
Received September 2, 2019, accepted September 9, 2019, date of publication September 26, 2019, date of current version October 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2943848

Differentiated Service/Data Migration for Edge
Services Leveraging Container Characteristics

PAOLO BELLAVISTA , (Senior Member, IEEE), ANTONIO CORRADI , (Senior Member, IEEE),
LUCA FOSCHINI , (Senior Member, IEEE), AND
DOMENICO SCOTECE , (Student Member, IEEE)
Dipartimento di Informatica: Scienza e Ingegneria (DISI), University of Bologna, 40136 Bologna, Italy

Corresponding author: Domenico Scotece (domenico.scotece@unibo.it)

ABSTRACT The Multi-access Edge Computing (MEC) and Fog Computing paradigms are enabling
the opportunity to have middleboxes either statically or dynamically deployed at network edges acting
as local proxies with virtualized resources for supporting and enhancing service provisioning in edge
localities. However, migration of edge-enabled services poses signi�cant challenges in the edge computing
environment. In this paper, we propose an edge computing platform architecture that supports service
migration with different options of granularity (either entire service/data migration, or proactive application-
aware data migration) across heterogeneous edge devices (either MEC-based servers or resource-poor Fog
devices) that host virtualized resources (Docker Containers). The most innovative elements of the technical
contribution of our work include i) the possibility to select either an application-agnostic or an application-
aware approach, ii) the possibility to choose the appropriate application-aware approach (e.g., based on
data access frequencies), iii) an automatic edge services placement support with the aim of �nding a more
effective placement with low energy consumption, and iv) the in-lab experimentation of the performance
achieved over rapidly deployable environments with resource-limited edges such as Raspberry Pi devices.

INDEX TERMS Container migration, Docker containers, edge computing, service migration.

I. INTRODUCTION
The rapid increase in demand for mobile devices within the
realms of real-time mobile applications, augmented reality,
and mobile gaming, and Industry 4.0 (just to cite a few)
motivate the need for real-time mobile cloud applications.
Necessarily, these real-time applications require low laten-
cies to provide seamless end-user interaction imposing very
strict Quality of Service (QoS) requirements. For instance,
cloud-based multimedia real-time applications require end-
to-end latencies below 60ms and much lower values within
speci�c contexts such as the industrial one [1], [2]. The only
way to comply with those requirements is moving cloud
computing to the edge of the network, so to lessen these
otherwise unacceptable delays by locally providing needed
resources.

Accordingly, in the last years various models and solu-
tions have been proposed by academia and industry, such
as Cloudlet [3], Follow Me Cloud [4], and Micro Data

The associate editor coordinating the review of this manuscript and
approving it for publication was Christos Verikoukis.

Center (MDC). All these solutions share the idea of interpos-
ing an intermediate layer of middleboxes, either statically or
dynamically deployed at the network edge, between the leaf
device layer and the global cloud. The primary idea is to have
services in proximity of mobile users so that network conges-
tion is reduced, battery life is enhanced, and service experi-
ence is improved in terms of Quality of Experience (QoE) and
QoS. In particular, this intermediate layer provides storage,
computation, and network resources enabling the possibility
of moving and hosting services at the edge of the network
(e.g., of�oading), to decrease latency and to increase scala-
bility through local interactions, whenever possible.

More recently, along the same direction, Multi-access Edge
Computing (MEC) [5] and Fog Computing [6] have become
prominent concepts in many recent studies and technolo-
gies [7]. The differences between these models are mainly
in terms of deployment and administrative management.
In MEC, the infrastructure resides at the edge of a telco
operator infrastructure and MEC nodes are typically MDCs.
Instead, the Fog infrastructure and all its derivatives reside
on premises and at the edge of end-system infrastructure,

139746 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-0992-7948
https://orcid.org/0000-0002-5107-1023
https://orcid.org/0000-0001-9062-3647
https://orcid.org/0000-0003-3824-197X


P. Bellavista et al.: Differentiated Service/Data Migration for Edge Services Leveraging Container Characteristics

Section IV describes the architecture of our solution and
details our novel protocols for fast service handoff manage-
ment at the edge. Section V shows a wide range of perfor-
mance results including both in-the-�eld experimentation and
CloudSim simulations. Conclusive remarks, and directions of
ongoing related work end the paper.

II. RELATED WORK
Service migration at the edge of the network and container
live migration have been heavily investigated in recent years.
In this section, we discuss two main research directions that
are related to our proposal: i) service migration based on VMs
at the edge, and ii) container service migration.

A. SERVICE MIGRATION AT THE EDGE
In the past few years, notable efforts of researches have been
focused on the bene�ts and challenges of Edge Computing.
One of the uncleared challenges is service migration, which
guarantees service continuity as users move across different
edge nodes. Ha et al. [14] proposed Cloudlet, as one of
the seminal examples of computing at the network, and a
mechanism for edge-enabled handoff management based on
VM service synthesis and migration to the newly visited edge
nodes. This has led to a few important middleware solutions
to address service migration in the presence of user mobil-
ity. Mobile Micro-Cloud (MMC) [15] started exploring the
idea to place micro-clouds closer to end-users. In that work,
authors faced out the service migration problem by taking
into account the costs associated with running service at the
same MMC server and the costs associated with migrating
the service to another MMC server. To do this, the authors
de�ne an algorithm to predict the future costs for �nding the
optimal placement of services. Another important work in
the same context is Follow-Me Cloud [4] that enables mobile
cloud services to follow mobile users alongside datacenters.
The framework allows service migration by migrating all
or portions of services to the optimal data center. Service
migration decision is based on user constraints and network
conditions.

Some other recent proposals are based speci�cally on
VM migration. Preliminary research efforts focused on the
impact on network performance [16]. To overcome this lim-
itation, various VM migration systems exploit the concept
of live migration optimized for the edge computing. Live
migration is mostly identifying as a technique for VM migra-
tion in datacenters at the cloud layer. Indeed, datacenters are
assumed to be stable environments with high-bandwidth data
paths always available. Most important solutions are based
on pre-copy approaches, where VM control is not transferred
to the destination until all VM state has been copied. On the
other hand, post-copy approaches resume VM at the destina-
tion �rst and then the state is retrieved [10].

Ha et al. [14] highlight the limitations of traditional live
VM migration on edge devices and propose live migration in
response to client handoff in cloudlets, with less involvement
of the hypervisor and by promoting migration to optimal

of�oad sites, adapting to changing network conditions and
processing capacity. The same authors also proposed a mech-
anism called VM handoff that supports agility for cloudlet-
based applications [17]. The mechanism preserves the core
properties of VM live migration for data center while opti-
mizing for the agile environment of Edge Computing. This
approach leverages on pipelined stages that aim at reduc-
ing the differences between the VM state at the source and
VM state at the destination.

B. CONTAINER SERVICE MIGRATION
Containers differ from VMs technology since they directly
share the hardware and the kernel with their host machines.
As a result, containers occupy fewer resources and have lower
virtualization overhead than VMs. For this reason, container
migration has started to be a very active area that has not been
systematically studied in the literature yet. Machen et al. [18]
investigate live migration of LXC containers [19] by propos-
ing a three-layer framework with synchronized �lesystem
methodology for memory state sync. Substantially, that work
shows a quantitative view on the difference between LXC
containers migration and KVM [20] migration.

Live migration of containers become possible since
CRIU [21] supports checkpoint/restore functionalities for the
most container solutions such as OpenVZ [22], LXC/LXD,
and Docker [11]. Several solutions have been explored in
the literature that leverage CRIU for migrating stateful con-
tainers. OpenVZ supports live migration of containers [23];
however, it exploits Virtuozzo Storage System [24], that is a
distributed storage system where all �les are shared across
the network. In most cases, the network bandwidth of edge
servers is limited, and the deployment of a distributed storage
could be not possible [25]. Moreover, the implementation is
not optimized due to the transfer of root �lesystem of the
container across edge nodes. IBM proposes Voyager [26],
a live container migration service designed in accordance
with the Open Container Initiative (OCI) principles: the IBM
solution implements a novel �lesystem-agnostic and vendor-
agnostic migration service with consistency guarantees.

Summarizing the related work, although a few solutions
have been proposed to contribute to the �eld of container
migration in Edge Computing, there is no ready solution that
exploits the characteristics of the application. As a conse-
quence, we present our solution to make container migration
faster and easier than existing proposals. In addition, we claim
that the paper provides a signi�cant contribution to the com-
munity because, to the best of our knowledge, this is the �rst
system-oriented work on MEC/Fog handoff that leverages the
service characteristics.

III. BACKGROUND AND DESIGN GUIDELINES
To better understand our original proposal, this section pro-
vides all needed de�nitions for the involved technologies
and methodologies and an overview of our proposed design
guidelines.

139748 VOLUME 7, 2019



P. Bellavista et al.: Differentiated Service/Data Migration for Edge Services Leveraging Container Characteristics

A. MULTI-LAYER CONTAINER MIGRATION
AND RELATED BACKGROUND
The main objective of our proposal is to develop a
novel framework that enables fast service migration for
edge-enabled service by leveraging its characteristics. For
this purpose, we distinguish between so-called layered ser-
vices and monolithic services. Layered services consist of
diverse layers, such as service and data parts, that could be
managed as different separated blocks. Differently, mono-
lithic services have to be considered by our framework as a
single block, which internally includes service components,
data components, and all associated resources. To better
understand layered services, let us describe a simple example:
a simple Python web application represents the service part,
while a Redis database in which data are stored represents
the data part. In this way, the service part and the data part
could be managed as distinct blocks. On the contrary, mono-
lithic services can be put into execution within dedicated
and self-contained VMs as proposed in some recent litera-
ture: for instance, [3] have proposed a mechanism for edge-
enabled handoff management based on VMs synthesis and
migration to the closest edge nodes. However, the usage of
VMs introduces non-negligible latency and overhead due to
VM size and complexity. The exploitation of container-based
virtualization techniques could reduce the above weaknesses,
by enabling the opportunity of considering more layered
services that can be decomposed in various microservices.

We present a novel approach for multi-layer container-
based service migration by leveraging service characteristics.
To achieve this, edge-enabled services in our proposal are
built as Docker Containers composed by a service layer
(acting as the ‘‘business logic’’ part of the service) and
a data layer (representing the state stored and managed
through the service layer) that should be managed as separate
containers. The Data Container is used to persist data and
could be managed by either a DBMS or a NoSQL man-
ager. We followed a general approach able to work also
with no-database-based storage including general �lesys-
tems. In addition, our proposal is able to support two kinds
of service migrations: application-agnostic and application-
aware. Application-agnostic handoff enables the migration
of the entire Data Container, as the data backup, without
requiring any previous knowledge of the speci�c data soft-
ware layer technology. Application-aware, instead, leverages
service characteristics to extract and proactively transfer part
of data to the target edge node in order to reduce service inter-
ruption. However, the latter mode requires partial visibility
of some characteristics of the implementation of the Data
Container, and for this reason, it is not usable for any kind
of application.

As mentioned in the previous section, Docker technology
doesn’t provide any of�cial migration tool, but, recently, few
developers have constructed tools for speci�c versions of
Docker. For instance, the work [25] supports Docker Con-
tainers migration of docker version 1.9.0, and Boucher [27]

TABLE 1. Docker containers migration time (bandwidth 40mb/s, latency
0ms, and delay 0ms).

extends the previous work to support docker-1.10 migration.
However, both methods simply transfer all the �les located
under the mount point of the container root �le system. More
recently, also Docker provided some mechanisms not directly
related to the migration but useful for this purpose. For
instance, docker export command enables users to create a
compressed �le from the container �lesystem as a ‘‘tar’’ �le.
This compressed �le can be copied over the network to the
target edge node via �le transfer and then imported into a new
container via docker import command. The new container
created in the target edge node can be accessed using docker
run command. One drawback of docker export tool is that
it doesn’t copy environment variables and underlying data
volume which contains the container data. Another method
based on Docker commands to move the container to another
host is container image migration. For the container that has
to be moved, its corresponding Docker image is saved into
a compressed �le by using docker commit command. Then
compressed �le is moved to the target edge node and a new
container is created with docker run command. Using this
method, the data volume will not be migrated, but it pre-
serves the data of the application created inside the container.
Last, Docker provides a mechanism to save an image to a
tarball which preserves the history, layers, and entrypoints
via docker save command; at the same time, it provides the
equivalent command to load the image in the new host: docker
load.

Unfortunately, aforementioned methods completely ignore
the composition of the service which we claim could pave the
way for smarter migration management. To verify our claim,
we have conducted preliminary experiments to migrate con-
tainers over different network connections. The experiments
use one simple container such as Busybox and one applica-
tion based on OpenCV for face recognition, to conduct edge
task of�oading. Busybox is a software suite that provides
several Unix utilities in a single executable �le. It has a tiny
�le system inside the container. Instead, the face recognition
application is an application that dispatches video streaming
from mobile devices to the edge server, which executes the
face recognition tasks, and sends back a speci�c frame with
the name of the person. This container hosts a large �lesystem
to store all the images (i.e., more than 1 GB).

Table 1 reports obtained preliminary results that show
that migration can be done within 2 seconds for Busybox,
and within 223 seconds for face recognition application. The
network between these two hosts is a Wi-Fi connection with

VOLUME 7, 2019 139749







P. Bellavista et al.: Differentiated Service/Data Migration for Edge Services Leveraging Container Characteristics

FIGURE 3. Docker proactive handoff.

2) PROACTIVE HANDOFF
This subsection describes the design principles behind
our service/data migration protocols, detailing also the
application-aware optimization. We start by presenting
our optimized proactive application-agnostic handoff pro-
cedure and then we detail our application-aware handoff
strategies.

Fig. 3 shows our optimizations of basic reactive hand-
off based on Docker tools. The optimizations leverage
both long- and short-term predictions to enable proactive
provisioning.

Our handoff procedure begins when the Prediction Module
predicts the migration and triggers the proactive execution of
the handoff procedure (steps 1-2). Then, the protocol starts
the migration of the service part (steps 3-4) and the installa-
tion of the data part (steps 5-6). In this approach, we consider
the data part as a black box with no information about its inner
characteristics; in the next optimizations, we describe the
additional modalities of operation of Decision Module which
can operate also the application-aware handoff. Therefore,
steps 5-6 install only the data container while we postpone
the request for data backup migration until the mobile node
loses connection from the old edge node, so to make sure
to receive a more consistent data state, with all changes
made at the old edge node (step 7). Once completed the data
container backup, the old edge node starts to send the backup
to the target edge node (step 8) and then the target edge
node restores the data backup with all latest changes made
at the old edge node by the user (step 9). Finally, the target
edge node sends the handoff complete signal to the mobile
node.

FIGURE 4. Docker proactive application-aware handoff.

As one can see from Fig. 3, this approach of service/data
migration decreases the service interruption time compared to
the previous one (Docker basic reactive handoff). Let us note
that this does not imply any application-speci�c knowledge
and requirements to perform it. Furthermore, we can further
reduce the service interruption time leveraging the Decision
Module that contains decision mechanisms to move proper
data. This is the core of our proposal and we will explain it in
detail in the next subsection.

3) APPLICATION-AWARE HANDOFF
The idea behind application-aware optimizations is the
exploitation of our Decision Module; thus, beyond the strate-
gies, the Decision Module selects proper data to be moved
proactively to the target edge node.

In our solution, the application-aware service/data migra-
tion process is composed by multiple steps, as depicted
in Fig. 4. The user’s mobility is observed by Prediction Mod-
ule that can activate a trigger when the user mobile node is
likely to go towards the new edge node. The Prediction Mod-
ule can take advantage of both short- and long-term user’s
mobility prediction; for the purpose of application-aware
optimizations, we need to use a long-term user’s mobil-
ity prediction in order to select and move data proactively
(steps 1-2). Let us note that compared to the Docker proac-
tive application-agnostic handoff, application-aware handoff
allows us to proactively move certain data to the target edge
node. Thus, the old edge node migrates the service (steps 3-
4) and the data container part (steps 5-6) to the target edge
node. Then, in order to select proper data to be moved, based
on the migration strategy, we need to invoke the Decision

VOLUME 7, 2019 139753










	INTRODUCTION
	RELATED WORK
	SERVICE MIGRATION AT THE EDGE
	CONTAINER SERVICE MIGRATION

	BACKGROUND AND DESIGN GUIDELINES
	MULTI-LAYER CONTAINER MIGRATION AND RELATED BACKGROUND
	DESIGN GUIDELINES FOR APPLICATION-AWARE HANDOFF AND FOR HETEROGENEITY MANAGEMENT
	
	


	ARCHITECTURE AND HANDOFF MANAGEMENT
	
	

	

