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Abstract: Given the increasing anthropogenic pressures on lagoons, estuaries, and lakes and

considering the highly dynamic behavior of these systems, methods for the continuous and

spatially distributed retrieval of water quality are becoming vital for their correct monitoring and

management. Water temperature is certainly one of the most important drivers that influence

the overall state of coastal systems. Traditionally, lake, estuarine, and lagoon temperatures are

observed through point measurements carried out during field campaigns or through a network of

sensors. However, sporadic measuring campaigns or probe networks rarely attain a density sufficient

for process understanding, model development/validation, or integrated assessment. Here, we

develop and apply an integrated approach for water temperature monitoring in a shallow lagoon

which incorporates satellite and in-situ data into a mathematical model. Specifically, we use remote

sensing information to constrain large-scale patterns of water temperature and high-frequency in

situ observations to provide proper time constraints. A coupled hydrodynamic circulation-heat

transport model is then used to propagate the state of the system forward in time between subsequent

remote sensing observations. Exploiting the satellite data high spatial resolution and the in situ

measurements high temporal resolution, the model may act a physical interpolator filling the gap

intrinsically characterizing the two monitoring techniques.
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1. Introduction

Lakes, estuaries, and lagoons around the world are degrading because of increasing human

pressure, particularly due to water and sediments pollution and climate-change-related effects [1–3].

Among the coastal tidal systems, lagoons are probably the most threatened [4,5]. Lagoons occur along

about 13 percent of the world’s shorelines [6] and play a fundamental role as morphological and

biodiversity hotspots, providing valuable ecosystem services as for example refuge and nesting for

a wide variety of wildlife, including mammals, marine birds, and migratory waterfowl. Lagoons

play a primary role also in carbon cycle processes since they are characterized by rates of primary

productivity comparable to that of rain forests, and consequently, they sequestrate a large amount

of organic carbon in their typical morphological and biological entities such as marshes, mangroves,

and seagrass meadows [7]. Beside their evident ecological importance, coastal lagoons are often the
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location of important urban centers, with relevant socioeconomic interests, leading to anthropogenic

interference and rapid morphological and ecological modifications with concomitant losses of

ecosystem goods and services. One emblematic and worldly famous example of the ecological,

socioeconomical, and historical importance of world’s lagoons is the Venice Lagoon (Italy), which is the

site selected for this research. Transformed over the long history of the Venetian Republic, the Venice

Lagoon is now an example of the coexistence of the natural and the built environments, with evident

tensions arising from sustainable and unsustainable uses of natural resources. As for other coastal

systems, the monitoring of the dynamic processes that characterize the Venice Lagoon is of key

importance for its correct management.

Water temperature is one of the main factors governing the biological processes occurring in

aquatic ecosystems, such as open oceans and coastal waters as well as lakes and rivers. Temperature

influences dissolved oxygen concentrations because affects its solubility, and as temperature increases,

dissolved oxygen decreases [8,9]. However, the link between temperature and oxygen is far more

complex since it is modulated by other abiotic factors as, for example, salinity, radiation, and wind

action, as well as biotic factors. Moreover, a dependence on climatic conditions must also been

accounted for. For warm climates, it has been recently shown that, in shallow water systems,

photosynthetic organisms are stimulated by higher water temperature, producing more oxygen

and supporting the metabolic demand of marine organisms [10]. In temperate climates, observations

support the coexistence of two dynamics for shallow waters: a seasonal dynamics, characterized by

high oxygen concentration during the colder part of the year and lower concentrations in the warmer,

and a second diel dynamics, with maximum oxygen concentrations during the most irradiated

hours of the day [11]. Temperature and oxygen dynamics are also affected by water circulation and

stratification, with possible hypoxic events in areas with low water turnover [12–14]. The synergic

action of water temperature, dissolved oxygen, and other environmental drivers as for example

salinity, nutrients availability, and turbidity directly affect phytoplankton communities [15] and

plant communities [16,17], with complex feedback mechanisms of vital importance for the state of

lagoons and shallow coastal systems in general. As an example, we just mention the importance

of a healthy population of seagrass or the proliferation of microalgae for the control of turbidity in

shallow lagoons [16,18,19]. Furthermore, enclosed or semi-enclosed water bodies, such as lakes and

lagoons, rapidly respond to variations in energy exchanges with the atmosphere, providing prompt

signals related to climate change [1,20,21].

Traditionally, coastal and lagoon water properties and their dynamics are observed through point

measurements carried out during field campaigns. Giving the increasing anthropogenic pressures on

lagoons and coastal areas, in the last decades, methods for the continuous and spatially distributed

monitoring of lagoon water quality (i.e., temperature or chlorophyll-a concentration) have become

more common thanks to networks of sensors and probes. For example, besides the traditional gauges

measuring water level (https://www.comune.venezia.it/it/content/centro-previsioni-e-segnalazioni-

maree), the Venice Lagoon is continuously monitored through a network of 10 multi-parametric

sensors since early 2000. Data collected from probes are often used to calibrate/validate hydrodynamic

numerical models that describe the space/temporal evolution of a transported quantity. However,

probe networks rarely attain a density sufficient for process understanding, model calibration and

testing, or integrated assessment. This is arguably the most stringent limitation of state-of-the-art

models of hydrodynamic flow and transport in shallow water environments, which are currently

initialized and evaluated by making use of sparse and insufficient point observations. In this study,

we show how the ideal observational tool, both for scientific and monitoring purposes, must integrate

satellite data, in situ water quality data, and mathematical-physical models to provide a coherent

space–time description of the dynamics of water quality and of the associated ecosystem properties.

Unfortunately, the majority of satellite sensors that collect thermal infrared data have too low

a spatial resolution for applications to coastal systems characterized by high geomorphological

diversity as lagoons and estuaries. For this application, we use Landsat ETM+ that provides thermal

https://www.comune.venezia.it/it/content/centro-previsioni-e-segnalazioni-maree
https://www.comune.venezia.it/it/content/centro-previsioni-e-segnalazioni-maree


Remote Sens. 2020, 12, 51 3 of 21

infrared data at 60 m spatial resolution. A set of two images collected seven days apart is selected

from the archive (using USGS Earth Explorer website), data are calibrated with in situ measurements

collected by a network of probes and used to produce the spatially distributed water temperatures.

A numerical model of lagoon hydrodynamics and heat transport is then used as a physics-based

interpolator to complete temperature data both in time and in space. Practically, the model is

constrained using, as initial conditions (ICs), the temperatures retrieved from the first one of the

two images and, as boundary conditions (BCs), other field measurements such as water levels at the

seaward boundary of the domain and meteorological forcings acting at the atmosphere-water interface

(e.g., wind speed and direction, solar radiation, air temperature, and humidity, etc.). The temperature

dynamics is then simulated for seven days, and the temperatures retrieved using the second satellite

image are then compared with the simulation results. Our results show how the combined use of point

observations and of satellite images allow us to effectively constrain a model of temperature dynamics

that, once calibrated, can overcome the intrinsic spatial and temporal limitations of those monitoring

techniques providing a whole-system scale description of the process.

2. Materials and Methods

2.1. Study Site

The Venice Lagoon is the largest tidal basin in the Mediterranean Sea, covering an area of about

550 km2 (Figure 1). The mean depth characterizing the water basin is about 1.2 m, with a typical

tidal range of 1.0 m and a main tidal period of 12 h. Beside its historical relevance, the Lagoon also

represents a unique and dynamic ecosystem, hosting very peculiar habitats for multitude of animals

and plant species.

Figure 1. Map of the Venice lagoon showing the position of the multi-parametric probes, managed by

Provveditorato per le Opere Pubbliche del Triveneto, that provided the water temperature time series (red

dots) and the position of the measuring stations managed by the Institute for Environmental Protection

and Research (ISPRA) that provided the meteorological data (green squares). In particular, M1 stands

for Piattaforma CNR, M2 for stands Lido Meteo, and M3 stands for Chioggia Diga Sud.

Climate change and related sea level rise, subsidence of the bottom, and the anthropic pressure

on the environments are threatening the Lagoon’s ecosystem, affecting its eco-bio-morphodynamic

evolution [22]. The main environmental issues are the progressive reduction of the main morphological
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structures of the lagoonal environment, i.e., salt marshes and tidal flats, and the lagoon water quality.

In the last 100 years, a reduction of about 40% of the salt marshes area and a 30% increase of the mean

water depth has been observed, reinforcing the erosional trends by increasing the mean fetch and

depth of the flows [23–25]. The modified hydrodynamics and the increased erosion and resuspension

of sediments significantly affect also the water quality, spreading the pollutants accumulated in the

Lagoon’s sediments. The main sources of pollution are the high nutrient load from water inflow,

associated with agricultural activities and residential waste, and the industrial waste produced by the

activities in the industrial estate of Marghera. The damages on the ecosystem caused by pollutants are

worsened by the high residence time of water, which in the inner parts of the Lagoon can be of some

tens of days [14].

To protect the city from increasingly stronger and more frequent flooding high tides [26,27],

the MoSE (MOdulo Sperimentale Elettromeccanico) system is currently under construction. It is made

up of a line of flap-gates built into each one of the three inlet canal beds that will emerge when needed

to isolate the lagoon from the Adriatic Sea. Despite the importance of this infrastructure and the large

amount of efforts put into its design, there is still a lack of knowledge about the impact of the MoSE

system on the lagoon water quality. A reliable system to forecast the water quality dynamics during

the closure of the gates has not been developed yet, especially considering a possible more frequent

closure of the gates as sea level continues to rise [28].

With this study, we propose a multidisciplinary approach that integrates satellite data, in situ

water quality data, and mathematical-physical models for studying and monitoring the Venice lagoon

and that can be applied to other lagoons and coastal areas in order to couple biological, ecological,

morphological and hydrodynamic processes and to understand the short- and long-term evolution of

these environments and how we can preserve them.

2.2. Numerical Model

The numerical model consists of four modules: a hydrodynamic module, a wind-wave module,

a Sediment Transport And Bed Evolution Module (STABEM) [29], and a temperature module.

The coupling of the first two modules provides the Wind Wave Tidal Model (WWTM) [30,31].

Using a semi-implicit staggered finite element method based on Galerkin’s approach,

the hydrodynamic module solves the two-dimensional shallow water equations, opportunely modified in

order to deal with flooding and drying processes typical of very shallow and irregular domains,

providing the evolution of water levels and depth-averaged velocities in space and in time.

For a detailed description of the equations and of the numerical scheme adopted, see Defina [32] and

D’Alpaos and Defina [33].

The wind wave module solves the wave action conservation equation following the parametrization

proposed by Holthuijsen et al. [34], that uses the zero-order moment of the wave action spectrum in the

frequency domain. The wind wave module exploits the water levels provided by the hydrodynamic

module to compute the spatial and temporal distribution of the wave period using empirical correlation

functions relating the mean peak wave period to local wind speed and water depth [31,35].

The WWTM reconstructs the spatial and temporal variability of the wind field over the

computational domain when wind data from different measuring stations are available, using a suitable

interpolation technique developed by Brocchini et al. [36].

The WWTM capability of reproducing the hydrodynamics and wind wave dynamics has been

widely tested by comparing model’s results to field data collected not only in the Venice lagoon [31]

but also in other lagoons such as lagoons located along the Virginia coast [37] and in the Cádiz Bay in

Spain [38].

STABEM describes sediment resuspention and transport by simultaneously solving the advection

diffusion equation and Exner’s equation, working on the same computational grid of WWTM.

Following Soulsby [39], the model computes the total bottom shear stress as a nonlinear combination of

wind-wave and tidal currents actions, leading to shear stresses values generally greater than the sum of
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the two contributions. The model adopts a stochastic approach similar to that proposed by Grass [40]

to describe the sediment resuspension process, assuming the erosion rate to depend on the probability

that the total bottom shear stress (τb) exceeds the critical shear stress (τc) for erosion, both treated as

random variables characterized by a log-normal distribution. This stochastic approach significantly

increases the capability of the model to describe the sediment resuspention process at near threshold

conditions (i.e., values of τb ≈ τc) for sediment entrainment, typical of periodical resuspention events

occurring in shallow tidal basins [29,41].

STABEM accounts for the presence of both cohesive and non-cohesive sediments describing the

bed composition as a mixture of two sizes sediment classes: non-cohesive sand and cohesive mud.

The local mud content, which varies in time and space, determines the transition between non-cohesive

and cohesive behavior of the mixture.

Temperature Module

The temperature module, developed to be coupled with WWTM and STABEM, is based on the

solution of the heat advection and diffusion equation:

∂TwY

∂t
+∇ · (qTw)−∇ · (YD · ∇Tw) =

HNET

ρwatcPwat
(1)

where Tw (◦C) is the water temperature, assumed uniform within the water column based on

the hypothesis of well-mixed conditions supported by field observation carried out in the Venice

lagoon [42], q = (qx, qy) (m3 s−1 m−1) is the flow rate per unit width, Y [m] is the equivalent water

depth Defina (i.e., the volume of water per unit area as defined by [32]), D is the two dimensional

diffusion tensor, HNET (W m−2) is the net vertical energy flux, ρwat (kg m−3)], and cPwat (J kg−1) are

the water density and the specific heat, respectively. Flow rates and water levels are provided by the

hydrodynamic module, whereas the wind-wave module can provide information on the free surface

roughness. Diffusivity is assumed equal to the eddy viscosity computed by the hydrodynamic model.

The suspended sediment concentration (SSC) is assumed to be in thermal equilibrium with water

and unable to affect the water thermal properties.

HNET consists of the sum of the following energy fluxes at the atmosphere–water interface

(AWI): (i) short-wave radiation Hsho, (ii) long-wave radiation Hlon, (iii) sensible heat flux Hsen, and

(iv) latent heat flux Hlat. The net energy flux should also account for the conduction heat exchange

at the soil–water interface (SWI), of which the calculation requires also the modeling of the bed

sediment temperature. However, recent studies proved that, given the quite turbid conditions typically

characterizing the Venice lagoon, the energy flux at the SWI is negligible when modeling the water

temperature dynamics at the daily timescale [42]. Therefore, this contribution to the net energy flux

affecting the water column temperature dynamics has been neglected in the present study.

The short-wave radiation flux Hsho corresponds to the solar irradiance not reflected by the water

surface and partially absorbed by the water column according to Beer’s law integrated over the water

column [43]:

Hsho = (1 − a)Rsun [1 − exp (−ηY)] (2)

where a is the water surface albedo, Rsun (W m−2) is the solar radiation measured at the surface,

and η (m−1) is the extinction coefficient representing the irradiance absorption per unit depth. The

coefficient η should be time variant as a function of the water column turbidity (i.e., η increases

with turbidity); however, for the sake of simplicity, η is assumed to be constant in the present study

as we selected for our analysis a period characterized by the absence of storms and related intense

resuspension events in order to avoid cloud coverage undermining the analysis of the available satellite

images. Furthermore, we recently demonstrated (i) that, on average, the solar radiation absorption

by the water column in the Venice lagoon is better described by values of η > 4 [42], meaning that

the water column absorbs most of the solar radiation and (ii) that most of the energy not absorbed
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by the water column under clear water conditions (described by small values of η) is returned to the

water column via conduction at the SWI and that, then, the assumption of high values of η to model

the water column temperature dynamics provides the best results when the conductive heat exchange

at the SWI is neglected [19].

The long-wave radiation flux Hlon is the difference between the infrared radiation emitted by the

atmosphere and the infrared radiation emitted by the water body. Following Bignami et al. [44], Hlon is

computed as follows:

Hlon = σT4
air(0.653 + 0.00535 · eVair)(1 − 0.1762 · N2)− ǫσT4

w (3)

where σ (W m−2 K−4) is the Stefan–Boltzman constant, Tair (K) is the air temperature, eVair (mbar) is

the vapor pressure at Tair, N is the fraction of sky covered by clouds, and ǫ is the water emissivity.

The first term on the right-hand side is the long-wave radiation emitted by the atmosphere and fully

absorbed by the water column, while the second term is the long-wave radiation emitted by the water

body according to its temperature.

The sensible heat flux, Hsen, and the latent heat flux, Hlat, represent the energy transfer at the AWI

due to conduction/convection and to evaporation, respectively. The temperature module estimates

Hsen and Hlat using a “bulk” algorithm, a common approach in numerical models based upon the

Monin–Obukhov Similarity Theory:

Hsen = ρaircPairCsenVwind(Tw − Tair) (4)

Hlat = ρairLvClatVwind(qS − qair) (5)

where ρair (kg m−3) and cPair (J kg−1) are air density and specific heat respectively, Lv (J kg−1) is

the latent heat of vaporization, and qS and qair are the specific humidity at the sea surface and at the

measuring height respectively. The transfer coefficients are estimated as follows:

Csen = k2

(

ln
zV

z0
− ΨV

( zV

L

)

)−1 (

ln
zT

z0T
− ΨT

( zT

L

)

)−1

(6)

Clat = k2

(

ln
zV

z0
− ΨV

( zV

L

)

)−1 (

ln
zQ

z0Q
− ΨQ

( zQ

L

)

)−1

(7)

where k is the Von Kármán constant (assumed equal to 0.4); zV , zT , and zQ (m) are the measuring

heights while z0, z0T , and z0Q (m) are parameters called roughness lengths that characterize the neutral

transfer properties for wind, temperaturem and humidity, respectively; and L (m) is the Obukhov

length. ΨV , ΨT , and ΨV are empirical functions describing the stability dependence of the mean

profile [45–47]. Using the Monin–Obukhov Similarity Theory, the roughness lengths, the Obukhov

length, and the energy fluxes are computed iteratively [48,49]; in particular, in our code, we use the

algorithm COARE 3.0 [50] to estimate the sensible and latent heat fluxes. The algorithm has already

been tested to estimate the energy fluxes in a lagoon located along the Mediterranean french coast,

providing satisfactory results [51].

The temperature module computes the roughness length z0 as follows [48]:

z0 = α
u∗

g
+ 0.11

ν

u∗
(8)

where α is the Charnock parameter, u∗ is the friction velocity over the water surface, and ν is the

kinematic viscosity of water. According with Yelland and Taylor [52], α increases monotonically for

6 < Vwind < 26 m s−1; the algorithm COARE accounts for this behavior linearly increasing α from

0.011 at Vwind = 10 m s−1 to 0.018 at Vwind = 18 m s−1 [50].
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2.3. In Situ Measuring Stations

The meteorological data necessary to compute energy fluxes at the AWI were provided by

the mareographic network of the Venice lagoon and the northern Adriatic coast, managed by the

Institute for Environmental Protection and Research (Istituto Superiore per la Protezione e la Ricerca

Ambientale—ISPRA). The real time gauge network collects water level; however, several measuring

stations are equipped with additional sensors for measuring meteorological variables.

In detail, the data we use to constrain our temperature model at the AWI are air temperature Tair

(◦C), solar radiation Rsun (W m−2), and relative humidity Hrel (%) measured at the Lido Meteo station;

wind speed Vwind (m s−1) and direction Dwind (GN) measured at the Chioggia Diga Sud station; and

atmospheric pressure patm (mbar) measured at the Piattaforma CNR station. Meteorological variables

are assumed spatially uniform over the entire lagoon.

The fraction of covered sky, N, which is a proxy for cloudiness, is another parameter affecting

the energy fluxes at the AWI and in particular Hlon. Since cloudiness data are typically unavailable,

in our simulation, we considered a constant cloudiness, corresponding to a clear sky condition (N = 0),

in line with the abovementioned choice of analyzing a period mostly characterized by clear weather.

Sea water temperature (Tsea) and water levels measured at the Piattaforma CNR station are then

used as boundary conditions (BCs) for the model and imposed at the seaward boundary of the

computational domain.

Water temperature (Tw) time series provided by the network of 10 multi-parametric probes,

managed by Provveditorato per le Opere Pubbliche del Triveneto, are used to evaluate the capability of the

model to describe the local temperature dynamics.

The locations of all the in situ measuring stations providing the data described above are shown

in Figure 1. Figure 2 summarizes the time series used as BC for the numerical model.

Figure 2. Time series of (a) wind direction, Dwind, and speed, Vwind; (b) solar radiation measured at the

surface, Rsun; (c) water level, Y; (d) air temperature, Tair, and sea water temperature, Tsea; (e) relative

humidity, Hrel , used as boundary conditions. (f) Remote sensed water temperature spatial distribution

used as initial condition.
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2.4. Temperature Spatial Distribution from Satellite Images

Satellite data are selected based on four main requirements: (1) high spatial resolution (i.e., in the

order of 50/100 m) of the thermal infrared bands; (2) very good weather conditions in order to limit

the interference of clouds and haze; (3) availability of at least one couple of images collected less than

10 days apart; and (4) satellite data overlap with available time series of field data (i.e., tidal levels,

water temperature collected with probes, wind speed and direction, solar radiation, and relative

humidity). The first image provides the water temperature spatial distribution at the beginning of

the numerical simulation, while the subsequent images are used for comparison with numerical

results. The requirement of very good weather conditions is strictly necessary for the first image

in order to correctly initialize the system, while, in general, a partial lack of data due to clouds

cover can be accepted in images used for model validation. Nonetheless, in the present analysis, we

required very good weather conditions also for the second image in order to fully exploit information

provided by satellite data and to perform the most complete and robust comparison with the computed

spatial distribution of the water temperature at the end of the simulated period. We underline that

a clear-sky image used for validating the simulation results allows a comprehensive evaluation of

all the differences that may occur between the image and the simulation outcomes at the basin scale,

providing information on areas that are not monitored by the probes network.

Several images freely available in the USGS Earth Explorer database were considered (e.g.,

from different Landsat missions and ASTER). Two ETM+ cloud-free images were found to be suitable

for our analysis, one collected on 2 May 2008 and the second collected on 9 May 2008.

The ETM+ (Enhanced Thematic Mapper Plus), launched on 15 April 1999 on board of the

Landsat 7 payload, includes one single-band sampling part of the thermal infrared (TIR) portion

of the electromagnetic spectrum, spanning the 10.40–12.50 µm wavelength range, with a spatial

resolution at the ground of only 60 m. Four years after the launch, on 31 May 2003, the Scan Line

Corrector (SLC) in the ETM+ instrument failed. Therefore, since that date, the sensor was no longer

able to scan the ground correctly, resulting in some areas that are not detected during the acquisition.

It is estimated that, in one ETM+ scene, about 22% of the data is missing.

The interference of the atmosphere on satellite TIR data is mainly due to the absorption of the

radiation by water vapor, CO2, and O3, while the scattering effect is negligible because of the long TIR

wavelengths. Taking into account the atmospheric transmittance τλ for band λ, the spectral radiance

measured at sensor, Lat−sensor
λ , is calculated as follows [53,54]:

Lat−sensor
λ =

[

ǫλBλ (T) + (1 − ǫλ) L↓
λ

]

τλ + L↑
λ (9)

where Bλ is the spectral radiance of a black-body, T is the true surface temperature, ǫλ is the emissivity

of the considered target, L↓
λ is the down-welling atmospheric radiance and the L↑

λ is the radiance

emitted toward the sensor (which is, in case of ETM+, nadir looking).

Inverting Equation (9) in order to obtain the spectral radiance and integrating over the thermal

bandpass, we obtain the following:

B (T) =
Lat−sensor − L↑

ǫτ
−

1 − ǫ

ǫ
L↓ (10)

which, in order to calculate the temperature in Celsius, can be directly used in

T =
k2

ln
(

k1
B(T)

+ 1
) − 273.15 (11)

with, for ETM+, k1 = 666.09 (W m−2 sr−1
µm−1) and k2 = 1282.71 (K).

L↓, L↑, and τ have been calculated using the Atmospheric Correction Parameter Calculator

tool made available online by NASA (https://atmcorr.gsfc.nasa.gov/; Barsi et al. [55]) that uses the

https://atmcorr.gsfc.nasa.gov/
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radiative transfer code MODTRAN. The expected accuracy of the correction is within ±2–3 (K) [55].

As for the emissivity, we used the constant value ǫ = 0.98 for the entire water body of the lagoon.

Pixels that do not belong to the water body were masked according to the computational domain of

the hydrodynamic model. Moreover, we created a 120 m wide buffer along the coast line in order to

mask also the pixels that fall at the water/land edge (with mixed signal) that may present unrealistic

water temperature values. Finally, in order to fill the gaps in the ETM+ data due to the malfunctioning

of the SLC, we applied a Multilevel B-Spline Approximation [56].

All the symbols used in the present study are summarized in Table 1.

Table 1. List of symbols used for variables and constants: formulas are not explicitly discussed in

Section 2.

Symbol Description Value Unit

a water surface albedo 0.04

cPair air specific heat 1005 [J kg−1]

cPwat water specific heat 4186 [J kg−1]
Clat bulk transfer coefficient
Csen bulk transfer coefficient

e0
saturation vapor

6.11 [mbar]
pressure at 0.0 ◦C

D two dimensional diffusion tensor
eV vapor pressure [mbar]
eVS saturation vapor pressure [mbar]
Hlat latent heat flux [W m−2]
Hlon net long wave heat flux [W m−2]
HNET net heat flux [W m−2]
Hsen sensible heat flux [W m−2]
Hsho short wave heat flux [W m−2]
k Prandtl constant 0.4
L Obukhov length [m]

Lv latent heat of evaporation [J kg−1]
N fraction of covered sky

q = (qx, qy) flow rate per unit width [m3 s−1 m−1]
qair air specific humidity

qS
saturated air specific
humidity at Tw

Rsun incident solar radiation [W m−2]
t time [s]

T0
temperature in K

273.15 [K]
corresponding to 0 ◦C

Tair air temperature [◦C]
Tw water temperature [◦C]
Hrel relative humidity (%)

Vwind wind speed [m s−1]
Y equivalent water depth [m]

u∗ friction velocity [m s−1]
z0 roughness length for Vwind [m]
z0Q roughness length for Hrel [m]
z0T roughness length for Tair [m]
zQ measuring height for Hrel [m]
zT measuring height for Tair [m]
zV measuring height for Vwind [m]
α Charnock parameter
ǫ water surface emissivity 0.98

λ extinction coefficient [m−1]
ρair air density 1.225 [kg m−3]
ρwat water density 1027 [kg m−3]
σ Stefan Boltzman constant 5.5576 · 10−8 [W m−2 K−4]

Lat−sensor
λ measured spectral radiance [W sr−1 m−3]

ǫλ emissivity

Bλ spectral radiance of a black body [W sr−1 m−3]
τλ atmospheric transmittance

L↓
λ down-welling atmospheric radiance [W sr−1 m−3]

L↑
λ radiance emitted toward the sensor [W sr−1 m−3]

Lv = 2.501 · 106 − 2370 · (Tair)
eVS = e0 · exp (17.502 · T/(T + 240.97)) ·

(

1.0007 + 3.46 · 10−6 · patm
)

eV = eVS · Hrel/100

q = 0.622 · ev (patm − 0.378 · ev)
−1



Remote Sens. 2020, 12, 51 10 of 21

3. Results

3.1. Temperature Spatial Distribution from Remote Sensing and Probes

The comparison between the water temperature retrieved from satellite data and recorded using

the network of probes imply some considerations. As already specified, ETM+ collects TIR data at

60 m spatial resolution; hence, the first assumption we made is that the data collected by any single

probe are representative of an area of at least 60 m × 60 m and, hence, that we can directly compare it

to the temperature value of the pixel containing the station. We further consider that the temperature

recorded by each probe is representative of the entire water column, thus assuming well-mixed

conditions within the water column. Such an assumption is supported by water temperature profiles

that we recently collected in the Venice lagoon [42] and by other water temperature measurements

collected in previous studies [57]. Another important consideration is that satellite data represent the

“skin temperature”, i.e., the temperature of the water surface, rather than the bulk water temperature.

The difference between skin and bulk temperature has been estimated for ocean [58] and lake [59]

conditions and has been found to be less than ±1K.

Figure 3a,b show the differences between the temperatures measured at each station and those

retrieved from remote sensing and highlight how the difference among the two datasets is site

dependent, probably because of local environmental conditions. As for the skin/bulk temperature

difference, for example, it may vary due to different wind speeds at different locations. We must also

consider that a single set of parameters (L↓
λ, L↑

λ, and τlambda) computed using the radiative transfer

code was used for the entire lagoon, neglecting the spatial variability of the atmospheric conditions

that may affect the retrievals at different locations. Finally, the above assumptions about the difference

in scale between measurements performed by probes and retrievals coming from satellite data may

also depend on local conditions. As an example, we notice that the temperatures retrieved from ETM+

data for probe 4 are higher than those recorded by the probe for both the 2nd and the 9th of May 2008

and we speculate that this is due to the proximity of this probe to the city of Venice, with possible

presence of local urban water discharges. In general, we consider as outliers (i.e., values that are more

than three scaled median absolute deviations away from the median) the measurements coming from

probes 1, 4, 7, and 10 for May the 2nd (Figure 3b), and the measurements coming from probes 4 and 9

for May the 9th (Figure 3e). Figure 3b,e show that the standard deviations greatly improve once the

outliers are removed from the dataset.

Based on the mean standard deviation calculated for each image, we apply a correction

to the temperatures retrieved from satellite data. Figure 3c,f shows a comparison between the

temperatures measured by the probes and temperatures retrieved from satellite data after the correction.

The temperature difference has been sensibly reduced, greatly improving the correlation between the

temperature recorded by probes and those retrieved from satellite data.
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Figure 3. Correction of retrieved water temperature for May the 2nd (a–c) and for May the 9th

(d–f). (a,d) and (b,e) show the temperature differences between retrievals from satellite data and

measurements collected by the probes with all data and after the deletion of the outliers, respectively.

The blue line highlights the mean difference, whereas the red dotted lines highlight the standard

deviation. Original and corrected temperature data are summarized in (c,f).

3.2. Model Results

With the aim of developing and testing an integrated approach for water temperature monitoring,

we perform a one-week-long model simulation for temperature dynamics in the Venice Lagoon using

spatially distributed data from the two selected satellite images (see Section 2.4) and high-frequency

point observations (see Section 2.3).

Data from the first satellite image are used to initialize the water temperature spatial distribution

within the computational domain; accordingly, the simulation starts at the acquisition time of the first

collected image (2 May 2008, 10:30) and ends at the acquisition time of the second image (9 May 2008,

10:30). We compare model results with time series of water temperature collected by the monitoring

station along the simulated week and the spatial distribution of the water temperature, at the end of

the simulation, with the water temperature map retrieved processing the second satellite image.

The meteorological variables driving the energy fluxes dynamics are assumed spatially uniform

over the entire lagoon; hence, the spatial variability of the computed energy fluxes, due only to Tw and

Y, is limited. For this reason, in Figure 4, we show only the energy fluxes at the AWI computed by the

model at the VE-2 station as they can be considered representative of the entire lagoon. In particular,

Figure 4a shows the energy fluxes dynamics while Figure 4b shows the relative contribution of each

flux Hi to the total vertical energy exchanged: ∑i |Hi|. The energy flux and its contribution are positive

when directed toward the water column, i.e., when the flux is warming the water.
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Figure 4. (a) Energy fluxes, Hi, and net energy flux, HNET = ∑i Hi, at the AWI computed at the VE-2

Station and (b) relative contribution of each flux to the total energy exchanged at the AWI, ∑i |Hi|.

Positive values indicate that the flux is warming the water column.

The comparison between in situ observations and computed water temperature at Station VE-2

and VE-3 is shown in Figures 5 and 6, respectively. The two measuring stations are selected among the

ten available in situ ones since they are representative of two peculiar locations within the water basin:

the VE-2 station is located in the inner part of the Lagoon and quite close to the divide between two

subbasins (namely the Lido Treporti and the Lido San Nicolò subbasins, i.e., the two main branches

of the Lido inlet), where the advective transport is reasonably low, whereas the VE-3 Station is quite

close to the Malamocco inlet, directly exposed to ebb and flood tidal currents (the location of the

measuring stations are shown in Figure 1). Figures 5a and 6a show the observed and computed

time evolution of Tw and of the cumulative vertical energy exchange, E(t) =
∫ t

0 HNET dt (J m−2)

provided to the water column. In both cases, model results are in good agreement with the local

temperature data, highlighting the capability of the model to correctly describe the water temperature

dynamics. To highlight the main factors that drive temperature fluctuations within the lagoon,

Figures 5b and 6b show the difference between water temperature computed at the measuring station

and water temperature imposed as BC at the sea boundary of the numerical domain as well as the water

level at the measuring station (see the Discussion section for an in-depth assessment of the matter).
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Figure 5. Station VE-2: (a) comparison between observed (Tw Obs, blue circles) and modeled (Tw Mod,

blue line) water temperature and the computed cumulative energy flux, E =
∫ t

0 HNET dt (orange line);

(b) difference between modeled water temperature at the measuring station and the measured sea

water temperature at Piattaforma CNR Station, ∆T = Tw − Tsea (red line) and the modeled water level

(light blue line).

Figure 6. Station VE-3: (a) comparison between observed (Tw Obs, blue circles) and modeled (Tw Mod,

blue line) water temperature and the computed cumulative energy flux, E =
∫ t

0 HNET dt (orange line);

(b) difference between modeled water temperature at the measuring station and the measured sea

water temperature at Piattaforma CNR Station, ∆T = Tw − Tsea (red line) and the modeled water level

(light blue line).
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The effectiveness of the model in reproducing the water temperature dynamics is also confirmed

by the comparison of the spatially distributed temperature field at the end of a 7-day-long

simulation, as shown in Figure 7. The difference between modeled and observed water temperature,

∆Tw = TMod
w − TObs

w , computed on each element of the computational grid (see Figure 7c), is lower

than ±1 ◦C on about the 65% of the entire wet surface of the lagoon, and only on the 17% of the wet

surface, ∆Tw exceeds values of ±2 ◦C. The mean value of |∆Tw|, weighted on the area of the elements,

is 1.27 ± 2.15 ◦C.

Figure 7. Comparison between observed and modeled water temperature spatial distribution at the

end of the 7-day-long simulation (9 May 2008, 10:30). (a) shows the observed water temperature

retrieved from the satellite image’s analysis; (b) shows the modeled water temperature; (c) shows the

difference, computed on each element of the numerical grid, between modeled and observed water

temperature, ∆Tw = TMod
w − TObs

w . Positive values of ∆Tw indicate a model’s overestimation of the

water temperature, while negative values show an underestimation.
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4. Discussion

As described in the above sections, thermal infrared data detected by Landsat ETM+ satellite are

shown to be able to provide meaningful and detailed representations of the spatial distribution of skin

water temperature for complex coastal environments as the lagoon of Venice. The 60 m resolution

of such temperature maps allows capturing significant spatial patterns of water temperature that

characterize different parts of the lagoon (e.g., the area in front of the industrial estate of Marghera

affected by the thermal plums due to production activities as well as the areas in front of the inlets

affected by tidal currents). The skin temperature obtained from satellite data is a reliable proxy for

bulk temperature, particularly for shallow and well-mixed water bodies; we have shown that simple

corrections based on available in situ observations can greatly increase the agreement between skin

and bulk temperature.

Considering that water temperature fields from remotely sensed data are rather infrequent (weekly

or less frequent), a two-dimensional numerical model solving for hydro- and water temperature

dynamics has been developed and used to describe the continuous-time spatial distribution of the

water temperature within the entire Venice lagoon.

Model results have been, at first, compared with time series of water temperature recorded at

10 in situ measuring stations, displaying a quite good agreement with data. The numerical model

correctly describes the temperature dynamics both in the inner areas of the water basin (Figure 5),

which are mildly affected by heat transport associated with tidal currents, and close to the sea inlets

(Figure 6), where advective transport plays a crucial role. It clearly emerges that, in the inner lagoon

areas, the water temperature Tw and the cumulative energy flux E at the AWI show the same diurnal

modulation; here, advective heat fluxes induced by 6-h period tidal currents are negligible and the

water temperature is mostly driven by the net energy flux at the AWI that follows the day and night

cycle. Close to the inlets, while the cumulative energy flux E still displays a diurnal modulation,

the water temperature Tw is characterized by a semi-diurnal modulation clearly related with the tidal

oscillation. Regardless of E, Tw decreases during the flood phase because of the colder water entering

the lagoon from the sea (through the Malamocco inlet in the case of the VE-3 station), while it increases

during the ebb phase because of warmer waters coming from the inner part of the lagoon.

Both the observed Tw time series and the meteorological data shown in Figure 2 suggest that

a moderately intense storm event with wind speed up to 13 m/s occurred on May 4th and, especially,

on May 5th. A drop in both water and air temperature was observed, as well as lower values of solar

radiation compared to the rest of the investigated period. The model accounts for the storm event

correctly by estimating a much lower net energy flux, HNET , on May 4th and 5th as a consequence of

lower values of Hsho and higher heat loss promoted by the relatively high wind speed, which directly

affects both Hsen and Hlat (Figure 4). We highlight that the variability of temperature fields driven by

the storm event that occurred in the middle of the simulated period would have not been detected if

exclusively satellite data were used, thus highlighting the usefulness of the proposed model-based

approach for the continuous time temperature estimation.

Focusing on the energy fluxes at the AWI (Figure 4), we observe that Hsho provides the most

important contribution to the energy balance of the water column during the daytime. Conversely,

the solar radiation is null overnight, when the remaining energy fluxes, particularly Hlat and Hlon,

provide a relevant contribution in cooling the water column. Considering that, in late spring, Tair is

usually higher than Tw, the contribution of Hsen to the total energy exchange is negative; reasonably,

an opposite behavior is expected in winter when, on average, Tair is lower than Tw.

The successful comparison between the water temperature map obtained from the 9 May 2008

satellite image and that computed at the end of the model simulation (see Figure 7) further confirms

the reliability of the model. The absolute difference between modeled and observed water temperature,

∆Tw, is lower than 1 ◦C in most of the water basin, especially on the tidal flats dominating the present

landscape of the Venice lagoon. The model overestimates the satellite-derived water temperature
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by more than 1 ◦C in limited areas, which represent less than 9% of the wet surface of the lagoon.

Overestimation of more than 2 ◦C affects only a negligible portion (about 0.7%) of the basin.

The observed overestimation of the water temperature can be ascribed to model limitations in

computing the net vertical energy flux HNET and/or in describing the transport/diffusion process

properly. Specifically, the assumption that the heat exchange at the SWI provides a negligible

contribution to the total energy balance can be less realistic in the shallower areas. Accounting

for this heat flux component in computing HNET could certainly improve the model accuracy but at the

cost of an additional, not negligible, computational cost. Such an observation was further supported by

an additional run we performed considering a much hotter period starting from a reliable description

of the initial state of the system provided by a satellite image captured the 22 August 2011 (results

not shown). The comparison of model results with point data are in line with those discussed herein

(May 2008) over most of the lagoon with a slightly increased tendency in overestimating the water

temperature in the innermost areas that seems to suggest a more relevant role potentially exerted by

the heat fluxes at the SWI during the summer period.

Moreover, the simulation performed and discussed herein assumes a uniform spatial distribution

of the meteorological forcings, accounting for their possible spatial variability that could further

improve the estimation of the energy fluxes and, in turn, the description of the water temperature

dynamics. To this point, it has to be noted that the numerical model already accounts for the spatial

variability of the wind field adopting the interpolation technique of the available wind data proposed

by Brocchini et al. [36], a method that could be applied also to the other meteorological data. However,

only few measuring stations collecting meteorological data are available within the Venice lagoon and

their distribution is not such to satisfactorily reconstruct their spatial variability.

The model seems to underestimate the water temperature in proximity of the border of the

computational domain and on elements surrounded by dry areas, with negative values of ∆Tw lower

than −1 ◦C and −2 ◦C observed in about the 25% and the 16% of the wet surface of the lagoon,

respectively. These differences, however, are more likely to be ascribed to misleading information

inherent in the remotely sensed data than to model limitations. In fact, as already discussed in

Section 2.4 and despite the buffer region used to mask satellite temperature maps along the coastline,

the temperature retrieved from satellite images in these border areas (or in areas that are almost dry

at the acquisition time) may be still influenced by the soil temperature of the neighboring surfaces.

Moreover, the water temperature of areas close to human settlements (e.g., Venice, Murano, and

Marghera) could be affected by the discharge of warm water as the byproduct of anthropic activities

and not accounted for in the simulation.

In this regard, it is interesting to observe that the remotely sensed water temperature in front

of the industrial estate of Marghera is higher than the modeled water temperature. Since the

performed simulation does not account for any local heat source caused by the industrial activities,

these temperature differences can be attributed to the use of the water resource for cooling purposes

by the production facilities, as noticed in other studies [60]. This observation highlights how

a combined use of modeling results and spatial distributed temperature data can provide useful

insights about the impact of the thermal pollution due to industrial activities and can evaluate the

effects due to possible anthropic uses of the water resource (e.g., hydrothermic systems to be used for

cooling/warming purposes of buildings in Venice in order to overcome the architectural impact of the

common conditioners).

Finally, it is important to point out that a higher accuracy in the estimation of the water

temperature from satellite may further improve the results obtained with our method. Improved

accuracy may be obtained using data from sensors that have at least two bands in the thermal portion

of the spectrum, as for example AVHRR and MODIS. In these cases, split-window methods may

be applied (i.e., [61]). Sensors that provide three or more bands in the TIR spectral range are also

available (as for example ASTER), possibly providing the retrieval of surface temperature with even

higher accuracies. The two main limitations in the use of these sensors for calibrating/validating
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hydrodynamic circulation-heat transport models of small and medium size tidal basins are (1) their

limited spatial resolution (as for AVHRR and MODIS) and (2) the unavailability of images collected

over the same target at short time intervals (as for ASTER). Landsat satellites have the advantage of

both high spatial resolution and acquisition frequency; however, they provide just one thermal band.

Therefore, an estimation of the parameters characterizing the atmosphere during the acquisition is

needed in order to correct the signal of one single thermal band for atmospheric interference. In this

study, we applied the Atmospheric Correction Parameter Calculator tool [55], which is applied to

the entire image without taking into account the variability of water vapor and other atmospheric

parameters that influence the retrieval of the correct sea surface temperature. We believe that such

a variability is responsible for the variable difference between the temperature recorded at the probes

and that calculated from satellite data. A pixel-by-pixel atmospheric correction method may reduce

such effect [62]; however, high spatial resolution ancillary data are needed in order to correctly

calculate (or simulate) the spatial variability of the atmospheric parameters. Such ancillary data may

be retrieved from other sources, as suggested in the method proposed by Galve et al. [62] that uses the

National Centers of Environmental Prediction (NCEP) profiles. Such an approach may improve the

results obtained with our study; however, we speculate that, in our case, the efficacy of the method

is limited by the very low spatial resolution of the NCEP profiles that are provided on a 1◦ × 1◦

longitude/latitude grid every 6 h. Based on all these considerations, we believe that the post-correction

of the temperatures retrieved from satellite using the measurements performed by the ten probes

spread across the Venice lagoon is the most accurate method for our case study. The future availability

of sensors with two or more bands in the TIR domain and high spatial and temporal resolution may

improve the situation.

5. Conclusions

The present study shows that the use of temperature data provided by satellite observations and

in situ point measurements of water and meteorological parameters, combined with a spatially explicit

and physics-based numerical model for hydro- and temperature dynamics, represents a powerful tool

to investigate and describe the water temperature dynamics in shallow coastal environments.

Remotely sensed data and point observations are crucial for monitoring purposes since they

provide different, complementary information: infrequent in time but spatially distributed the first

ones, and continuous in time but sparse in space the second ones. In the integrated approach developed

and tested with reference to the Venice Lagoon, data from these different sources have been used

jointly to constrain a physics-based numerical model. The water temperatures computed by the model

compare satisfactorily with both in situ measured time series and spatially distributed satellite data.

The mean difference between modeled and computed water temperature at the end of a 7-day-long

simulation is 1.27 ± 2.15 ◦C, with differences lower than 1 ◦ C on about the 65% of the lagoon. Proven

its reliability, the model can overcome the intrinsic limitations of different monitoring techniques by

acting as a physical interpolator able to complete temperature information both in time and in space.

This tool can find applications in investigating scenarios related to anthropic possible uses of

the water resource for warming/cooling purposes. Moreover, knowing the crucial role exerted by

water temperature in many physical and biological processes, our results point out that the combined

use of in situ point measures, remote sensing, and numerical modeling can be highly effective in

understanding and estimating the eco-bio-morphodynamics evolution of shallow water coastal systems

and in planning suitable managements procedures.
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