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ABSTRACT The Multi-access Edge Computing (MEC) and Fog Computing paradigms are enabling
the opportunity to have middleboxes either statically or dynamically deployed at network edges acting
as local proxies with virtualized resources for supporting and enhancing service provisioning in edge
localities. However, migration of edge-enabled services poses significant challenges in the edge computing
environment. In this paper, we propose an edge computing platform architecture that supports service
migration with different options of granularity (either entire service/data migration, or proactive application-
aware data migration) across heterogeneous edge devices (either MEC-based servers or resource-poor Fog
devices) that host virtualized resources (Docker Containers). The most innovative elements of the technical
contribution of our work include i) the possibility to select either an application-agnostic or an application-
aware approach, ii) the possibility to choose the appropriate application-aware approach (e.g., based on
data access frequencies), iii) an automatic edge services placement support with the aim of finding a more
effective placement with low energy consumption, and iv) the in-lab experimentation of the performance
achieved over rapidly deployable environments with resource-limited edges such as Raspberry Pi devices.

INDEX TERMS Container migration, Docker containers, edge computing, service migration.

I. INTRODUCTION
The rapid increase in demand for mobile devices within the
realms of real-time mobile applications, augmented reality,
and mobile gaming, and Industry 4.0 (just to cite a few)
motivate the need for real-time mobile cloud applications.
Necessarily, these real-time applications require low laten-
cies to provide seamless end-user interaction imposing very
strict Quality of Service (QoS) requirements. For instance,
cloud-based multimedia real-time applications require end-
to-end latencies below 60ms and much lower values within
specific contexts such as the industrial one [1], [2]. The only
way to comply with those requirements is moving cloud
computing to the edge of the network, so to lessen these
otherwise unacceptable delays by locally providing needed
resources.

Accordingly, in the last years various models and solu-
tions have been proposed by academia and industry, such
as Cloudlet [3], Follow Me Cloud [4], and Micro Data
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Center (MDC). All these solutions share the idea of interpos-
ing an intermediate layer of middleboxes, either statically or
dynamically deployed at the network edge, between the leaf
device layer and the global cloud. The primary idea is to have
services in proximity of mobile users so that network conges-
tion is reduced, battery life is enhanced, and service experi-
ence is improved in terms of Quality of Experience (QoE) and
QoS. In particular, this intermediate layer provides storage,
computation, and network resources enabling the possibility
of moving and hosting services at the edge of the network
(e.g., offloading), to decrease latency and to increase scala-
bility through local interactions, whenever possible.

More recently, along the same direction,Multi-access Edge
Computing (MEC) [5] and Fog Computing [6] have become
prominent concepts in many recent studies and technolo-
gies [7]. The differences between these models are mainly
in terms of deployment and administrative management.
In MEC, the infrastructure resides at the edge of a telco
operator infrastructure and MEC nodes are typically MDCs.
Instead, the Fog infrastructure and all its derivatives reside
on premises and at the edge of end-system infrastructure,
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typically at home gateway level. Moreover, Fog nodes can be
resource-constrained devices such as general-purpose routers
and/or single-board computers including Raspberry Pi. In the
reminder of this work, we use Edge Computing as a general
term to refer to all above emerging models and, especially to
MEC and Fog Computing.

Edge Computing has helped to significantly reduce the
delays between mobile nodes and cloud, and it is considered
one of the enabler technologies for the 5G vision. At the
same time, it has introduced new problems such as the man-
agement of users’ mobility [8]. Generally, edge nodes have
small network coverage and it is very common that a mobile
node changes its connection during its path. Due to limited
coverage of a single edge node, user mobility could affect the
degradation of network performance reducing the QoS or in
some cases causing the interruption of the edge service. Thus,
in order to guarantee service continuity, it is necessary to
support efficient service/data migration between edge nodes.
However, at the current stage there are several heterogeneous
virtualization technologies and migration strategies and some
of them might not be practical when used with resource-
poor edge devices (e.g. Raspberry Pi). Moreover, future 5G
networks will be composed of heterogeneous devices, such as
home gateways and MEC micro-servers that do not host the
same resources. That makes service migration management a
very complex task; for instance, heavy-computation services
should bemigrated to high powerful micro-servers rather than
to poor Fog gateway nodes. Energy consumption should also
be considered, especially for battery-power edge nodes.

Focusing on existing solutions, most seminal efforts have
been focused on the concept of Live Migration of Virtual
Machines (VMs) [9] to guarantee the lowest possible down-
time of the service. Live migration considers service migra-
tion as the stateful migration of services where the service
contains internal state data of the user. After the comple-
tion of the migration, the service resumes exactly where it
had stopped before. To ensure this, complex mechanisms
have been proposed including the main two variants called
pre-copy and post-copy. Pre-copy pushes most of the data to
destination host before stopping and migrating the VM [9].
Post-copy pulls most of the data from source host after resum-
ing VM at the destination host [10].

Successively, with the diffusion of container technologies
such as Docker [11], most of the research efforts have been
focused on service container migration. This is justified by
several experiments conducted to compare the performance
of VMs andContainers [12]. In [13], performance evaluations
are carried out to compare standard VM hypervisors and
container-based virtualization technologies for edge-based
IoT applications. Since containers are a more lightweight
virtualization option, several companies started using them
to develop applications. Today, containers are largely used
for edge-based services due to their adaptive characteris-
tics including lightness and portability. Nevertheless, only
very few proposals have started to target the technologi-
cal advances associated with container migration in place

of VM. Some proposal tried to use container virtualization
technology as the object of the live migration (container state
migration). Other efforts, instead, have focused on service
migration by leveraging Docker technology.

At the current stage, Edge Computing does not have a stan-
dardized fast service/data migration support. To tackle this
problem,we focus on reducing the total time of servicemigra-
tion by leveraging the service characteristics. We show how
to design a fast handoff schema that exploits the knowledge of
the characteristics of the service. At the heart of our schema,
there is Docker which allows the separation between data
and service containers. Moreover, our schema profiles data
characteristics and leverages that awareness in order to reduce
the migration time. Finally, most of the existing researches
about Edge Computing focus on offloading tasks to edge
servers in order to save energy for mobile devices. However,
only saving energy for mobile devices is not enough because
the energy consumption of edge servers is non-negligible.
To address this issue, we propose an edge services placement
solution able to reduce energy consumption. In particular,
the proposed work has the following primary innovation ele-
ments and features, which we claim provide a non-negligible
contribution to the advancement of the literature in the field.

First, it enables either application-agnostic or application-
aware approaches for container migration. In the application-
agnosticmode, our framework can performmigrationwithout
having any visibility of the application behavior (just con-
tainer migration). Dually, in the application-aware case, the
framework can fully exploit application specific knowledge
to determine which data should be migrated proactively
in order to minimize latency and to optimize the usage
of possibly limited resources, e.g., inter-edge bandwidth
and edge storage. Second, an efficient way to take advan-
tage of data characteristics has been investigated to reduce
application-aware migration times. We have developed a
Decision Module that contains a set of mechanisms for car-
rying out application-aware migration based on data change
probability. It associates to data with lower access frequen-
cies that can be proactively moved, while it postpones the
migration of data with higher access frequencies. Third, our
framework also guarantees data consistency between edge
nodes after the handoff: if some data moved proactively to
the new edge node have been changed during the handoff
period, our framework automatically reconciles those data.
Last, our framework addresses the problems of heterogene-
ity and energy management at edge nodes by defining an
affinity relationship that depends on service characteristics.
This solution allows our framework to decide the best target
node toward which to perform the handoff in terms of needed
resources and energy consumption.We consider as edge node
both resource-poor devices, including Raspberry Pi acting as
Fog nodes and powerful computers used as MEC node.

The remainder of the paper is structured as follows.
The next two sections provide first an overview of related
works, then report background material and propose design
guidelines needed to fully understand our original proposal.
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Section IV describes the architecture of our solution and
details our novel protocols for fast service handoff manage-
ment at the edge. Section V shows a wide range of perfor-
mance results including both in-the-field experimentation and
CloudSim simulations. Conclusive remarks, and directions of
ongoing related work end the paper.

II. RELATED WORK
Service migration at the edge of the network and container
live migration have been heavily investigated in recent years.
In this section, we discuss two main research directions that
are related to our proposal: i) service migration based onVMs
at the edge, and ii) container service migration.

A. SERVICE MIGRATION AT THE EDGE
In the past few years, notable efforts of researches have been
focused on the benefits and challenges of Edge Computing.
One of the uncleared challenges is service migration, which
guarantees service continuity as users move across different
edge nodes. Ha et al. [14] proposed Cloudlet, as one of
the seminal examples of computing at the network, and a
mechanism for edge-enabled handoff management based on
VM service synthesis and migration to the newly visited edge
nodes. This has led to a few important middleware solutions
to address service migration in the presence of user mobil-
ity. Mobile Micro-Cloud (MMC) [15] started exploring the
idea to place micro-clouds closer to end-users. In that work,
authors faced out the service migration problem by taking
into account the costs associated with running service at the
same MMC server and the costs associated with migrating
the service to another MMC server. To do this, the authors
define an algorithm to predict the future costs for finding the
optimal placement of services. Another important work in
the same context is Follow-Me Cloud [4] that enables mobile
cloud services to follow mobile users alongside datacenters.
The framework allows service migration by migrating all
or portions of services to the optimal data center. Service
migration decision is based on user constraints and network
conditions.

Some other recent proposals are based specifically on
VM migration. Preliminary research efforts focused on the
impact on network performance [16]. To overcome this lim-
itation, various VM migration systems exploit the concept
of live migration optimized for the edge computing. Live
migration is mostly identifying as a technique for VMmigra-
tion in datacenters at the cloud layer. Indeed, datacenters are
assumed to be stable environments with high-bandwidth data
paths always available. Most important solutions are based
on pre-copy approaches, where VM control is not transferred
to the destination until all VM state has been copied. On the
other hand, post-copy approaches resume VM at the destina-
tion first and then the state is retrieved [10].

Ha et al. [14] highlight the limitations of traditional live
VM migration on edge devices and propose live migration in
response to client handoff in cloudlets, with less involvement
of the hypervisor and by promoting migration to optimal

offload sites, adapting to changing network conditions and
processing capacity. The same authors also proposed a mech-
anism called VM handoff that supports agility for cloudlet-
based applications [17]. The mechanism preserves the core
properties of VM live migration for data center while opti-
mizing for the agile environment of Edge Computing. This
approach leverages on pipelined stages that aim at reduc-
ing the differences between the VM state at the source and
VM state at the destination.

B. CONTAINER SERVICE MIGRATION
Containers differ from VMs technology since they directly
share the hardware and the kernel with their host machines.
As a result, containers occupy fewer resources and have lower
virtualization overhead than VMs. For this reason, container
migration has started to be a very active area that has not been
systematically studied in the literature yet. Machen et al. [18]
investigate live migration of LXC containers [19] by propos-
ing a three-layer framework with synchronized filesystem
methodology for memory state sync. Substantially, that work
shows a quantitative view on the difference between LXC
containers migration and KVM [20] migration.

Live migration of containers become possible since
CRIU [21] supports checkpoint/restore functionalities for the
most container solutions such as OpenVZ [22], LXC/LXD,
and Docker [11]. Several solutions have been explored in
the literature that leverage CRIU for migrating stateful con-
tainers. OpenVZ supports live migration of containers [23];
however, it exploits Virtuozzo Storage System [24], that is a
distributed storage system where all files are shared across
the network. In most cases, the network bandwidth of edge
servers is limited, and the deployment of a distributed storage
could be not possible [25]. Moreover, the implementation is
not optimized due to the transfer of root filesystem of the
container across edge nodes. IBM proposes Voyager [26],
a live container migration service designed in accordance
with the Open Container Initiative (OCI) principles: the IBM
solution implements a novel filesystem-agnostic and vendor-
agnostic migration service with consistency guarantees.

Summarizing the related work, although a few solutions
have been proposed to contribute to the field of container
migration in Edge Computing, there is no ready solution that
exploits the characteristics of the application. As a conse-
quence, we present our solution to make container migration
faster and easier than existing proposals. In addition, we claim
that the paper provides a significant contribution to the com-
munity because, to the best of our knowledge, this is the first
system-oriented work onMEC/Fog handoff that leverages the
service characteristics.

III. BACKGROUND AND DESIGN GUIDELINES
To better understand our original proposal, this section pro-
vides all needed definitions for the involved technologies
and methodologies and an overview of our proposed design
guidelines.
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A. MULTI-LAYER CONTAINER MIGRATION
AND RELATED BACKGROUND
The main objective of our proposal is to develop a
novel framework that enables fast service migration for
edge-enabled service by leveraging its characteristics. For
this purpose, we distinguish between so-called layered ser-
vices and monolithic services. Layered services consist of
diverse layers, such as service and data parts, that could be
managed as different separated blocks. Differently, mono-
lithic services have to be considered by our framework as a
single block, which internally includes service components,
data components, and all associated resources. To better
understand layered services, let us describe a simple example:
a simple Python web application represents the service part,
while a Redis database in which data are stored represents
the data part. In this way, the service part and the data part
could be managed as distinct blocks. On the contrary, mono-
lithic services can be put into execution within dedicated
and self-contained VMs as proposed in some recent litera-
ture: for instance, [3] have proposed a mechanism for edge-
enabled handoff management based on VMs synthesis and
migration to the closest edge nodes. However, the usage of
VMs introduces non-negligible latency and overhead due to
VM size and complexity. The exploitation of container-based
virtualization techniques could reduce the above weaknesses,
by enabling the opportunity of considering more layered
services that can be decomposed in various microservices.

We present a novel approach for multi-layer container-
based service migration by leveraging service characteristics.
To achieve this, edge-enabled services in our proposal are
built as Docker Containers composed by a service layer
(acting as the ‘‘business logic’’ part of the service) and
a data layer (representing the state stored and managed
through the service layer) that should be managed as separate
containers. The Data Container is used to persist data and
could be managed by either a DBMS or a NoSQL man-
ager. We followed a general approach able to work also
with no-database-based storage including general filesys-
tems. In addition, our proposal is able to support two kinds
of service migrations: application-agnostic and application-
aware. Application-agnostic handoff enables the migration
of the entire Data Container, as the data backup, without
requiring any previous knowledge of the specific data soft-
ware layer technology. Application-aware, instead, leverages
service characteristics to extract and proactively transfer part
of data to the target edge node in order to reduce service inter-
ruption. However, the latter mode requires partial visibility
of some characteristics of the implementation of the Data
Container, and for this reason, it is not usable for any kind
of application.

As mentioned in the previous section, Docker technology
doesn’t provide any official migration tool, but, recently, few
developers have constructed tools for specific versions of
Docker. For instance, the work [25] supports Docker Con-
tainers migration of docker version 1.9.0, and Boucher [27]

TABLE 1. Docker containers migration time (bandwidth 40mb/s, latency
0ms, and delay 0ms).

extends the previous work to support docker-1.10 migration.
However, both methods simply transfer all the files located
under the mount point of the container root file system. More
recently, also Docker provided somemechanisms not directly
related to the migration but useful for this purpose. For
instance, docker export command enables users to create a
compressed file from the container filesystem as a ‘‘tar’’ file.
This compressed file can be copied over the network to the
target edge node via file transfer and then imported into a new
container via docker import command. The new container
created in the target edge node can be accessed using docker
run command. One drawback of docker export tool is that
it doesn’t copy environment variables and underlying data
volume which contains the container data. Another method
based on Docker commands to move the container to another
host is container image migration. For the container that has
to be moved, its corresponding Docker image is saved into
a compressed file by using docker commit command. Then
compressed file is moved to the target edge node and a new
container is created with docker run command. Using this
method, the data volume will not be migrated, but it pre-
serves the data of the application created inside the container.
Last, Docker provides a mechanism to save an image to a
tarball which preserves the history, layers, and entrypoints
via docker save command; at the same time, it provides the
equivalent command to load the image in the new host: docker
load.
Unfortunately, aforementionedmethods completely ignore

the composition of the service which we claim could pave the
way for smarter migration management. To verify our claim,
we have conducted preliminary experiments to migrate con-
tainers over different network connections. The experiments
use one simple container such as Busybox and one applica-
tion based on OpenCV for face recognition, to conduct edge
task offloading. Busybox is a software suite that provides
several Unix utilities in a single executable file. It has a tiny
file system inside the container. Instead, the face recognition
application is an application that dispatches video streaming
from mobile devices to the edge server, which executes the
face recognition tasks, and sends back a specific frame with
the name of the person. This container hosts a large filesystem
to store all the images (i.e., more than 1 GB).

Table 1 reports obtained preliminary results that show
that migration can be done within 2 seconds for Busybox,
and within 223 seconds for face recognition application. The
network between these two hosts is a Wi-Fi connection with
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TABLE 2. Docker containers migration time (bandwidth 10mb/s, latency
1.5ms, and delay 40ms).

40 MB/s bandwidth, and further tested container migration
over a 10 MB/s Wi-Fi network.

As previously stated, poor performance is caused by trans-
ferring large files comprising the complete file system, for
instance the total migration time of face recognition appli-
cation (Table 2). This performs worse than the state-of-the-
art VM migration solution. Migration of VMs cloud avoid
transferring a portion of the filesystem by sharing the base
VM images [3], which will finish migration within few min-
utes. Therefore, we require a new tool to efficiently migrate
Docker Containers, avoiding transmission of the entire con-
tainer. This new tool should leverage the characteristics and
composition of edge-enable services to transfer proactively
part of the service data.

B. DESIGN GUIDELINES FOR APPLICATION-AWARE
HANDOFF AND FOR HETEROGENEITY MANAGEMENT
In the following, we formally define a way to select chunks
of data to be moved proactively. Mainly, we select data that
have not changed lately, and then we propose a framework
that is able to proactively move that selected data. Finally,
we describe how our framework faces the problem of device
heterogeneity and energy consumption.

1) APPLICATION-AWARE STRATEGY
Our goal is to enable proactive, transparent migration of edge-
enabled services (typically represented by both the data part
and the service part). The idea of this method is based on the
observation that not all data or records are used all the time.
In fact, from a recent study [28], it was found that most data or
records are stored, but rarely or never accessed after a certain
time frame. Therefore, data or records can be categorized
according to their access frequencies: least accessed data
(cold data) and most accessed data (hot data). In our solution,
we define a probability of datamigration according to the data
access frequencies, means cold data are more inclined to be
part of the proactive migration process. To do this, we first
need to introduce an operation meter that, for each data or
records chunk, calculates the total number of operations did
until certain time. The operation meter is defined as:

Ok = Ik (t)+ Uk (t) (1)

where Ok denotes the total number of operations did on
particular data or record chunk (k) which is defined as the
sum of the number of insert operations (Ik) and the number
of update operations (Uk). Hence, by repeating the ahead
formula (1) for all data it is possible to obtain the value of

access frequencies defined as:

fk =
Ok∑n
i Oi

(2)

where fk represents the access frequencies of data or record
chunk defined as the relationship between operations did on
chunk k and the number of total operations did in all data.
Finally, we define the migration probability assigned to each
data chunk k as:

P(x) =
1
f

(3)

As expressed in (3), the migration probability is defined as
the inverse of the access frequencies. This means that data
accessed often have a low value of migration probability,
while data rarely accessed have a high value of migration
probability. Thus, the goal of our work is to get the maximum
benefit from the data characteristics in order to reduce the
overhead and the service interruption during the handoff pro-
cedure. This requires us to calculate the access frequencies, as
well as the migration probability before the handoff happens.
Let us note that the decision on when, where and whether
to perform the migration depends on many aspects, such as
user mobility, user historical paths, resource availability at the
edge nodes, and so on. Our Prediction Module guarantees the
right execution of our service migration. The module is com-
posed by two components: monitoring and trigger. The moni-
toring component monitors users’ location in order to predict
their movement. Several monitoring strategies have been pro-
posed in the literature, and we design the Prediction Module
to work with any such strategy. The trigger component is
in charge of determining the appropriate time to initiate the
handoff (both long- and short-term). We have identified two
distinct handoff triggering strategies: a coarse-grained model
(long-term), and a fine-grained model (short-term).
Coarse-Grained Model: Typically, services running at the

edge server have a limited period of validity, ranging from
few minutes to few hours. The goal of this model is to predict
well in advance the user movement in order to calculate data
to be moved from one edge node to another. Most long-term
handoff triggering algorithms proposed in the literature have
taken into account both QoS of application and users’ mobil-
ity traces. However, if users’ historical path is available,
the system can proactively predict the handoff timing and can
early move service and data from one edge to another.
Fine-Grained Model: The goal of this model is to establish

with high accuracy when the handoff happens. In general,
short-term handoff triggering algorithms are based on moni-
toring wireless indicators, such as Received Signal Strength
Indications (RSSI) [29]. Otherwise, there are other works
that take into account the QoS of application such as TCP
throughput [30].

Our framework works with both long- and short-term
handoff prediction. When a long-term strategy predicts the
handoff, the Prediction Module notifies our Decision Module
that starts to calculate the migration probability for each

139750 VOLUME 7, 2019



P. Bellavista et al.: Differentiated Service/Data Migration for Edge Services Leveraging Container Characteristics

data chunk. In order to choose which data move proactively,
we defined a probability threshold, statically or dynamically
determined, in which our framework migrates all data chunks
that have a probability value greater than the threshold. The
appropriate value of the threshold is chosen based on the
variability characteristics of the data. For instance, if the data
have a high value of variability it would be better to use a
high value of probability threshold (e.g., around 0.9-0.95).
That’s because, using a low value of probability threshold
may cause problems in the reconciliation phase, in the sense
that early migrated data chunks may result changed after the
handoff procedure is completed. Instead, if the data have a
low value of variability could be convenient to use a low value
of probability threshold. Let us note that the correct value
of the probability threshold may be decided dynamically -on
the fly- in relation to the data characteristics. Once defined a
proper value of the probability threshold, when the Prediction
Module predicts the handoff the Decision Module starts to
migrate all data chunks that satisfy the threshold condition.
Finally, when the handoff occurs our framework migrates all
remaining data chunks (data reconciliation phase – step 9’’
Fig. 4) and then checks the data integrity.

Instead, when a short-term strategy predicts the handoff,
as specified before, fine-grained models detect the handoff
more precisely than coarse-grained models. Thus, the system
has better accuracy but less time to operate. For this reason,
could be not possible to send all selected data chunks from
one edge to another before the handoff happens; to avoid this,
we have adopted a strategy named ‘‘sequential execution’’
that starts to sequentiallymigrate data chunkswith the highest
value of the migration probability until the handoff happens.
Finally, when the handoff happens our framework migrates
all remaining data chunks.

Regardless of the model, once the handoff terminates the
framework has to guarantee data consistency. To ensure this,
our framework checks if data chunks sent proactively have
changed during the handoff. If some data chunks differ,
the framework reconciles them. To correctly check if all data
chunks sent proactively are consistent after the handoff, our
framework sends hash values of each data chunk, before and
after the handoff, and checks if these hash values correspond.
If the hash value of some data chunks does not correspond,
we must resend those chunks.

2) HETEROGENEITY AND ENERGY
As stated in Section I, our framework addresses the prob-
lem of edge node heterogeneity by defining an affinity
relationship between the service and the edge node. In gen-
eral, edge nodes are heterogeneous devices spanning from
powerful micro data servers (typical for MEC infrastruc-
ture) to general-purpose resource-poor gateways (typical for
Fog Computing infrastructure). Therefore, if more than one
edge node is available in a certain zone, would it be conve-
nient to select the best target edge node according to both
resource needs and energy consumption considerations. Our
affinity relationship guides the system to take this decision.

FIGURE 1. System architecture.

In the edge computing environment, we can have many
types of affinity, among them: CommunicationAffinity (CA),
Resources Affinity (RA), and Energy Affinity (EA).

CA depends on communication technologies between the
mobile node and the target edge node. RA is derived from
resources needed for executing the service at the edge node.
EA is induced from the minimum resources needed to run the
service and resource availability at the edge node.

Regardless of various affinity types, our work denotes
affinity of edge services as a key factor for allocation of edge
services at the target edge node and takes Energy Affinity as
an example. Let us consider a basic scenario that comprises a
large number of edge nodes available in an edge environment.
The edges are distributed in several zones and are different
from each other (some MEC-based other Fog-based). Each
edge node has a resource capacity to run a specific service.
We aim at minimizing the number of resources needed to run
the service in order to save energy in an edge infrastructure.

In this scenario, we describe the Energy Affinity parameter
as follows. Given the resources consumption of the running
service at the old edge node (in terms of CPU and RAM
consumption), we find the optimal allocation of the service
by comparing with resources available at the edge nodes.
Therefore, the best association is when EA is about 1.

IV. ARCHITECTURE AND HANDOFF MANAGEMENT
This section presents our system architecture and describes
our handoff protocols including reactive handoff, proactive
handoff, and application-aware handoff.

A. ARCHITECTURE
Fig. 1 shows the architecture of our edge node that consists
of a set of components that are deployed at the service layer
and enable our handoffs process.

• Prediction Module (PM) is in charge of determining
the appropriate time to initiate the handoff by monitor-
ing users’ location in order to predict their movement.
Several monitoring strategies have been proposed in
the literature, and we design the PM to work with any
such strategy. Particularly, this module collects infor-
mation about users and calculate several metrics to
trigger the Decision Module and to start the handoff
process. We claim the importance of distinguishing two
kinds of mobility prediction: a coarse-grained historical-
basedmobility prediction and a fine-grainedRSSI-based
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mobility prediction. The first one is based on the history
of user movements: edge nodes, possibly coordinating
also with the mobile node to gather mobility traces (such
as GPS positions) and the global cloud layer (to process
those traces), track user movement to enable long-term
predictions of user mobility habits, such as during work-
ing days, during weekend, and so forth. Moreover, when
it is enabled allows the system to execute proactively
long-running operations such as migration of (static)
service parts towards the target edge. The second
one, namely, fine-grained mobility prediction, evaluates
handoff decision by using the value of edge-to-mobile
RSSI by employing the monitored RSSI values obtained
through heterogeneous short-range wireless technolo-
gies, such asWi-Fi and Bluetooth. As widely recognized
in the literature, this kind of prediction is expensive,
typically works on shorter time intervals, but gives more
accurate information about when to trigger handoff and
consequently the migration of more dynamic data parts.
Finally, the availability of both predictionmodes enables
higher flexibility for handoff management, as better
explained in the next subsection.

• Data Container Manager (DcM) enables the applica-
tion-aware handoff by embedding the application-
specific knowledge to manage finer grained data
migration. In other words, this module observes the
underlying data container by providing several data con-
nector and returns data to be migrated based on the
migration strategy.

• Decision Module (DM) contains a set of strategies
which are used to determine data mobility. Several
strategies can be used for this purpose; in this work,
we propose an approach based on data access frequen-
cies where data accessed less have a higher migration
probability. Moreover, this module is in charge of choos-
ing the best place (MEC node or Fog node if there
are multiple edge nodes in the same region) to forward
the handoff procedure by evaluating the service affinity
relationship.

• Handoff Module (HM) executes the handoff process.
This component offers a set of commonAPIs that enable
the interactions of our handoff protocol between all
involved distributed entities. This module relates to the
same HM of the target edge node and contains all hand-
off steps to perform such as handoff request, start, stop,
and so on.

B. HANDOFF MANAGEMENT
1) REACTIVE HANDOFF
Fig. 2 depicts the primary steps of the baseline (reactive
handoff based on Docker tools) of default Docker Containers
migration. Generally, the reactive handoff procedure starts
when the mobile node loses connection with the old edge
node and sends a handoff request message to the target edge
node (step 1). Upon the old edge node receives the handoff

FIGURE 2. Docker basic reactive handoff.

request (step 2), it starts the migration process by exporting
the container to be migrated by using Docker export com-
mand (step 3). Then, the old node sends the compressed con-
tainer to the target edge node via network file transfer (step 4).
Once the target edge node has received the compressed con-
tainer it restarts it via docker import command (step 5). In par-
allel, the old edge node starts to prepare the backup of Data
Container, if necessary and sends it to the target edge node
which restores it (steps 6-7-8). Finally, the handoff procedure
ends (step 9).

Let us clarify that Fig. 2 describes the basic Docker migra-
tion protocol (reactive handoff), which impose the service
interruption from step 1 to step 9 typically suffered by
monolithic services and VMs as well. Note that, to better
understand our proposal, we implemented the basic Docker
migration protocol also as a baseline to use for compari-
son in our experimental evaluation (see experimental eval-
uation section). Of course, our framework would allow to
optimize also this reactive handoff management, e.g., lever-
aging service/data software layering to avoid migrations
(if needed layers are already available at the target edge) and,
similarly, applying application-aware data management if
possible.

The next section, focuses on our proposed protocols that
implement and enhance a proactive approach in order to
reduce the service interruption interval due to user handoff
between different edges, including pre-loading of all selected
services/data software layers at edge nodes. In this case,
we also distinguish different types of handoff management
improvements depending on how data state is transferred in
application-agnostic and application-aware cases.
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FIGURE 3. Docker proactive handoff.

2) PROACTIVE HANDOFF
This subsection describes the design principles behind
our service/data migration protocols, detailing also the
application-aware optimization. We start by presenting
our optimized proactive application-agnostic handoff pro-
cedure and then we detail our application-aware handoff
strategies.

Fig. 3 shows our optimizations of basic reactive hand-
off based on Docker tools. The optimizations leverage
both long- and short-term predictions to enable proactive
provisioning.

Our handoff procedure begins when the PredictionModule
predicts the migration and triggers the proactive execution of
the handoff procedure (steps 1-2). Then, the protocol starts
the migration of the service part (steps 3-4) and the installa-
tion of the data part (steps 5-6). In this approach, we consider
the data part as a black boxwith no information about its inner
characteristics; in the next optimizations, we describe the
additional modalities of operation of Decision Module which
can operate also the application-aware handoff. Therefore,
steps 5-6 install only the data container while we postpone
the request for data backup migration until the mobile node
loses connection from the old edge node, so to make sure
to receive a more consistent data state, with all changes
made at the old edge node (step 7). Once completed the data
container backup, the old edge node starts to send the backup
to the target edge node (step 8) and then the target edge
node restores the data backup with all latest changes made
at the old edge node by the user (step 9). Finally, the target
edge node sends the handoff complete signal to the mobile
node.

FIGURE 4. Docker proactive application-aware handoff.

As one can see from Fig. 3, this approach of service/data
migration decreases the service interruption time compared to
the previous one (Docker basic reactive handoff). Let us note
that this does not imply any application-specific knowledge
and requirements to perform it. Furthermore, we can further
reduce the service interruption time leveraging the Decision
Module that contains decision mechanisms to move proper
data. This is the core of our proposal and we will explain it in
detail in the next subsection.

3) APPLICATION-AWARE HANDOFF
The idea behind application-aware optimizations is the
exploitation of our Decision Module; thus, beyond the strate-
gies, the Decision Module selects proper data to be moved
proactively to the target edge node.

In our solution, the application-aware service/data migra-
tion process is composed by multiple steps, as depicted
in Fig. 4. The user’s mobility is observed by Prediction Mod-
ule that can activate a trigger when the user mobile node is
likely to go towards the new edge node. The Prediction Mod-
ule can take advantage of both short- and long-term user’s
mobility prediction; for the purpose of application-aware
optimizations, we need to use a long-term user’s mobil-
ity prediction in order to select and move data proactively
(steps 1-2). Let us note that compared to the Docker proac-
tive application-agnostic handoff, application-aware handoff
allows us to proactively move certain data to the target edge
node. Thus, the old edge node migrates the service (steps 3-
4) and the data container part (steps 5-6) to the target edge
node. Then, in order to select proper data to be moved, based
on the migration strategy, we need to invoke the Decision
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Module (step 7). In this time interval, the mobile node
continues to be provisioned through the old edge node.
Consequently, our procedure introduces a periodic data
reconciliation phase, triggered by a short-term mobility pre-
diction (steps 8-9’), to reduce the service interruption inter-
val, by limiting the whole data state migration to those data
chunks. This periodic data injection phase (managed by our
Decision Module by using its strategies) terminates when the
mobile node loses the connection with the old edge node:
our protocol guarantees data consistency by sending another
data chunk update from the old edge node to the target
edge node, and that completes the whole handoff procedure
(steps 9’’-10).

V. EXPERIMENTAL EVALUATION
AND SIMULATION WORK
As already stated, one of the key contributions of this paper
is that our service/data migration solution has been imple-
mented and completely integrated into the a real MEC/Fog
architecture. As a valuable side-effect, differently from sem-
inal efforts available in the existing literature, we are able
to report results obtained in our lab deployment scenario,
with heterogeneous edge devices, and a simulation work for
additional quantitative evaluations and comparisons. To thor-
oughly test and evaluate the performance of our framework,
we carried out three different sets of experiments, respec-
tively, for Docker basic reactive handoff, for our application-
agnostic proactive handoff, and for our application-aware
proactive handoff. The results reported in this section are
average values; all presented measurements have exhibited
a limited variance (under 5% for 30 runs).

A. REAL IN LAB TESTBED EXPERIMENTAL
MEASUREMENTS
To better understand improvements in terms of system com-
plexity and migration time, we quickly introduce our in-lab
deployment scenario. Our evaluation testbed consists of
three Linux boxes (Ubuntu 18.04 distribution): two 3.06GHz
Intel(R) CORE i5 and 8GB 1300 MHz DDR3 memory as
MEC-based edge nodes, and one Raspberry Pi3 equipped
with 64-bit quadcore ARM Cortex-A53 processor, 1 GB of
RAM and 16 GB of storage as a Fog-enabled node. Due to
space constraints, we present a case with heterogeneous edge
devices where the old edge node is a micro datacenter and
the target edge node is a fog node. This because we want to
highlight one of the critical cases of our work. Those nodes
host Docker 18.09-ce and Java 12, and all our framework
components. During our experiments, we have considered
the service migration performance of our framework for a
specific cloud- edge-enabled application based on Docker
Compose [31] defined by the Docker Compose yml file as
follow:

This is the general schema used for implementing multi-
layering Docker-based applications. Our test service consists
of a Java web application defined as the service layer and
an instance of MongoDB as the data layer. The test ser-
vice consists of a web-based application where users report
some information, they find along the road such as obstacles,
restaurants, and groceries. In particular, the Java part provides
a simple human interface which users compile and insert
information through a form that are stored in the MongoDB
database.

The MongoDB container is linked to another con-
tainer (dbdata) that acts as Docker Volume [32] via the vol-
umes_from Docker primitive. Let us recall that in Docker,
a Volume is a mechanism for persisting data in the local
filesystem used by a Docker container. To create a Docker
container for persisting data, it is possible to use the following
dockercli command:

The proposed characterization of our test service helps us
to better understand how application-aware handoff works.
Indeed, the data layer (composed by a MongoDB instance) is
physically separated from the rest of the service, whichmeans
that our framework optimizations can exclusively focus on
this part. MongoDB has been chosen for its simplicity and
because it provides mechanisms that allow us to implement
each step of our application-aware handoff. In particular,
MongoDB assembles the data in the form of collections
which represent our data chunks. Finally, MongoDB provides
mechanisms for sending and restoring only portions of data
(i.e., data chunk) by using mongodump and mongorestore
integrated tools.

Unless otherwise specified, edge nodes connect each other
via IEEE 802.11n connections and their maximum nomi-
nal available bandwidth is 40 Mbit/s. During the first set
of experiments (Docker container migration), the persistent
layer to migrate is around 300 MB until 330 MB depending
on the different number of records (from 10K to 100K). Let
us clarify that we considered the service already installed at
the target edge node, hence we need to migrate only the data
container. The handoff process starts when the mobile node
loses connection with the old edge node. Hence, the total
time of migration is obtained by the sum of three different
steps: export container, send container, and restore container.
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FIGURE 5. Docker basic handoff total migration time.

The first step (step 6 Fig. 2), export container, is done at the
old edge node and consists in collect all container files into
one tar archive file. The second step allows the system to
transfer the tar through the network from the old edge node
to the target edge node. We have run the test several times
by changing the amounts of data stored on MongoDB, from
10K to 100K records. Fig. 5 shows the total migration time
for different amounts of data by highlighting the time needed
to complete each step. As depicted in Fig. 5, the number of
records affects the total migration time by a factor of around
10 s per each stage. In the worst case, the overall service
interruption is around 170 s.

The remaining sets of experiments are related to the more
interesting proactive scenario. We have evaluated the pro-
posed application-aware approach in terms of total migration
time. In this scenario, when the Prediction Module foresees
the handoff (long-term), the Decision Module at the old edge
node starts to calculate data to migrated (cold data) and
migrates the data toward the target edge node. Then, when
the handoff happens, the system sends only the remaining
data (hot data) towards the destination edge node. Finally,
the destination edge node has to check the consistency of
all cold data (some data may have changed value during
the handoff). For this set of experiments, we set the number
of cold blocks at 35% of the total blocks. Each block in
our implementation correspond to a MongoDB collection;
in order to calculate the migration probability of each block,
we used the collection stats command (db.collection.stats()),
provided by mongo API, that returns statistics about the
collection including the total number of insert and update
operations. We simulated different percentages of a correct
guess that means the correctness of the forecast made on
the cold data. The different simulated percentages of correct
guess are: 25%, 50%, 75%, and 100%. If the forecast on
the cold data is incorrect, we need to resend all cold blocks
that do not match. Fig. 6 shows the performance of the
container migration for different amounts of data at different
percentages of a correct guess. On the one hand, when the
percentage of correct guess increases the total migration time
decreases. On the other hand, when more records need to be
processed the total migration time increases.

B. SIMULATION RESULTS ABOUT TOTAL MIGRATION TIME
AND DATA LOSS COMPARED WITH DATA VARIABILITY
For additional quantitative evaluations and comparisons,
we employed CloudSim [33], an extensible and widely
adopted simulation toolkit that enables the modeling and
simulation of cloud computing environments. In particular,
CloudSim simulation framework supports the modeling and
creation of infrastructures and application environments for
distributed multiple clouds. A recent extension of CloudSim,
named EdgeCloudSim [34], builds the concept of Edge Com-
puting upon CloudSim by adding necessary functionalities in
terms of computation and network capabilities. In particular,
we map the framework into the simulator by creating:

• Two micro datacenters, used to migrate our service to;
• one host per datacenter, with 2GB RAM and 250GB
storage each;

• two VMs for each host, with 512MB RAM, 100GB
storage, and 1 CPU each;

• one process per VM representing MongoDB instance.

In this simulated environment, we extensively compared
our application-aware solution with two baseline approaches,
such as reactive migration and proactive migration. The reac-
tive migration adopts the approach of migrating all data at
once when the handoff happens. Thus, it is characterized
by high migration time (because it sends all data), and also
may cause significant data loss in case of high amount
of data received during the migration process. The proac-
tive approach, instead, moves the data in advance before
the handoff happens according to the migration probability.
We simulated different values of data variability and migra-
tion probability in order to show howmigration time and data
loss vary. Fig. 7 and 8 show, respectively, the results about
the total migration time and data loss in relation to the data
variability for the reactive and the proactive migration. The
total migration time for the reactivemigration always remains
the same regardless of data variability value, that is so because
the reactive migration ever sends all data. The same does not
apply to data loss. If we have a high value of data variability,
a long interruption of the service (caused by the migration),
may generate a high value of data loss, because a mobile
device can still use the service at the old edge node during
the handoff. The situation is different when we analyzed
the proactive migration. Let us note that the results reported
in Fig. 8 have been obtained by simulating a migration of
data container with size 200MB, and migration probability
at 0.7. Then, the figure shows how the total migration time
depends on the choice of themigration probability. Therefore,
if the system has more than 1kB/s of data variability rate,
the choice to have 0.7 as migration probability does not lead
to any benefits. In other words, the results in Fig. 7 and 8
highlight the relevance of being able to dynamically adapt
the migration behavior to expected data variability, as in our
proposed framework where we use the migration probability
as a threshold to decide whether or not to move data.
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FIGURE 6. Docker basic handoff total migration time.

FIGURE 7. Total migration time for reactive handoff.

FIGURE 8. Total migration time for proactive handoff.

Finally, Fig. 9 reports about how we have modeled
the migration probability in our simulations, by showing
how the total migration time changes in relation to the

FIGURE 9. Total migration time relates to migration probability.

migration probability and the data variability rate. Indeed,
the figure represents a general model to choose the more
suitable migration probability value in relation to how
quickly data records change. With the simulation results,
we want to give a baseline guide to choose the best value
of migration probability related to the data variability if
available.

VI. CONCLUSION AND ONGOING WORK
The proposed framework supports the mobility of edge-
enabled services in a three-layer edge computing envi-
ronment. In particular, our support works either in
application-agnostic mode and application-aware mode
(if possible), and it manages the heterogeneity of the edge
environment. We have already validated our approach both
via real experiments and using simulations with synthetic
values of data variability. The reported results confirm that
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proactive migration adopted can significantly minimize the
service downtime in the case of layered services (total
migration time reductions of 30% ∼ 50%), by imposing a
very limited overhead on the overall support infrastructure.

A future implementation of the proposed framework may
involve different software components, not only related to
virtualization technologies, such as filesystems. In this case,
our framework should be able to realize which portion of data
can be moved proactively towards the target edge node.

Finally, fueled by these significant results, we are working
on two main ongoing research directions. On the one hand,
we are deploying the realized solution, already widely tested
in the geographically distributed Edge Computing testbed,
in a federated cloud environment with heterogeneous devices.
On the other hand, we are running extensive experiments to
thoroughly assess the impact of our framework, to mitigate
the potentially disruptive effect on other concurrent ongoing
migration sessions.
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