.05). In fact only small percentages of the genes (around 5% on average, details 
for each drug in Supplementary Table S6A) involved in the pathways associated to the targets of respectively 
Lapatinib and Parthenolide were selected in their respective DSG sets. Additionally, we highlighted genes that 
showed a unique association (see Methods) to the response of one particular drug only, like Contactin-5 and 
Glutaredoxin-1 for Lapatinib and cGMP-gated cation channel alpha-1 and Dermokin for Parthenolide. We 
believe that these genes represent a valuable source of information as unique features of each drug response 
mechanisms that can set the ground for following hypothesis-driven experiments (complete list of “drug-unique” 
genes is available in Supplementary Table S6B).

Different issues and approaches in the prediction of drug response.  The task of predicting the drug 
response in cell lines comes with different issues, bound to the high dimensionality of the problem represented by 
the high number of genes and other features considered as features of the predictive model like mutations, meth-
ylation profiles and gene copy number alterations. Moreover the connection and information redundancy among 
these components and the continuous nature of the cellular response to external stimuli constitute an additional 
layer of complexity.

One approach for the reduction of the dimensionality of the problem has been proposed with the TANDEM 
method9, which predicts IC50 values for cell lines based on the integration of multiple data types, divided into 
upstream data (gene mutations, copy number alterations and methylation profiles and cancer type) and down-
stream data (gene expression), in order to improve the interpretation of the cellular response mechanisms. With 
TANDEM, an Elastic Net model is built using the upstream data, then the residuals are predicted with an Elastic 
Net built using gene expression. Upstream features are associated to drug response and their predictive binary 
value is calculated with a logistic regression using gene expression data. Therefore models give higher priority 
to upstream features, e.g. mutations and methylation status, that could explain the downstream gene expression 
resulting in more interpretable models of drug response.

We applied the TANDEM method to the 961 cell lines panel and measured an average Rpred-obs of 0.37 
(Supplementary Table S3), which is significantly lower than both the DUG and DSG approaches (Mann-Whitney 
U test, p = 1.20 × 10−7 and p = 1 × 10−3 for DUG and DSG respectively) (Fig. 3a). Even though the authors 
included upstream data in the prediction no real improvement was reached compared to a predictive model based 
on gene expression only, stating that the information in upstream features is also present in gene expression pro-
files9. However the inclusion of upstream features is useful to recapitulate more complex gene expression patterns 
into, for example, few changes in gene mutations or methylation profile alteration could in principle improve the 
prediction and the characterization of the response mechanism. The comparison between single-gene-based and 
multi-gene-based predictors has been described in a recent work18, where the latter consistently outperformed 
the former. Moreover the authors explored the possibility to reduce complexity in the predictive model by defin-
ing binary cellular response (e.g. resistant/sensible) for 127 drugs. Since our approach predicts a IC50 value, 
we transformed this into a binary response (see Methods) in order to compare the two methods with the same 
metrics. Our approach reached higher Matthews Correlation Coefficient (MCC), with the SVR-based DUG and 
DSG approaches reaching MCC values of 0.27 and 0.25 respectively against 0.12 of the compared method. Both 
DUG and DSG approaches showed a better performance, for respectively 83 and 84 drugs out of 120, than the 
compared method. The DSG approach showed the best Sensitivity (0.9) compared to the DUG approach (0.6) and 
the other method (0.5), but showed lower Specificity values (0.31) compared to the DUG approach (0.65) and the 
other method (0.61) (Fig. 3b, Supplementary Table S3).

Variability of the response mechanisms among similar drugs.  One of the desired traits of a method 
able to predict the cellular response to a drug is the capability of predicting the effect of a novel, unscreened drug 
for which no experimental data is available yet. A first attempt could rely on the assumption that similar drugs 
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have similar effects on the same cell. In this way, structurally similar drugs (or with similar active chemical groups) 
could share a similar IC50 profile across the cell line panel. We explored this possibility by correlating the similar-
ity in the IC50 profiles of each pair of drugs (calculated as Pearson correlation) with the similarity of their chemical 
structure (see Methods and Supplementary Table S7) but we observed no significant association between the two 
measures. Drugs belonging to the same group, defined by the affected cellular pathway and described in the origi-
nal work4, are not significantly more chemically similar than drugs belonging to different groups (Mann-Whitney 
U test, p > 0.05), on the other hand they share IC50 profiles across the cell line panel that are more similar than 
drugs of different groups (Mann-Whitney U test, p = 1.78 × 10−40). This highlights the issues in transferring drug 
response from one drug to another using chemical similarity, as it has been observed previously in other stud-
ies31–33. When the drugs were grouped depending on their chemical similarity, e.g. with a similarity score (see 
Methods) equal or higher than 0.7 and equal or lower than 0.3, the similar drugs were showing higher IC50 
profile correlation than non-similar drugs (Mann-Whitney p < 0.05). Several studies34–37 showed the relationship 
between chemical similarity and cellular response similarity, therefore the reasons behind the low overall correla-
tion observed in our dataset are most likely due to the relatively small size and diverse nature of the original drug 
datasets, especially when compared to much bigger and diverse datasets used in proteochemometrics studies.

We therefore explored the extent to which a drug class-derived ensemble model could be used to infer the 
response mechanism of a single drug of the same class. The 265 drugs in the initial work by Iorio et al.4 were 
grouped by targeted process/pathway into 21 classes, each of which has been analyzed to test the ability of a 
class-derived prediction model in predicting the cellular response to an “unknown drug” that could belong to the 
same class. To simulate this setting, we used a leave-one-out test in which the response to the drug being left out was 
iteratively predicted using the DSG sets of all the other drugs in the class. The predictions of all the drugs in a class 
are then averaged out and the prediction performance on the tested drug left out is then evaluated with the Rpred-obs. 
We measured a mean Rpred-obs value of 0.35 among the different classes, concluding that it is possible to transfer, to 
a certain degree, the response mechanisms among drugs that are supposed to aim at the same or similar targets, 
using different metrics and parameters as proxy. However two drug classes, targeting proteins involved in “mitosis” 
and “chromatin histone acetylation” associated pathways, reached high performances with predictions that were 
comparable to those obtained using the DSG sets of each specific drug (Rpred-obsof 0.55 and 0.53 respectively).

Discussion
Different approaches have tried to leverage genomic data in order to predict the effect of therapeutic drugs on 
cancer cell lines. Many methods have been developed to combine different sources of information or to reduce 
the search space by removing redundant information in the predictive models.

The whole genome has been used previously to predict the cellular response to chemical compounds, although 
limited in the prediction performance and in the selection of informative genes that could explain resistance/sensi-
tivity mechanisms. Consequently, we explored the possibility of reducing the number of informative genes employed 
in the prediction of pan-cancer drug response, both in a drug-unspecific (i.e. the same for all the drugs in the panel) 
and drug-specific fashion employing different pre-processing and machine learning approaches and gene expres-
sion data. We observed a significant improvement in the prediction of the drug response in a panel of 1001 cell lines 
screened with more than 200 drugs, reaching better performance than other already published methods with both 
a drug-unspecific and a drug-specific approach. We also showed how this was possible with a reduced number of 
genes (on average two orders of magnitude lower) compared to a previous method using the whole genome4. This 
has the double advantage of reducing the noise in the predictive model and prioritizing the genes and of the cellular 
mechanisms behind the response to a particular drug, which was not limited to the known drug targets.

Interestingly, we demonstrated how the gene expression of the known drug targets and their variants, intro-
duced in different cancer types, do not hold enough predictive power and cannot be used alone in the prediction 
of the effect of their drug. Therefore the genes coding for drug-specific response have to be selected from a wide 
array of pathways, in fact only a small fraction of the genes coding for proteins in the pathways involving the 
known drug targets are selected as drug-specific genes.

Finally, we explored the variability in the response mechanisms of different classes of drugs as defined by 
our model. Even though drugs in the same class do not usually share the same chemical structure they do share 
similar drug response profiles across different cell lines. We observed that despite this variability, generalized 
drug class-derived and reliable predictive models can be generated, a features that would greatly contribute to the 
analysis of novel unknown drugs.

While our performances demonstrate the usefulness of both drug-unspecific and drug-specific approaches, 
using significantly less data nonetheless, there is still room for further improvements. Additional information from 
other sources of data (e.g. methylation, mutation profiles, non-coding RNA quantitative data) and integration of 
other dynamic measures, e.g. the activity and relationship of transcription factors38, could provide tissue-specific 
traits in the response mechanisms. It must be noted also that cell lines do not perfectly reflect primary tumor sam-
ples and the translation of these predictive models will require the integration of clinical data, which is sparse for a 
limited number of drugs and non-standardized at the current stage. The inclusion of in vivo patient-derived gene 
expression and drug response measurements in machine learning approaches is a step towards real cases moving 
from in vitro cancer cell lines-derived measurements19. The reduction in the number of features (genes, mutations 
and components of other types of data) is a current area of drug response prediction improvement19–21.

Finally, since proteins are the first effectors of a cellular response, using only transcriptomics data to reliably 
predict drug response in a particular cellular condition can only provide an incomplete picture, since translation 
regulation can be complex and post-translational modifications can modulate the protein cellular roles. Recently 
different studies tried to use proteomics data to model drug response and identify possible biomarker pathways, 
although on very limited datasets39,40. Even though proteomics data is less abundant41 compared to genomics 
and transcriptomics data, we think that the integration of proteomics data, for example protein abundance and 
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proteoform status (e.g. epigenetic markers, post-translational modifications and their stoichiometry and occu-
pancy status), will constitute the next big step forward in the field.

Methods
Dataset.  Gene expression data and cell lines drug response data used in this study were generated in a previ-
ous work by Iorio et al.4. The dataset consists of large-scale genomic data, including gene expression and genomic 
variant profiles, copy number variations and methylation for 1001 cancer cell lines representing 29 different 
tissues. The basal expression profile for each cell line was obtained using a microarray analysis (A-GEOD-13667 
- [HG-U219] Affymetrix Human Genome U219 Array). The raw expression data of each gene has been normal-
ized with z-scores in each cell line. On average each cancer type is represented by 30 cell lines and each cell line 
has been treated with different drugs (265 drugs in total). Drug response is expressed in terms of IC50, which is 
the drug concentration that reduces viability by 50% in vitro. Lower values of IC50 are associated with a higher 
sensitivity of a cell line to a given drug and vice versa.

Selection of genes associated to known drug targets.  In the first part of the study we used the known 
drug target to build gene sets representing the physical and functional environment of the targeted molecular 
processes. The drug target was known for most of the cases (178 of the drugs had one or more known targets, 
while the remaining 87 drugs were associated to the description of the cellular processes hit by the drug)4. We 
used the STRING database24 to build networks centered around the known drug target and including up to first 
(direct interactions, P1 gene sets), second and third degree interactors (indirect interactions, respectively P2 
and P3 gene sets). We selected only experimentally obtained physical protein-protein interactions with STRING 
scores higher than 0.9. The target proteins were annotated only for 178 drugs out of 265, for which the described 
gene sets were created. The remaining drugs, for which only the general affected cellular processes (e.g. DNA 
replication) were described, were not considered in this particular analysis. In order to build the functional (and 
partly physical) neighbors of the drug targets, we used the REACTOME database25, selecting the genes involved 
in the pathways of the 178 drug targets (F1 gene sets for single pathways and F2 gene sets for merged pathways 
associated to the same drug target). These gene sets are reported in the Supplementary Table S1A. We then used 
two different approaches to select genes that could better describe the drug response regardless of the annotated 
known targets.

Selection of drug-unspecific genes.  Genes were ranked according to their variance in gene expression 
across the cancer cell line dataset were selected and the top genes were selected. An equal number of random 
genes were selected as control. We selected an optimal number of feature genes by exploring different sizes of the 
gene sets for a Random Forest learning method: 25, 100, 1000, 5000 and 10000. We tested the learning method in 
a 10 random split cross validation where 90% of the data was used for training and the remaining 10% was used 
as test for the prediction of the IC50 values; both the number of selected genes and the variance threshold were 
treated as hyper-parameters and the best combination was chosen in a validation set inside the training set with 
a 5-fold cross-validation. Results were evaluated in terms of Pearson correlation between predicted and observed 
IC50 (Rpred-obs). The selected genes were then clustered by Pearson correlation (with a threshold of 0.8) of their 
gene expression profiles across the cell lines (complete gene list is reported in Supplementary Table S2A).

Drug-unspecific gene-based machine learning.  The 4804 selected drug-unspecific genes are then used 
as features in a 10 random split cross validation, using Support Vector Regression (SVR)42, where 90% of the 
data was used for training and the remaining 10% was used as test; again, the best combination of model hyper-
parameters were chosen in a validation set inside the training set. Performance was estimated through Pearson 
correlation between the predicted and observed IC50 values and drugs with significantly better performances 
were identified with a t-test with 0.05 as significance threshold.

Selection of drug-specific genes.  In an alternative approach, for each drug, we selected the genes whose 
pre-treatment expression profile correlated, or anticorrelated, with the drug IC50 profile (Pearson correlation 
equal or higher than +0.4 or equal or lower than −0.4). In order to select a gene as informative for a particular 
drug we sorted the expression profile matrix and selected only 10% of cell lines with the highest expression of the 
considered gene and 10% with the lowest expression of the same gene. We then correlated the expression profile 
of the analyzed gene in this selected 20% of the cell lines with the IC50 profile of the considered drug in the same 
cell lines. In this case, each screened drug was associated to a specific set of informative genes (Supplementary 
Table S4A) that are involved in the response mechanisms (drug-specific gene set, termed DSG).

Drug-specific gene-based machine learning.  We used the Elastic Net Regression (ENR), using the glm-
net R package43 for the drug-specific gene sets, a model also described in a previous work by Iorio et al.4. Gene 
expression values were scaled to have zero mean and unit standard deviation. In order to make a fair comparison 
between the ENR in this study and the original work by Iorio et al. we selected 80% of the dataset to train the 
model and 10% for the test and prediction of the IC50 values of a given drug, as the remaining 10% was originally 
used for the parameters optimization. We performed 10000 permutations of the cell lines in the panel before the 
training and test phases in order to avoid biases in the initial dataset. The selection of the DSG genes has been 
performed each time on the cell lines belonging to the training set only, removing redundancy between training 
and test set. Finally, we compared the predicted and experimentally observed IC50 using the Pearson correlation.

Functional enrichment.  The functional enrichment analysis was made using GOrilla44 and Revigo45. We 
focused on Biological Process and Cellular Component GO term categories, providing the whole genome as 
background. We then used REViGO to summarize and visualize the enriched GO terms identified with GOrilla.
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Drug similarity.  The chemical structures of the drugs were collected using the identifiers provided in the 
original paper by Iorio et al. Drug names were converted in Compound identification number (CID) using the 
PubChem database46. SMILES chemical representations and sdf files were downloaded using PubChem pro-
grammatic access option. We used different approaches for the estimation of similarity between drugs. Structural 
similarity between drugs was calculated through the Tanimoto and Tversky coefficients based on atom pair 
descriptors, atom pair fingerprints and Mismatch Tolerant Maximum Common Substructure Detection using 
ChemmineR47 and drug effectiveness similarity has been estimated through Pearson correlation, with complete 
observations, of the IC50 profiles of the two compared drugs on 1001 cell lines.

Binarization of the predicted drug response.  Our predicted IC50 response values were converted into 
binarized values (e.g. 0 and 1 values for cell lines respectively resistant and sensible to a particular drug) in order 
to provide a fair comparison with a binary drug-response classifier developed by Nguyen et al.18. The classification 
was done by using the median value of the drug’s IC50 distribution on 1001 cell lines as reference. IC50 values 
higher than the median were labeled as resistant and lower values labeled cell lines as sensible.

Drug-unique genes identification.  We have selected a set of “unique” genes for each drug from its pool of 
drug-specific genes. Given a gene, the number of cell line permutations in which the gene is selected as informa-
tive for each drug in the panel is calculated (Supplementary Table S4A) and normalized as z-score. The z-scores of 
all the drugs in the panel are then sorted and the gene is deemed “unique” for the first ranked drug if its z-score is 
equal or higher than 3 and if the second-ranked drug has a z-score that is lower than 3.

Data availability
The scripts generated in this work are available at https://github.com/lucaparca/dre. Code is written in R, initial 
data is provided and already pre-processed (gene expression normalized with z-scores in each cell line) and ready 
for the analysis. An n number of permutations of the cell line gene expression dataset can be specified for different 
dataset partitioning into training and test sets. Prediction for specific drugs are then provided as results with the 
mean and standard deviation of the performance (Pearson correlation between observed and predicted IC50).
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