
19 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

The ANTAREX domain specific language for high performance computing / Silvano C.; Agosta G.; Bartolini
A.; Beccari A.R.; Benini L.; Besnard L.; Bispo J.; Cmar R.; Cardoso J.M.P.; Cavazzoni C.; Cesarini D.;
Cherubin S.; Ficarelli F.; Gadioli D.; Golasowski M.; Libri A.; Martinovic J.; Palermo G.; Pinto P.; Rohou E.;
Slaninova K.; Vitali E.. - In: MICROPROCESSORS AND MICROSYSTEMS. - ISSN 0141-9331. - ELETTRONICO. -
68:(2019), pp. 58-73. [10.1016/j.micpro.2019.05.005]

Published Version:

The ANTAREX domain specific language for high performance computing

Published:
DOI: http://doi.org/10.1016/j.micpro.2019.05.005

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/718408.5 since: 2020-11-12

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.micpro.2019.05.005
https://hdl.handle.net/11585/718408.5

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Cristina Silvano, Giovanni Agosta, Andrea Bartolini, Andrea R. Beccari, Luca Benini, Loïc
Besnard, João Bispo, Radim Cmar, João M.P. Cardoso, Carlo Cavazzoni, Daniele Cesarini,
Stefano Cherubin, Federico Ficarelli, Davide Gadioli, Martin Golasowski, Antonio Libri,
Jan Martinovič, Gianluca Palermo, Pedro Pinto, Erven Rohou, Kateřina Slaninová,
Emanuele Vitali, The ANTAREX domain specific language for high performance
computing, Microprocessors and Microsystems, Volume 68, 2019, Pages 58-73, ISSN
0141-9331.

The final published version is available online at:

https://doi.org/10.1016/j.micpro.2019.05.005

© 2019 This manuscript version is made available under the Creative Commons Attribution-

NonCommercial-NoDerivs (CC BY-NC-ND) 4.0 International License

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://cris.unibo.it/
https://doi.org/10.1016/j.micpro.2019.05.005
http://creativecommons.org/licenses/by-nc-nd/4.0/

The ANTAREX Domain Specific Language for High

Performance Computing

Cristina Silvanoa, Giovanni Agostaa, Andrea Bartolinic, Andrea R. Beccarid, Luca

Beninib, Loïc Besnardj, João Bispoe, Radim Cmari, João M. P. Cardosoe, Carlo

Cavazzonif, Daniele Cesarinic, Stefano Cherubina, Federico Ficarellif, Davide

Gadiolia, Martin Golasowskig, Antonio Librib, Jan Martinovičg, Gianluca Palermoa,

Pedro Pintoe, Erven Rohouh, Kateřina Slaninovág, Emanuele Vitalia

aDEIB – Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, Italy
bIIS – Eidgenössische Technische Hochschule Zürich

cAlma Mater Studiorum - University of Bologna
dDompé Farmaceutici SpA

eFEUP – Universidade do Porto
fCINECA

gIT4Innovations, VSB – Technical University of Ostrava
hINRIA Rennes

iSygic
jIRISA/CNRS

Abstract

The ANTAREX project relies on a Domain Specific Language (DSL) based on Aspect

Oriented Programming (AOP) concepts to allow applications to enforce extra func-

tional properties such as energy-efficiency and performance and to optimize Quality of

Service (QoS) in an adaptive way. The DSL approach allows the definition of energy-

efficiency, performance, and adaptivity strategies as well as their enforcement at run-

time through application autotuning and resource and power management. In this pa-

per, we present an overview of the key outcome of the project, the ANTAREX DSL,

and some of its capabilities through a number of examples, including how the DSL is

applied in the context of the project use cases.

Keywords: High Performance Computing, Autotuning, Adaptivity, DSL, Compilers,

Energy Efficiency

1. Introduction

High Performance Computing (HPC) is a strategic asset vigorously pursued by

both state actors, supra-national entities, and major industrial players in fields such as

finance or oil & gas [1]. A veritable arms race has been waged for decades to build

the fastest HPC machine, first in terms of pure floating pooint operations per second

(FLOPS), then, with the growing difficulty of supplying power to large HPC centers,

in terms of Flops/watt. Currently, the goal is to reach Exascale level (1018 FLOPS)

within the 2023− 24 timeframe – with a ×1000 improvement over Petascale, reached

in 2009. The current Top5001 and Green5002 lists are dominated respectively by IBM’s

Summit machine, installed at the Oak Ridge National Laboratory (USA), with over 200

PetaFlops, and Japan’s Shoubu system B, with a power efficiency of 17.6 GFlops/watt3.

To reach these levels of performance and power efficiency, heterogeneous computing

architectures are critical, in particular through GPGPUs. Traditional NVIDIA GPG-

PUs are featured heavily in both lists, though Shoubu’s ZettaScaler architecture uses

PEZY’s PEZY-SC2 instead. The dominance of heterogeneous systems in the Green500

list is expected to continue for the next coming years to reach the target of 20MW Ex-

ascale supercomputers set by the DARPA.

When considering the design, development, and deplyoment of HPC applications,

each increase in HPC machine size and heterogeneity imposes an increased burden on

the developer. Nowadays, few developers have both the domain knowledge and HPC

expertise to produce a fully optimised application, and a naïvely parallelised applica-

tion may easily incur in parallelisation bottlenecks and scalability issues. To address

this issue, the current development model assumes that the domain experts do not at-

tempt to optimise their applications on their own, but rely on help from HPC experts,

typically part of the HPC center staff, to turn their baseline application into an HPC-

enabled one. This task requires to handle parallelisation, offloading to heterogeneous

resources, as well as performance analysis and tuning. For the latter task, it is worth

noting that for large scale applications it is oftern difficult to make predictions on per-

formance based on small-scale runs, so runtime autotuning is desirable.

While many approaches to programming languages and models for HPC attempt to

simplify the development process by reducing or removing the need for the HPC expert,

the recently completed ANTAREX project [2, 3] fully embraces this split development

process, and aims at supporting it. To this end, we introduce the ANTAREX DSL,

a Domain Specific Language (DSL) to express the application self-adaptivity and to

runtime manage and autotune applications for green heterogeneous HPC systems up

to the Exascale level. The ANTAREX DSL allows the introduction of a separation of

concerns, where self-adaptivity and energy efficient strategies, managed by the HPC

expert, are specified separately from the application functionalities, developed instead

by the domain expert. The ANTAREX DSL is based on Aspect Oriented Programming

(AOP) principles, embodied in the LARA language [4, 5], which effectively support

the separation of concern without burdening the domain expert with the need to learn

a new language (as they simply develop in C/C++). Since HPC experts already use a

variety of scripts and tools to support their work, the ANTAREX DSL also provides a

way to unify them under a single interface.

To demonstrate the effectiveness of the ANTAREX DSL and its associated tools,

the project employs two use cases taken from highly relevant HPC application scenar-

ios:

1. a biopharmaceutical application for drug discovery developed by one of the lead-

ing European companies in the field, Dompé, and deployed on the 1.21 PetaFlops

1www.top500.org, November 2018
2www.green500.org, November 2018
3Summit is also ranked 3rd in the Green500, whereas Shoubu is a comparatively smaller machine

2

heterogeneous NeXtScale Intel-based IBM system at CINECA;

2. a self-adaptive navigation system for smart cities developed by the top Euro-

pean navigation software company, Sygic, and deployed on the server-side on

the 1.46 PetaFlops heterogeneous Intel® Xeon Phi™ based system provided by

IT4Innovations National Supercomputing Center.

These scenario also reproduce the aforementioned development model, as each

HPC user company is supported by the staff of the HPC center where the application

is deployed.

The remaining partners of the ANTAREX Consortium comprise a wealth of exper-

tise in DSL development, code optimisation, energy efficiency, and autotuning. Four

top-ranked academic and research partners (Politecnico di Milano, ETHZ Zurich, Uni-

versity of Porto and INRIA) are complemented by the Italian Tier-0 Supercomputing

Center (CINECA), the Tier-1 Czech National Supercomputing Center (IT4Innovations)

and two industrial application providers, one of the leading biopharmaceutical com-

panies in Europe (Dompé) and the top European navigation software company (Sy-

gic). Politecnico di Milano, the largest Technical University in Italy, played the role of

Project Coordinator.

The ANTAREX Approach. The ANTAREX approach and related tool flow, as shown

in Figure 1, operate both at design-time and runtime. The application functionality

is expressed through C/C++ code (possibly including legacy code), whereas the extra-

functional aspects of the application, including parallelisation, mapping, and adaptivity

strategies, are expressed through DSL code (based on LARA) developed in the project.

As a result, the expression of such aspects is fully decoupled from the functional code.

The Clava tool is the centerpoint of the compile-time phase, performing a refactoring

of the application code based on the LARA aspects, and instrumenting it with the

necessary calls to other components of the tool flow.

The ANTAREX compilation flow leverages a runtime phase with compilation steps,

through the use of partial dynamic compilation techniques enabled by libVC. The ap-

plication autotuning, performed via the mARGOt tool, is delayed to the runtime phase,

where the software knobs (application parameters, code transformations and code vari-

ants) are configured according to the runtime information coming from application

self-monitoring as well as from system monitoring performed by the ExaMon tool.

Finally, the runtime power manager, PowerCapper, is used to control the resource us-

age for the underlying computing infrastructure given the changing conditions. At

runtime, the application control code, thanks to the design-time phase, now contains

also runtime monitoring and adaptivity strategy code derived from the DSL extra-

functional specification. Thus, the application is continuously monitored to guarantee

the required Service Level Agreement (SLA), while communication with the runtime

resource-manager takes place to control the amount of processing resources needed by

the application. The application monitoring and autotuning is supported by a runtime

layer implementing an application level collect-analyse-decide-act loop.

Organization of the paper. The rest of this paper is organized as follows. In Section 2

we review the technology portfolio provided by the ANTAREX tool flow. In Section 3

3

Figure 1: The ANTAREX Tool Flow, comprised of a compile-time part, where the instrumentation of the

functional code is performed based on the strategies expressed in the ANTAREX DSL, and a run-time part,

where the generated adaptive binary is monitored during its run on the system and optimised by tuning its

parameters, including selection of different code versions.

we provide an assessment of the impact of the proposed DSL on application specifi-

cations, while Sections 4 and 5 show of how the Tool Flow has been applied the two

use cases of the project. Finally, in Section 6 we compare the ANTAREX DSL with

related works from the recent literature, and in Section 7 we draw some conclusions.

2. ANTAREX Technology Portfolio

In this Section, we first provide an overview of the ANTAREX DSL itself, and then

we show how the DSL is used to apply each of the main components of the Tool Flow,

providing examples of the code needed in each case to allow the reader to understand

the level of complexity involved.

2.1. The ANTAREX DSL

HPC applications might profit from adapting to operational and situational con-

ditions, such as changes in contextual information (e.g., workloads), in requirements

4

(e.g., deadlines, energy), and in availability of resources (e.g., connectivity, number

of processor nodes available). A simplistic approach to both adaptation specification

and implementation (see, e.g., [6]) employs hard coding of, e.g., conditional expres-

sions and parameterizations. In our approach, the specification of runtime adaptability

strategies relies on a DSL implementing key concepts from Aspect-Oriented Program-

ming (AOP) [7], mainly specifying adaptation concerns, targeting specific execution

points, separately from the primary functionality of the application, with minimum or

no changes to the application source code.

Our approach is based on the idea that certain application/system requirements

(e.g., target-dependent optimizations, adaptivity behavior and concerns) should be spec-

ified separately from the source code that defines the main functionality. Those require-

ments are expressed as DSL aspects that embody strategies. An extra compilation step,

performed by a weaver, merges the original source code and aspects into the intended

program [8]. Using aspects to separate concerns from the core objective of the program

can result in cleaner programs and increased productivity (e.g., reusability of strate-

gies). As the development process of HPC applications typically involves two types of

experts (application-domain experts and HPC system architects) that split their respon-

sibilities along the boundary of functional description and extra-functional aspects, our

DSL-aided toolflow provides a suitable approach for helping to express their concerns.

The ANTAREX DSL relies on the already existing DSL technology LARA [4, 5].

In particular, the LARA technology provides a framework that we adopted to imple-

ment the ANTAREX aspects and APIs. Moreover, we developed other LARA-related

tools such as the Clava4 weaver to leverage the rest of the ANTAREX tool flow.

LARA is a programming language that allows developers to capture non-functional

requirements and concerns in the form of strategies, which are decoupled from the

functional description of the application. Compared to other approaches that usually

focus on code injection (e.g., [9]), LARA provides access to other types of actions,

e.g., code refactoring, compiler optimizations, and inclusion of additional informa-

tion, all of which can guide compilers to generate more efficient implementations.

Additional types of actions may be defined in the language specification and asso-

ciated weaver, such as software/hardware partitioning [10] or compiler optimization

sequences [11]. One important feature of the LARA-aided source-to-source compiler

developed in ANTAREX is the capability to refactor the code of the application in order

to expose adaptivity behavior and/or adaptivity design points that can be explored by

the ANTAREX autotuning component. In the following sections we show illustrative

examples5 of some of the strategies that can be specified using LARA in the context of

a source-to-source compiler and currently used for one of the use cases.

2.2. Precision Tuning

Error-tolerating applications are increasingly common in the emerging field of real-

time HPC, allowing to trade-off precision for performance and/or energy. Thus, recent

4https://github.com/specs-feup/clava
5Complete working versions for all examples can be found in https://github.com/specs-feup/specs-

lara/tree/master/2018%20DSD

5

works investigated the use of customized precision in HPC as a way to provide a break-

through in power and performance. We developed a set of LARA aspects enabling

mixed precision tuning on C/C++ and OpenCL kernels. In our precision tuning we

combine an adaptive selection of floating and fixed point arithmetic, targeting HPC

applications.

Figure 2 presents part of a LARA strategy that changes all declarations of a certain

type to a target type (e.g., from double to float) for a given function. We note, however,

that a practical and reusable aspect needs to deal with further issues, such as the cloning

of functions whose types we want to change but are also called by other unrelated

functions in the code, assignments of constants, casts, recursion, changing functions

definitions and library functions to the ones related to the type used (e.g., sqrtf vs

sqrt in Math.h), etc. In this example, changeType is a function that analyzes and

changes compound types, such as double* and double[]. If the type described in

$old is found inside the type of the declaration, it is replaced with the type described in

$new. To be more specific, if $old is double, $new is float and $decl.type

is double*, the type of the declaration will be changed to float*. If the original

declaration type does not contain the $old type, it is not changed.

1 aspectdef ChangePrecision

2

3 input $func, $old, $new end

4

5 /* change type of variable declarations found

6 * inside the function and parameters */

7 select $func.decl end

8 apply

9 var changedType = changeType($decl.type, $old, $new);

10 def type = changedType;

11 end

12

13 /* do the same with the function return type ... */

14 var $returnType = $func.functionType.returnType;

15 $func.functionType.def returnType =

16 changeType($returnType, $old, $new);

17 end

Figure 2: Example of LARA aspect to change the types of variables declared inside a given function.

A LARA aspect consists of three main steps. Firstly, one captures the points of

interest in the code using a select statement, which in this example selects variable

declarations. Then, using the apply statement, one acts over the selected program

points. In this case, it will define the types of the captured declared variables, using

the type attribute. Finally, we can then specify conditions to constrain the execution

of the apply (i.e., only if the declared variable has a specific type). This can be done

via conditional statements (ifs) as well as via special condition blocks that con-

strain the entire apply. LARA promotes modularity and aspect reuse, and supports

embedding JavaScript code, to specify more sophisticated strategies. As shown in [12],

we support exploration of mixed precision OpenCL kernels by using half, single, and

double precision floating point data types. We additionally support fixed point rep-

resentations through a custom C++ template-based implementation for HPC systems,

6

which has already been used in [13]. In both cases the LARA aspects automatically

insert code for proper type conversion before and after the critical section that has been

converted to exploit a reduced precision data type.

The LARA aspect in Figure 3 shows the generation of different mixed-precision

versions to be dynamically evaluated. It is possible to specify – as input of the aspect

– the number of mix combination to generate, and a rule set to filter out precision mix

combinations which are very likely to lead to useless and/or not efficient results. We

exploit programmer’s application domain knowledge by relying on them to define test

cases to evaluate the different code versions at runtime. LARA automatically inserts

code to dynamically perform the exploration over the space of the generated versions

with different precision mix.

1 aspectdef HalfPrecisionOpenCL

2 input

3 combinationFilter = [],

4 maxVersions = undefined

5 end

6

7 // List of float and double vars in the OpenCL kernel

8 call result : OpenCLVariablesToTest;

9 var variablesToTest = result.variablesToTest;

10 // Sequence generator

11 var sequenceGenerator = new SequentialCombinations(

12 variablesToTest.length, maxVersions);

13 var counter = 0;

14 while(sequenceGenerator.hasNext()) {

15 Clava.pushAst(); // Save current AST

16

17 // Get a new combination of variables

18 var combination = sequenceGenerator.next();

19 var lastSeed = sequenceGenerator.getLastSeed();

20 if(!isCombinationValid(lastSeed, combinationFilter))

21 continue;

22 // Change the builtin type of the variables

23 for(var index of combination) {

24 var $vardecl = Clava.findJp(variablesToTest[index]);

25 changeTypeToHalf($vardecl);

26 }

27 call addHalfPragma(); // Enable half-precision

28 var outputFolder = createFolder(lastSeed,

29 variablesToTest.length, counter);

30 Clava.writeCode(outputFolder); // Generate code

31 Clava.popAst(); // Restore previous AST tree

32 counter++; // Increase counter

33 }

34 end

Figure 3: Example of LARA aspect that generates different precision mix versions of the same OpenCL

kernel.

2.3. Code Versioning

One of the strategies supported in the ANTAREX toolflow is the capability to gen-

erate versions of a function and to select the one that satisfies certain requirements

at runtime. Figure 4 shows an aspect that clones a set of functions and changes the

types of the newly generated clones. Each clone has the same name as the original

7

with the addition of a provided suffix. We start with a single user-defined function

which is cloned by the aspect CloneFunction (called in line 13). Then, it re-

cursively traverses calls to other functions inside the clone and generates a clone for

each of them. Inside the clones, calls to the original functions are changed to calls

to the clones instead, building a new call tree with the generated clones. At the end

of the aspect CreateFloatVersion (lines 16–17,) we use the previously defined

ChangePrecision aspect to change the types of all generate clones.

1 import ChangePrecision;

2 import clava.ClavaJoinPoints;

3

4 aspectdef CreateFloatVersion

5 input $func, suffix end

6 output $clonedFunc end

7

8 $double = ClavaJoinPoints.builtinType(’double’);

9 $float = ClavaJoinPoints.builtinType(’float’);

10

11 /* clone the target functions and the child calls */

12 var clonedFuncs = {};

13 call cloned : CloneFunction($func, suffix, clonedFuncs);

14

15 /* change the precision of the cloned function */

16 for($clonedFunc of clonedFuncs)

17 call ChangePrecision($clonedFunc, $double, $float);

18

19 $clonedFunc = cloned.$clonedFunc;

20 end

Figure 4: Example of LARA aspect to clone an existing function and change the type of the clone.

The aspect Multiversion – in Figure 5 – adapts the source code of the applica-

tion in order to call the original version of a function or a generated cloned version with

a different type, according to the value of a parameter given by the autotuner at run-

time. The main aspect calls the previously shown aspect, CreateFloatVersion,

which clones the target function and every other function it uses, while also changing

their variable types from double to float (using the aspects presented in Figure 4

and Figure 2). This is performed in lines 8–9 of the example. From lines 13 to 34,

the Multiversion aspect generates and inserts code in the application that is used

as switching mechanism between the two versions. It starts by declaring a variable to

be used as a knob by the autotuner, then it generates the code for a switch statement

and replaces the statement containing the original call with the generated switch code.

Finally, in lines 36–38, the aspect surrounds both calls (original and float version) with

timing code. An excerpt of the resulting C code can bee seen in Figure 6.

In the ANTAREX toolflow, the capability of providing several versions of the same

function is not limited to static features. LIBVERSIONINGCOMPILER [14, 15] (abbre-

viated LIBVC) is an open-source C++ library designed to support the dynamic genera-

tion and versioning of multiple versions of the same compute kernel in a HPC scenario.

It can be used to support continuous optimization, code specialization based on the in-

put data or on workload changes, or to dynamically adjust the application, without the

burden of a full just-in-time compiler. LIBVC allows a C/C++ compute kernel to be

8

1 import CreateFloatVersion;

2 import lara.code.Timer;

3 import clava.ClavaJoinPoints;

4

5 aspectdef Multiversion

6 input $func, knobName end

7

8 call fVersion : CreateFloatVersion($func, "_f");

9 var $floatFunc = fVersion.$clonedFunc;

10 var timer = new Timer();

11

12 /* Identify call by name... */

13 select function.body.stmt.call{$func.name} end

14 apply

15 /* ... and by type signature */

16 if(!$func.functionType.equals($call.functionType))

17 continue;

18

19 /* Add knob for choosing the version */

20 $int = ClavaJoinPoints.builtinType(’int’);

21 $body.exec addLocal(knobName, $int, 0);

22

23 /* create float declaration for first argument */

24 var $arg = createFloatArg($call.args[0]);

25 /* Create call based on float version of function */

26 $floatFunc.exec $fCall : newCall([$arg, $call.args[1]]);

27 /* Copy current call */

28 $call.exec $callCopy : copy();

29

30 /* Create switch */

31 var $condition = ClavaJoinPoints.exprLiteral(knobName);

32 var switchCases = {0: $callCopy, 1: $fCall};

33 call switchJp : CreateSwitch($condition, switchCases);

34 $stmt.exec replaceWith(switchJp.$switch);

35

36 /* Time calls to both original and float functions*/

37 timer.time($callCopy, "Original time:");

38 timer.time($fCall, "Float time:");

39 end

40 end

Figure 5: Example of LARA aspect that generates an alternative version of a function and inserts a mecha-

nism in the code to switch between versions.

dynamically compiled multiple times while the program is running, so that different

specialized versions of the code can be generated and invoked. Each specialized ver-

sion can be versioned for later reuse. When the optimal parametrization of the compiler

depends on the program workload, the ability to switch at runtime between different

versions of the same code can provide significant benefits [16, 17]. While such versions

can be generated statically in the general case, in HPC execution times can be so long

that exhaustive profiling may not be feasible. LIBVC instead enables the exploration

and tuning of the parameter space of the compiler at runtime.

Figure 7 shows an example of usage of LIBVC through LARA, which demonstrates

how to specialize a function. The user provides this aspect with a target function call

and a set of compilation options. These include compiler flags and possible compiler

definitions, e.g., data discovered at runtime, which is used as a compile-time constant

in the new version. Based on the target function call, the aspect finds the function

9

1 switch (version) {

2 case 0: {

3 clock_gettime(CLOCK_MONOTONIC, &time_start_0);

4 SumOfInternalDistances(atoms, 1000);

5 clock_gettime(CLOCK_MONOTONIC, &time_end_0);

6 double time_0 = calc_time(time_start_0, time_end_0);

7 printf("Original time:%fms\n", time_0);

8 }

9 break;

10 case 1: {

11 clock_gettime(CLOCK_MONOTONIC, &time_start_1);

12 SumOfInternalDistances_f(atoms_f, 1000);

13 clock_gettime(CLOCK_MONOTONIC, &time_end_1);

14 double time_1 = calc_time(time_start_1, time_end_1);

15 printf("Float time::%fms\n", time_1);

16 }

17 break;

18 }

Figure 6: Excerpt of the C code resulting from the generation of alternative code versions.

definition which is passed to the library. After the options are set, the original function

call is replaced with a call of the newly compiled and loaded specialized version of the

kernel.

1 import antarex.libvc.LibVC;

2

3 aspectdef SimpleLibVC

4

5 input

6 name, $target, options

7 end

8

9 var $function = $target.definition;

10 var lvc = new LibVC($function, {logFile:"log.txt"}, name);

11

12 var lvcOptions = new LibVCOptions();

13 for (var o of options) {

14 lvcOptions.addOptionLiteral(o.name, o.value, o.value);

15 }

16 lvc.setOptions(lvcOptions);

17

18 lvc.setErrorStrategyExit();

19

20 lvc.replaceCall($target);

21 end

Figure 7: Example of LARA aspect to replace a function call to a kernel with a call to a dynamically

generated version of that kernel.

It is worth noting that the combination of LARA and LIBVC can also be used to

support compiler flag selection and phase-ordering both statically and dynamically [18,

19].

10

2.4. Memoization

Memoization is a technique that trades off computation time for memory space by

storing computed values and reusing them instead of recomputing them. It has been

shown to be effective in improving performance and reducing energy consumption

in large scale applications [20]. We introduce in this section a memoization technique

integrated in the ANTAREX toolflow. Performance can be improved by caching results

of pure functions (i.e. deterministic functions without side effects), and retrieving them

instead of recomputing a result. We have implemented the work of [21] generalized for

C++ and aided with extensions regarding user/developer flexibility. We describe here

only the principles of this technique and more details can be found in [22] [21].

1 float foo (float p) {

2 /* code of foo without side effects */

3 }

4

5 float foo_wrapper(float p)

6 {

7 float r;

8 /* already in the table ? */

9 if (lookup_table(p, &r)) return r;

10 /* calling the original function */

11 r = foo(p);

12 /* updating the table or not */

13 update_table(p, r);

14 return r;

Figure 8: A memoizable C function and its wrapper.

Consider a memoizable C function foo as shown in Figure 8. The memoization

consists in:

1. the insertion of a wrapper function foo_wrapper and an associated table.

2. The substitution of the references to foo by foo_wrapper in the application.

This technique has been extended for C++ memoizable methods and takes into ac-

count the mangling, the overloading, and the references to the objects. Memoization is

proposed in the ANTAREX project by relying on aspects programmed using the DSL.

The advantage of these aspects is that the memoization is integrated into the applica-

tion without requiring user modifications of the source code. The code generated by

Clava is then compiled and linked with the associated generated memoization library.

An example of a LARA aspect for memoization is shown in Figure 9. It defines the

memoization (lines 1-13) of a method (aMethod) of a class (aClass) with nbArg

parameters of same type as the returned type (Type). Note that the inputs nbArg and

Type are required to manage the overloading of the object-oriented languages such

that C++. Other parameters (from line 4) are provided to improve several memoiza-

tion approaches. For examples, the user can specify (1) the policy in case of conflicts

regarding the same table entry (line 11): replacement or not in case of conflict to the

same entry of the table for different parameters of the memoized function, and (2) the

size of the table (line 15). After some verifications, not detailed here, on the parameters

11

1 aspectdef Memoize_Method_overloading_ARGS

2 input

3 aClass, // Name of a class

4 aMethod, // Name of a method of the class aClass

5 pType, // Name of the selected type

6 nbArgs, // Number of parameters of the method

7 fileToLoad, // filename for init of the table, or ’none’

8 FullOffLine,// yes for a fully offline strategy

9 FileToSave, // filemane to save the table, or ’none’

10 Replace, // Always replace in case of collisions

11 approx, // Number of bits to delete for approximation.

12 tsize // Size of the internal table.

13 end

14 // Control on the parameters of the aspect: nbArgs in [1,3]

15 ...

16 // Searching the method.

17 var MethodToMemoize, found=false;

18 select class{aClass}.method{aMethod} end

19 apply

20 if (! found) {

21 found = isTheSelectedMethod($method, nbArgs, pType);

22 if (found) MethodToMemoize=$method;

23 }

24 end

25 if (!found)

26 { /* message to the user */}

27 else {

28 GenCode_CPP_Memoization(aClass, aMethod, pType, nbArgs,

29 fileToLoad, FullOffLine, FileToSave, Replace, approx, tsize);

30 call CPP_UpdateCallMemoization(aClass, aMethod, pType, nbArgs);

31 }

32 end

Figure 9: An example of LARA aspect defined for the memoization.

(lines 14-15), the method is searched (lines 17-24). Then, in case of success, the code

of the wrapper is added (line 28) to produce the memoization library, and (line 30) the

code of the application is modified for calling the created “wrapper”, this wrapper is

also declared as a new method of the class.

Moreover, some variables are exposed for autotuning in the memoization library.

For each function or method, a variable that manages the dynamical "stop/run" of the

memoization is exposed, as well as the variable that manages the policy to use in case

of conflict to the table. To be complete about the memoization, a LARA aspect is

proposed to automatically detect the memoizable functions or methods. Then the user

may decide to apply or not the memoization on these selected elements.

2.5. Self-Adaptivity & Autotuning

In ANTAREX, we consider each application’s function as a parametric function

that elaborates input data to produce an output (i.e., o = f(i, k1, . . . , kn)), with as-

sociated extra-functional requirements. In this context, the parameters of the function

(k1, . . . , kn) are software-knobs that modify the behavior of the application (e.g., par-

allelism level or the number of trials in a MonteCarlo simulation). The main goal of

12

mARGOt 6 [23] is to enhance an application with an adaptive layer, aiming at tuning

the software knobs to satisfy the application requirements at runtime. To achieve this

goal, the mARGOt dynamic autotuning framework developed in ANTAREX is based

on the MAPE-K feedback loop [24]. In particular, it relies on an application knowl-

edge, derived either at deploy time or at runtime, that states the expected behavior of

the extra-functional properties of interest. To adapt, on one hand mARGOt uses run-

time observations as feedback information for reacting to the evolution of the execution

context. On the other hand, it considers features of the actual input to adapt in a more

proactive fashion. Moreover, the framework is designed to be flexible, defining the

application requirements as a multi-objective constrained optimization problem that

might change at runtime.

To hide the complexity of the application enhancement, we use LARA aspects

for configuring mARGOt and for instrumenting the code with related API. Figure 10

provides a simple example of a LARA aspect where mARGOt has been configured

(lines 5-20) to actuate on a software knob Knob1 and target error and throughput met-

rics [25]. In particular, the optimization problem has been defined as the maximization

of the throughput while keeping the error under a certain threshold. The last part of

the aspect (lines 23-27) is devoted to the actual code enhancement including the needed

mARGOt call for initializing the framework and for updating the application configu-

ration. The declarative nature of the LARA library developed for integrating mARGOt

simplifies its usage hiding all the details of the framework.

2.6. Monitoring

Today processing elements embed the capability of monitoring their current perfor-

mance efficiency by inspecting the utilization of the micro-architectural components as

well as a set of physical parameters (i.e., power consumption, temperature, etc). These

metrics are accessible through hardware performance counters which in x86 systems

can be read by privilege users, thus creating practical problems for user-space libraries

to access them. Moreover, in addition to sensors which can be read directly from the

software running on the core itself, supercomputing machines embed sensors external

to the computing elements but relevant to the overall energy-efficiency. These elements

include the node and rack cooling components as well as environmental parameters

such as the room and ambient temperature. In ANTAREX, we developed ExaMon[26]

(Exascale Monitoring) to virtualise the performance and power monitoring access in a

distributed environment. ExaMon decouples the sensor readings from the sensor value

usage. Indeed, ExaMon uses a scalable approach were each sensor is associated to

a sensing agent which periodically collects the metrics and sends the measured value

with a synchronized time-stamp to an external data broker. The data broker organises

the incoming data in communication channels with an associated topic. Every new

message on a specific topic is then broadcast to the related subscribers, according to a

list kept by the broker. The subscriber registers a callback function to the given topic

which is called every time a new message is received. To let LARA take advantage

of this monitoring mechanism we have designed the Collector API, which allow the

6https://gitlab.com/margot_project/core

13

1 aspectdef mARGOt_Aspect

2 /* Input: TargetFunctionCall*/

3 input targetCallName end

4 /* mARGOt configuration */

5 var config = new MargotConfig();

6 var targetBlock = config.newBlock($targetCallName);

7 targetBlock.addKnob(’Knob1’, ’knob1’, ’int’);

8 targetBlock.addMetric(’error’, ’float’);

9 targetBlock.addMetric(’throughput’, ’float’);

10 targetBlock.addMetricGoal(’my_error_goal’,

11 MargotCFun.LE, 0.03, ’error’);

12

13 /* optimization problem */

14 var problem = targetBlock.newState(’defaultState’);

15 problem.maximizeMetric(’throughput’);

16 problem.subjectTo(’my_error_goal’);

17

18 /* generate the information needed

19 for enhancing the application code */

20 codegen = MargotCodeGen.fromConfig(config, $targetCallName);

21

22 /* Target function call identification */

23 select stmt.call{targetName} end

24

25 /* Add mARGOt calls*/

26 codegen.init($call);

27 codegen.update($call);

28 end

Figure 10: Example of a LARA aspect for autotuner configuration and code enhancement.

initialization of the Collector component associated with a specific topic that keeps an

internal state of the remote sensor updated. This internal state can then be queried asyn-

chronously by the Collector API to gather its value. LARA aspects have been designed

to embed the Collector API and to make the application code self-aware.

Figure 11 shows a usage example of ExaMon through LARA, which subscribes to

a topic on a given broker and inserts a logging message in the application. To define

the connection information, the user needs to provide the address to connect to, as well

as the name of the topic to subscribe. As for the integration in the original application

code the user needs to provide a target function, where the collector will be managed,

and a target statement, where the query of the data and logging will be performed.

2.7. Power Capping

Today’s computing elements and nodes are power limited. For this reason, state-

of-the-art processing elements embed the capability of fine-tuning their performance to

control dynamically their power consumption. This includes dynamic scaling of volt-

age and frequency, and power gating for the main architectural blocks of the processing

elements, but also some feedback control logic to keep the total power consumption of

the processing element within a safe power budget. This logic in x86 systems is named

RAPL [27]. Demanding the power control of the processing element entirely to RAPL

may not be the best choice. Indeed, it has been recently discovered that RAPL is appli-

cation agnostic and thus tends to waist power in application phases which exhibit IOs

or memory slacks. Under these circumstances there are operating points that proved to

14

1 import antarex.examon.Examon;

2 import lara.code.Logger;

3

4 aspectdef SimpleExamon

5

6 input

7 name, ip, topic, $manageFunction, $targetStmt

8 end

9

10 var broker = new ExamonBroker(ip);

11

12 var exa = new ExamonCollector(name, topic);

13

14 // manage the collector on the target function

15 select $manageFunction.body end

16 apply

17 exa.init(broker, $body);

18 exa.start($body);

19

20 exa.end($body);

21 exa.clean($body);

22 end

23

24 // get the value and use it in the target stmt

25 exa.get($targetStmt);

26

27 // get the last stmt of the scope of the target stmt

28 var $lastStmt = $targetStmt.ancestor("scope").lastStmt;

29 // Create printf for time and data

30 var logger = new Logger();

31 logger.ln().text("Time=").double(getTimeExpr(exa))

32 .text("[s], data=").double(exa.getMean()).ln();

33 // Add printf after last stmt

34 logger.log($lastStmt);

35 end

Figure 11: Example of a LARA aspect integrate an ExaMon collector into an application.

be more energy efficient than the ones selected by RAPL while still respecting the same

power budget [28]. However, these are only viable if the power capping logic is aware

of the application requirements. To do so, we have developed a new power capping

run-time based on a set of user space APIs which can be used to define a relative prior-

ity for the given task currently in execution on a given core. Thanks to this priority, the

run-time is capable of allocating more power to the higher priority process [29, 30]. In

ANTAREX, these APIs can be inserted by LARA aspects in the application code.

3. Evaluation

Tables 1 and 2 show static and dynamic metrics collected for the weaving process

of the presented examples. In Table 1, we can see the number of logical lines of source

code for the LARA strategies, as well as for the input code and generated output code

(the SLoC-L columns). In the last two columns we report the difference in SLoC and

functions between the input and output code (the delta columns). Note the woven and

delta results for the HalfPrecisionOpenCL strategy are the sum of all generated code,

totaling 31 versions.

15

An inspection of columns LARA SLoC-L and Delta SLoC-L reveals that, in most

examples, there is a large overhead in terms of LARA SLoC-L over application SLoC-

L. While this may seem a problem, we need to consider that a large part of the work

being performed by these strategies is code analysis, which does not translate directly

to SLoC-L in the final application. Furthermore, the Delta SLoC-L metric does not ac-

count for removed application code and for these cases a metric based on the similarity

degree among code versions could be of more interest. Also, in real-world applications,

the ratio of LARA SLoC-L to application SLoC-L would be definitely more favorable,

thanks to aspect reuse.

Table 1: Static Metrics
Strategy LARA LARA Input Input Woven Woven Delta Delta

SLoC-L Aspects SLoC-L Func SLoC-L Func SLoC-L Func

ChangePrecision 27 1 12 3 13 3 1 0

SimpleExamon 20 1 12 3 23 5 11 2

Multiversion 46 2 12 3 43 5 31 2

CreateFloatVersion 28 2 12 3 24 3 12 0

SimpleLibVC 12 1 12 3 39 4 27 1

HalfPrecisionOpenCL* 93 3 9 1 279 31 270 30

Total 226 10 69 16 421 51 352 35

Table 2: Dynamic Metrics

File Selects Attributes Actions Inserts Native

SLoC

ChangePrecision 4 109 2 1 0

SimpleExamon 4 131 18 7 0

Multiversion 8 477 27 16 9

HalfPrecisionOpenCL 125 2211 381 159 31

CreateFloatVersion 2 170 6 3 0

SimpleLibVC 7 93 13 8 36

Total 150 3191 447 194 76

To better understand the impact of analysis, we report in the first two columns

of Table 2 the number of code points and of their attributes analysed, which can be

compared with the last three column of the same table, which instead report the corre-

sponding effects, in terms of the number of modified points and lines of code inserted.

To understand the impact of removed lines of code, we look at the Inserts and Actions

columns, which show that circa one half of the actions do not insert code. The end line

is that the analysis work exceeds the transformation work by an order of magnitude,

and the insertions only underestimate significantly the work performed.

Another benefit for user productivity when using LARA is how the techniques

presented in the examples can scale into large-scale applications and scenarios. Most

of the presented strategies are parameterized by function, i.e., they receive a function

join point or name and act on the corresponding function. This could be performed

manually, albeit crudely, using a search function of an IDE. Consider the case where

we instead want to target a set of functions, whose names we may not know, based

on their function signatures, or based on the characteristics of the variables declared

inside their scope. This kind of search and filtering based on syntactic and semantic

16

information available in the program is one of the key features of LARA and it cannot

be easily attained with other tools. As the aspects presented here illustrate, LARA

strategies can be made reusable and applied over large applications, greatly out scaling

the effort needed to develop them.

4. Case Study: Computer Accelerated Drug Discovery

In this section, we provide an overview of the application of the ANTAREX tool

flow to the Drug Discovery application developed in Use Case 1.

Computational discovery of new drugs is a compute-intensive task that is critical

to explore the huge space of chemicals with potential applicability as pharmaceutical

drugs. Typical problems include the prediction of properties of protein-ligand com-

plexes (such as docking and affinity) and the verification of synthetic feasibility.

In the ANTAREX project it is expected that this application supports the explo-

ration of millions of ligands over several pockets with sizes ranging from a few thou-

sand atoms to several tens of thousands, in a timely manner. Performance is a key

factor for this application, and we have used the ANTAREX tool flow to optimize the

use case for Exascale systems.

4.1. Auto-parallelization and exploration through the ANTAREX DSL

Experiments on using an entire cluster for execution of the Use Case 1 have shown

that relying only on MPI to parallelize the code both to distribute parallelism between

nodes and to take advantage of parallelism inside a node is highly inadequate. We ob-

served that a few tens of thousand tasks are enough to make MPI fail during execution.

To overcome that, we opted to use MPI only for distributing work between nodes, and

parallelize the application inside the node with OpenMP.

We have developed an auto-parallelization LARA library that uses static analy-

sis to detect and insert OpenMP pragmas in for loops that can be parallelized. We

have identified the function MeasureOverlap in the UC1 application as an im-

portant hotspot, and we have extracted it to a test application written in C (the auto-

parallelization library currently only supports C).

Figure 12 shows the LARA code that parallelizes the application. Line 6 calls

the parallelization library, which parallelizes all the for loops in the code that where

detected as safe to be parallelized. However, this can be a very inefficient strategy,

since nesting parallelism with OpenMP can lead to excessive overhead.

The code in lines 9-28 detects and disables all nested OpenMP pragmas. It starts

by iterating over all OpenMP pragmas in the code of the kind parallel for; then,

it retrieves all descendants of the loop corresponding to that pragma, that are also

OpenMP pragmas of the kind parallel for, and transforms those nested pragmas

into inlined comments.

After parallelizing the code, we want to explore two parameters: the number of

threads to use, and the size of the pocket to test. Figure 13 shows the LARA code for a

strategy that uses the LARA library LAT7 to explore these parameters. The strategy sets

7LAT is available at https://github.com/specs-feup/LAT-Lara-Autotuning-Tool

17

1 import clava.autopar.Parallelize;

2

3 aspectdef ParallelizeOuterPragmas

4

5 // Parallelize all loops

6 Parallelize.forLoops();

7

8 // Disable nested OpenMP pragmas

9 select omp end

10 apply

11 if($omp.kind !== ’parallel for’) {

12 continue;

13 }

14

15 if($omp.target === undefined) {

16 continue;

17 }

18

19 // ’target’ is the statement associated with the pragma

20 // (a ’for’ loop in this case)

21 for($innerOmp of $omp.target.descendants(’omp’)) {

22 if($innerOmp.kind !== ’parallel for’) {

23 continue;

24 }

25 // Transform the inner OpenMP pragma into an inlined comment

26 $innerOmp.replaceWith(’// ’ + $innerOmp.code);

27 }

28 end

29 end

Figure 12: LARA code for loop parallelization.

the number of threads and the number of atoms of the pocket size to explore, and creates

versions of the code for all combinations of these parameters. For each combination,

the strategy will compile, run and collect the results, which are aggregated into a CSV

file at the end.

In more detail, line 10 creates an instance of the Lat class, which will be used

throughout the strategy. Since the code has been instrumented with OpenMP pragmas,

line 13 sets some necessary compilation flags. Line 16 select the section of code we

want to explore (i.e., the call to the function MeasureOverlap), and lines 17-20 set

the call as the place in the code where we want to measure the metrics, and the body of

the function where the call appears as the place where the parameters will be changed.

Lines 26-28 create the ranges of values we want to explore: a set of predefined

values for the variable num_pocket_atoms, and a set of number of threads that

start at 1 and double at each step.

Lines 33-34 set the metrics we want to measure (i.e., execution time and energy),

line 37 sets the number of times we should repeat the measures for each version of the

code, and line 38 executes the exploration. Finally, line 39 collects the results to a CSV

file.

4.2. Performance

We have applied the auto-parallelization and exploration strategy to the C version

of the MeasureOverlap function, considering pocket sizes from 5.000 atoms to

18

1 import lat.Lat;

2 import lat.LatUtils;

3 import lat.vars.LatVarOmpThreads;

4

5 import lara.metrics.EnergyMetric;

6 import lara.metrics.ExecutionTimeMetric;

7

8 aspectdef UC1Exploration

9

10 var lat = new Lat(’uc1_exploration’);

11

12 // Compiler flags

13 lat.loadCmaker().cmaker.addFlags(’-fopenmp’, ’-O3’, ’-march=native’);

14

15 // Scope for variable change

16 select function{"main"}.body.call{"MeasureOverlap"} end

17 apply

18 lat.setMeasure($call);

19 lat.setScope($body);

20 end

21

22 // Design space

23 pocketSizes = [5000, 7000, 10000, 12000, 50000];

24 maxThreads = 5;

25

26 var samples = new LatVarList("num_pocket_atoms", pocketSizes);

27 var threadValues = new LatVarRange("numThreads", 0, maxThreads, 1,

28 function(x){return Math.pow(2, x);});

29 var numThreads = new LatVarOmpThreads(threadValues);

30

31 lat.addSearchGroup([samples, numThreads]);

32

33 // Metrics

34 lat.addMetric(new ExecutionTimeMetric());

35 lat.addMetric(new EnergyMetric());

36

37 // Tune

38 lat.setNumTests(5);

39 var results = lat.tune();

40 LatUtils.resultToCsv(results, ’./’);

41 end

Figure 13: LARA code for parameter exploration.

50.000 atoms. We run the experiments on a computer with an Intel Xeon CPU E5-

1650 v4 processor, at 3.60GHz and 64GB of RAM. The code was compiled with gcc

7.3.0.

Figure 14 shows the improvements in execution time (i.e., speedup) and energy

(i.e., energy improvement) when the number of threads changes, when considering the

biggest pocket size (15.000 atoms). We use as input the sizes of 120k ligands, based

on a database provided by the industrial partner.

As expected for this case, the improvement curve of the execution time coincides

with the improvement in energy consumed, and increases with the number of threads.

The number of atoms in the pocket size modestly changes the speedup, i.e. between

0.7 % and 5.5 %, for the same number of threads. The amount of change increases

with the number of threads, but for a given number of threads, an increase in pocket

size improves speedup up to a point, and after that the speedup decreases (we consider

19

that this happens due to saturation of memory resources). This kind of exploration can

be used to generate data which can be fed to the autotuner.

Figure 14: Results of the DSL-enabled automatic exploration

5. Case Study: Self-Adaptive Navigation System

In this section, we provide an overview of the application of the ANTAREX tool

flow to the Self-Adaptive Navigation System developed in Use Case 2. The system is

designed to process large volumes of data for the global view computation and to han-

dle dynamic loads represented by incoming routing requests from users of the system.

Both disciplines require HPC infrastructure in order to operate efficiently while main-

taining contracted SLA. Integration of the ANTAREX self-adaptive holistic approach

can help the system to meet the mentioned requirements and pave the way to scaling

its operation to future Exascale systems.

Core of the system is a routing pipeline with several stages which uses our custom

algorithm library written in C++. The library provides an API for the individual routing

algorithms and for data access layer, which provides abstraction of a graph represen-

tation of the road network. The graph is stored in a HDF5 file, which is a well known

and convenient storage format for structured data on HPC clusters.

5.1. Memoization and Precision Tuning through the ANTAREX DSL

The navigation system in our use case calculates routes simultaneously for possibly

all participants in the system and it much relies on precise calculation of the macro-

scopic traffic flow model. The critical component for our traffic flow calculation is the

20

Betweenness Centrality algorithm, which also poses the biggest challenge for compu-

tation efficiency. The Betweenness Centrality algorithm can alternatively be used as a

tool for a what-if analysis on a real traffic network [31].

We have applied two source-to-source transformations to the Betweenness Central-

ity algorithm: custom precision and memoization. The original application contains

770 lines of the code (C code + the header files). The LARA aspect in Figure 15 shows

the main strategy for the custom precision transformation. It replaces the references to

double type by a new symbol and replaces all the syntactic expressions that depend

on the double type (for instance, mathematical functions) by new symbols. The cus-

tom precision library generates several files that allow to have different definitions for

the created symbols: a file that defines the created parameter symbols by the original

values (double here); a file that defines the created symbols to have a float version,

generated by the call to the CustomPrecisionGenParametersFor(’float’)

aspect; a file that contains a template to have another type representation. The last one

must be updated by the user to a specific type representation (for example: half preci-

sion, fixed point representation, etc.). After applying the custom precision strategy, the

final number of lines of the Betweenness Centrality application is equal to 870.

1 import clava.Clava;

2 import clava.ClavaJoinPoints;

3 import antarex.utils.messages;

4 import antarex.precision.CustomPrecision;

5

6 aspectdef Launcher

7 println(’ANTAREX UC2, Custom precision’)

8 call CustomPrecision_Initialize();

9 call CustomPrecisionFor(’double’);

10 call CustomPrecisionGenParametersFor(’float’);

11 call CustomPrecision_Finalize();

12 end

Figure 15: Custom precision LARA launcher for Betweenness application

For the memoization strategy, which was used as a proof-of-concept for this tech-

nology, the main DSL aspect is shown in Figure 16. It applies the memoization to the

method computeMetric of the Betweenness class.

1 import clava.Clava;

2 import clava.ClavaJoinPoints;

3 import antarex.utils.messages;

4 import antarex.memoi.Memoization;

5

6 aspectdef Launcher

7 println(’ANTAREX UC2, Memoization’)

8 call Memoize_Initialize();

9 call Memoize_Method(’Betweenness’, ’computeMetric’);

10 call Memoize_Finalize();

11 end

Figure 16: Lara launcher for memoization in Betweenness application

21

Table 3: Characterization of the traffic network graphs used in the experiments

Graph Vertices Edges

Porto city area 7,316 14,793

4EU countries 3,567,735 8,610,752

After applying the strategy, the application has 775 lines of code, and uses a custom

memoization library automatically generated by Clava with around 150 lines of C code.

The number of generated lines depends on the number of memoized functions (one in

this case). So, the total number of lines is 925, considering the memoization library.

In order to optimize the memory allocation, we applied another modification to the

Betweenness Centrality algorithm. It consists of moving statements outside the body

of a loop without affecting the functionality of the program (also called code hoisting).

This transformation was applied manually and is not defined in LARA. We also applied

the memoization technique to the routing algorithms for one function, with a similar

number of generated lines as the Betweenness Centrality algorithm.

5.1.1. Performance and scalability

For testing impact of INRIA tools on Betweenness Centrality algorithm, we chose a

graph of the traffic network of Porto city in Portugal and one bigger graph of 4 countries

(4EU - Czech Republic, Slovakia, Austria, Hungary). This experiment was focused

on comparing the speed of an original and of a modified version of the Betweenness

Centrality algorithm. The size of both graphs in terms of vertex and edge count is

presented in Table 5.1.1.

The performance was tested on Salomon cluster operated by the IT4Innovations

National Supercomputing Center. The cluster consists of 1,008 compute nodes and

each of them contains 2x Intel Xeon E5-2680v3 processors clocked at 2.5 GHz and

128 GB DDR4@2133 RAM. When the experiments were performed, the operating

system was CentOS 7.6 and the code was compiled using Intel C++ Compiler 17.0.

We tested several versions of the Betweenness Centrality algorithm with various

combinations of the ANTAREX tools:

Float (F) a version of the algortihm with reduced precision of internal variables

Double (D) a standard algorithm

Float_Hoisting (FH) a float version with hoisting

Double_Hoisting (DH) a standard version with hoisting

Float_Hoisting_Memoization (FHM) a float version with hoisting and memoization

Double_Hoisting_Memoization (DHM) a standard version with hoisting and mem-

oization

Table 5.1.1 shows run times with the optimizations provided by different ANTAREX

tools for different number of nodes.

22

Table 4: Betweenness Centrality algorithm run times for the Porto graph (in seconds)

Compute Nodes F FH FHM D DH DHM

1 1.20 1.15 1.12 1.34 1.27 1.25

2 0.66 0.65 0.64 0.75 0.72 0.71

4 0.41 0.42 0.41 0.47 0.45 0.44

Table 5: Betweenness Centrality algorithm run times for the 4EU graph (in 10
3 seconds)

Compute Nodes F FH FHM D DH DHM

1 294.575 283.534 282.233 340.523 325.428 315.872

2 153.296 150.123 147.966 175.940 170.587 167.524

4 79.484 79.233 75.314 89.905 87.206 86.106

8 40.811 39.899 38.711 46.031 44.736 44.258

16 21.305 21.070 20.247 23.725 22.958 22.493

32 11.122 10.809 10.590 12.228 11.884 11.791

64 5.922 5.726 5.677 6.489 6.284 6.092

Overall, we can see a speedup of 3.7 to 7.8% for the larger graph when adding the

hoisting and memoization transformations to the double precision floating point code.

Considering also the precision reduction, the performance speedup grows to 14.3 to

20.6% depending on the number of cores employed.

5.2. Autotuning for Client-side navigation

The Navigation application is the one which finally sells the whole navigation sys-

tem, so it requires quite an attention. In a holistic approach the application implemen-

tation needs to consider multiple aspects, both in the functional and the performance

space as was stipulated in the specification of the system. In simple words:

• Navigation shall not exceed defined data consumption

• Navigation shall contribute with car data to build the knowledge of the server-

side system

• Navigation secures the required navigation quality

• Navigation optimizes communication with server-system to alleviate it from over

loading

All these goals have been addressed through the integration of a run-time autotuner.

Important from the HPC perspective is that a navigation client acts as an intelligent

source of computational demand, able to regulate the number of requests based on the

quality of the navigation and the ability to perform local route computation.

Figure 5.2 shows the tool-flow for configuring the autotuner towards statistically the

best performance. The input is the data consumption statistics on estimated data trans-

fer per request type for all service modules, while collected from prior test runs (circa

100 hours) of the navigation app under prevailing commute conditions (in Bratislava

23

Figure 17: Autotuning framework application to the navigation app

city). As the autotuner architecture evolved the definition of the input has been, in ad-

dition to mean, extended to contain the mean, max, min, and the standard deviation of

the variables.

Figure 5.2 shows the effectiveness of the mArgot autotuner compared with the base-

line autotuner included in the commercial release of Sygic Truck Navigation v13.7.0

(March 2017). The baseline (red dots) is a simple autotuning implementation that sup-

ports only a data transfer limit set at 20MB. It does not support constraints on the

navigation quality, providing the maximum quality based on its prediction of data us-

age.

The mArgot autotuner (green dots) instead takes into account a Navigation Quality

Index (NQI) as a constraint. The NQI is defined as a fuction of the remote routing fre-

quency, which saturates at a point dependent on the current traffic level. The constraint

in the proposed experiment is for the NQI to stay above a minimum of 6.0. Further-

more, it uses the same data transfer limit (20MB), a minimal data contribution of 20%,

and an estimate of 40 monthly driving hours.

As shown in Figure 5.2 the objectives are well met with an exception of few dots

about ideal consumption rate, which can be explained with stochasticity of driver be-

haviour records (data generated only in the case of excessive acceleration, braking,

cornering).

The impact of the NQI constraint selection can be understood through the exper-

iments reported in Figure 5.2. In the experiment, the NQI is set to different values

in the range [6.0,9.0]. The results show how relaxing the quality level allows to save

computational resources, lowering the total cost of routing, e.g., by 12% when drop-

ping from NQI 8.0 to 7.0. The results also allow to identify the best trade-off from a

value-at-cost solution in practical cases, at NQI 6.8. Compared to the baseline autotun-

ing, which achieves an NQI of 6.25, the mArgot autotuner allows a saving of 14% in

24

Figure 18: Performance comparison between baseline and mArgot autotuning

computational resources while providing a better quality of service, assuming the use

of the best trade-off NQI of 6.8.

6. Related Works

Many Domain Specific Languages have been proposed for the domain of High

Performance computing [32]. A survey of tools and approach in generative program-

ming for high performance computing can be found in [33], whereas a collection of

techniques for and examples of modern DSL design can be found in [34].

Many of them actually focus on a specific class of HPC applications, either in

terms of a specific field such as computational biology [35], or a specific mathemati-

cal problem, such as partial differential equations [36, 37, 38, 39], often using stencil

computation, i.e., common functionalities in a given field implemented in an optimised

way and offered through the DSL to the user, possibly with some autotuning capabili-

ties. This approach is effective in terms of combining efficiency of the generated code

with familiarity of the language for the domain expert. However, a different solution is

needed for each domain or problem, and when HPC experts at a supercomputing center

are called for to optimise a customer’s code, this forces specialisation, which may be

undesirable from the point of view of the supercomputing center management.

Indeed, at least some such centers have attempted to develop a coherent set of lan-

guages and tools applicable across multiple application domain within the wider con-

text of HPC [40], and large scale research programs have been devoted to this goal[41].

These DSLs are also related to algorithmic skeleton frameworks [42], which however

do not take into account the presence of the HPC expert. Model-driven approach have

been also proposed [43, 44], with the goal to abstract the application from the concrete

25

Figure 19: Variation of the compute workload (in routing requests per hour) as a function of the Navigation

Quality Index for a scenario of medium traffic commute in Bratislava

and ever-changing HPC infrastructure. A more general-purpose take on the stencil

computation is Terra [45], which employs Lua to support the creation of DSL compil-

ers which can interoperate with the generated code.

All these efforts have the opposite problem – they force the application developer

to acquire skills typical of the HPC experts. Furthermore, they do not deal easily with

the large amount of legacy code found in HPC, where applications may remain in use

for decades [32, 44]. The ANTAREX DSL, on the other hand, is designed exactly to

cater to these needs. By creating an external set of LARA aspects, the ANTAREX

DSL strategies, the HPC expert can manipulate the code developed by the application

domain expert. The DSL code can be as small or as large as needed to reach the perfor-

mance goals, but never intrudes in the ability of the application developers to maintain

or extend their applications. At the same time, by providing access to commonly used

computation patterns, code transformations, and autotuning tools, the ANTAREX DSL

enables the HPC experts to reuse solutions across different applications, removing the

need to reinvent the wheel with every new application domain.

7. Conclusions

In this paper, we have reported the major concrete outcome of the ANTAREX re-

search project, the ANTAREX DSL. The DSL, based on the AOP language LARA,

aims at supporting a well-established collaboration model between users and support

staff of HPC centers, where the users develop applications focusing on the functional

requirements, and then take advantage of the support staff’s expertise on HPC to im-

prove the performance of the applications. With the ANTAREX DSL, this process

26

is simplified by removing the need for the HPC support staff to manually modify the

user’s code, instead relying on aspects which encode available code transformations as

well as providing access to libraries for autotuning, system monitoring, and dynamic

recompilation.

We demonstrate the use of our tools in a scenario where the HPC center runs remote

navigation for a pool of users, considering both urban and transnational scenarios, as

well as in a scenario where the HPC center runs a drug discovery appplication.

Acknowledgements

The ANTAREX project is supported by the EU H2020 FET-HPC program under

grant 671623. The IT4Innovations infrastructure is supported by the Large Infrastruc-

tures for Research, Experimental Development and Innovations project “IT4Innovations

National Supercomputing Center – LM2015070”. The CINECA infrastructure is sup-

ported by the EU and the Italian Ministry for Education, University and Research

(MIUR) under the PRACE project.

[1] J. Curley, “HPC and Big Data,” Innovation, vol. 12, no. 3, Jul. 2014.

[2] C. Silvano, A. Bartolini, A. Beccari, C. Manelfi, C. Cavazzoni, D. Gadioli, E. Rohou, G. Palermo,

G. Agosta, J. Martinovič et al., “The ANTAREX Tool Flow for Monitoring and Autotuning Energy

Efficient HPC Systems (Invited paper),” in SAMOS 2017-Int’l Conf on Embedded Computer Systems:

Architecture, Modeling and Simulation, 2017.

[3] C. Silvano, G. Agosta, A. Bartolini, A. R. Beccari, L. Benini, L. Besnard, J. Bispo, R. Cmar, J. M. P.

Cardoso, C. Cavazzoni, S. Cherubin, D. Gadioli, M. Golasowski, I. Lasri, J. Martinovic, G. Palermo,

P. Pinto, E. Rohou, N. Sanna, K. Slaninova, and E. Vitali, “Antarex: A dsl-based approach to adaptively

optimizing and enforcing extra-functional properties in high performance computing,” in 2018 21st

Euromicro Conference on Digital System Design (DSD), Aug 2018, pp. 600–607.

[4] J. M. P. Cardoso, T. Carvalho, J. G. F. Coutinho, W. Luk, R. Nobre, P. Diniz, and Z. Petrov, “LARA:

An Aspect-oriented Programming Language for Embedded Systems,” in Proc. 11th Annual Int’l Conf.

on Aspect-oriented Software Development. ACM, 2012, pp. 179–190.

[5] J. M. P. Cardoso, J. G. F. Coutinho, T. Carvalho, P. C. Diniz, Z. Petrov, W. Luk, and F. Gonćalves,

“Performance-driven instrumentation and mapping strategies using the LARA aspect-oriented pro-

gramming approach,” Software: Practice and Experience, Dec. 2014.

[6] J. Floch et al., “Using architecture models for runtime adaptability,” IEEE Softw., vol. 23, no. 2, pp.

62–70, Mar. 2006.

[7] J. Irwin, G. Kickzales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, and J.-M. Lo-

ingtier, “Aspect-oriented Programming,” in ECOOP’97 – Object-Oriented Programming, ser. LNCS.

Springer, 1997, vol. 1241, pp. 220–242.

[8] T. Elrad, R. E. Filman, and A. Bader, “Aspect-oriented Programming: Introduction,” Commun ACM,

vol. 44, no. 10, pp. 29–32, 2001.

[9] O. Spinczyk, A. Gal, and W. Schröder-Preikschat, “AspectC++: An Aspect-oriented Extension to the

C++ Programming Language,” in Proc. 40th Int’l Conf on Tools Pacific: Objects for Internet, Mobile

and Embedded Applications, 2002, pp. 53–60.

[10] J. M. Cardoso, T. Carvalho, J. G. Coutinho, R. Nobre, R. Nane, P. C. Diniz, Z. Petrov, W. Luk, and

K. Bertels, “Controlling a complete hardware synthesis toolchain with LARA aspects,” Microproces-

sors and Microsystems, vol. 37, no. 8, pp. 1073–1089, 2013.

27

[11] R. Nobre, L. G. Martins, and J. M. Cardoso, “Use of Previously Acquired Positioning of Optimizations

for Phase Ordering Exploration,” in Proc. of Int’l Workshop on Software and Compilers for Embedded

Systems. ACM, 2015, pp. 58–67.

[12] R. Nobre, L. Reis, J. Bispo, T. Carvalho, J. M. P. Cardoso, S. Cherubin, and G. Agosta, “Aspect-driven

mixed-precision tuning targeting gpus,” in Proc 9th Workshop on Parallel Programming and Run-

Time Management Techniques for Many-core Architectures and the 7th Workshop on Design Tools and

Architectures For Multicore Embedded Computing Platforms, Jan 2018.

[13] S. Cherubin, G. Agosta, I. Lasri, E. Rohou, and O. Sentieys, “Implications of Reduced-Precision Com-

putations in HPC: Performance, Energy and Error,” in Int’l Conf on Parallel Computing (ParCo), Sep

2017.

[14] S. Cherubin and G. Agosta, “libVersioningCompiler: An easy-to-use library for dynamic generation

and invocation of multiple code versions,” SoftwareX, vol. 7, pp. 95 – 100, 2018.

[15] M. Festa, N. Gervasoni, S. Cherubin, and G. Agosta, “Continuous Program Optimization via Advanced

Dynamic Compilation Techniques,” in Proc 10th Workshop on Parallel Programming and Run-Time

Management Techniques for Many-core Architectures and the 8th Workshop on Design Tools and Ar-

chitectures For Multicore Embedded Computing Platforms (to appear), Jan 2019.

[16] Y. Chen, Y. Huang, L. Eeckhout, G. Fursin, L. Peng, O. Temam, and C. Wu, “Evaluating iterative

optimization across 1000 datasets,” in Proc 31st ACM SIGPLAN Conf on Programming Language

Design and Implementation. New York, NY, USA: ACM, 2010, pp. 448–459.

[17] M. Tartara and S. Crespi Reghizzi, “Continuous learning of compiler heuristics,” ACM Trans. Archit.

Code Optim., vol. 9, no. 4, pp. 46:1–46:25, Jan. 2013.

[18] A. H. Ashouri, G. Mariani et al., “Cobayn: Compiler autotuning framework using bayesian networks,”

ACM Trans. Archit. Code Optim., vol. 13, no. 2, pp. 21:1–21:25, Jun. 2016.

[19] A. H. Ashouri, A. Bignoli et al., “Micomp: Mitigating the compiler phase-ordering problem using

optimization sub-sequences and machine learning,” ACM Trans. Archit. Code Optim., vol. 14, no. 3,

pp. 29:1–29:28, Sep. 2017.

[20] G. Agosta, M. Bessi, E. Capra, and C. Francalanci, “Dynamic memoization for energy efficiency in

financial applications,” in Green Computing Conference and Workshops (IGCC), 2011 International.

IEEE, 2011, pp. 1–8.

[21] A. Suresh, E. Rohou, and A. Seznec, “Compile-Time Function Memoization,” in 26th International

Conference on Compiler Construction, Austin, United States, Feb. 2017.

[22] A. Suresh et al., “Intercepting Functions for Memoization: A Case Study Using Transcendental Func-

tions,” ACM Trans. Archit. Code Optim., vol. 12, no. 2, p. 23, Jul. 2015.

[23] D. Gadioli, G. Palermo, and C. Silvano, “Application autotuning to support runtime adaptivity in

multicore architectures,” in Embedded Computer Systems: Architectures, Modeling, and Simulation

(SAMOS), 2015 Int’l Conf on. IEEE, 2015, pp. 173–180.

[24] Y. Brun et al., Engineering Self-Adaptive Systems through Feedback Loops. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2009, pp. 48–70. [Online]. Available: https://doi.org/10.1007/

978-3-642-02161-9_3

[25] D. Gadioli et al., “Socrates - a seamless online compiler and system runtime autotuning framework for

energy-aware applications,” in Proc. of Design Automation and Test in Europe (DATE18), 2018, pp.

1149–1152.

[26] F. Beneventi, A. Bartolini, C. Cavazzoni, and L. Benini, “Continuous learning of hpc infrastructure

models using big data analytics and in-memory processing tools,” in Design, Automation Test in Europe

Conference Exhibition (DATE), 2017, March 2017, pp. 1038–1043.

28

[27] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “Rapl: Memory power estimation

and capping,” in 2010 ACM/IEEE International Symposium on Low-Power Electronics and Design

(ISLPED), Aug 2010, pp. 189–194.

[28] D. Cesarini, A. Bartolini, and L. Benini, “Benefits in relaxing the power capping constraint,” in AN-

DARE ’17. ACM, 2017, pp. 3:1–3:6.

[29] A. Bartolini, R. Diversi, D. Cesarini, and F. Beneventi, “Self-aware thermal management for high

performance computing processors,” IEEE Design & Test, 2017.

[30] D. Cesarini, A. Bartolini, and L. Benini, “Prediction horizon vs. efficiency of optimal dynamic thermal

control policies in hpc nodes,” in 2017 IFIP/IEEE Int’l Conf on Very Large Scale Integration (VLSI-

SoC), Oct 2017, pp. 1–6.

[31] J. Hanzelka, M. Běloch, J. Křenek, J. Martinovič, and K. Slaninová, “Betweenness propagation,”

in IFIP International Conference on Computer Information Systems and Industrial Management.

Springer, 2018, pp. 279–287.

[32] M. Giles and I. Reguly, “Trends in high-performance computing for engineering calculations,” Philo-

sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.

372, no. 2022, p. 20130319, 2014.

[33] A. Cohen, S. Donadio, M.-J. Garzaran, C. Herrmann, O. Kiselyov, and D. Padua, “In search of a

program generator to implement generic transformations for high-performance computing,” Science of

Computer Programming, vol. 62, no. 1, pp. 25–46, 2006.

[34] M. Mernik, Formal and Practical Aspects of Domain-Specific Languages: Recent Developments: Re-

cent Developments. IGI Global, 2012.

[35] J. Starruß, W. de Back, L. Brusch, and A. Deutsch, “Morpheus: a user-friendly modeling environment

for multiscale and multicellular systems biology,” Bioinformatics, vol. 30, no. 9, pp. 1331–1332, 2014.

[36] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos, E. Elsen, F. Ham, A. Aiken,

K. Duraisamy et al., “Liszt: a domain specific language for building portable mesh-based pde solvers,”

in Proceedings of 2011 International Conference for High Performance Computing, Networking, Stor-

age and Analysis. ACM, 2011, p. 9.

[37] F. Rathgeber, G. R. Markall, L. Mitchell, N. Loriant, D. A. Ham, C. Bertolli, and P. H. Kelly, “Pyop2:

A high-level framework for performance-portable simulations on unstructured meshes,” in High Per-

formance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion:. IEEE, 2012,

pp. 1116–1123.

[38] C. Schmitt, S. Kuckuk, F. Hannig, H. Köstler, and J. Teich, “Exaslang: a domain-specific language

for highly scalable multigrid solvers,” in Domain-Specific Languages and High-Level Frameworks for

High Performance Computing (WOLFHPC), 2014 Fourth International Workshop on. IEEE, 2014,

pp. 42–51.

[39] R. Membarth, F. Hannig, J. Teich, and H. Kostler, “Towards domain-specific computing for stencil

codes in hpc,” in 2012 SC Companion: High-Performance Computing, Networking, Storage and Anal-

ysis (SCC). IEEE, 2012, pp. 1133–1138.

[40] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and J. Planas, “Ompss:

a proposal for programming heterogeneous multi-core architectures,” Parallel Processing Letters,

vol. 21, no. 02, pp. 173–193, 2011.

[41] M. Weiland, “Chapel, fortress and x10: novel languages for hpc,” EPCC, The University of Edinburgh,

Tech. Rep. HPCxTR0706, 2007.

[42] H. González-Vélez and M. Leyton, “A survey of algorithmic skeleton frameworks: high-level struc-

tured parallel programming enablers,” Software: Practice and Experience, vol. 40, no. 12, pp. 1135–

1160, 2010.

29

[43] M. Palyart, D. Lugato, I. Ober, and J.-M. Bruel, “Mde4hpc: an approach for using model-driven engi-

neering in high-performance computing,” in International SDL Forum. Springer, 2011, pp. 247–261.

[44] M. Palyart, I. Ober, D. Lugato, and J.-M. Bruel, “Hpcml: a modeling language dedicated to high-

performance scientific computing,” in Proceedings of the 1st International Workshop on Model-Driven

Engineering for High Performance and CLoud computing. ACM, 2012, p. 6.

[45] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and J. Vitek, “Terra: a multi-stage language for high-

performance computing,” in ACM SIGPLAN Notices, vol. 48, no. 6. ACM, 2013, pp. 105–116.

30

