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A Sparse Polytopic LPV Controller
for Fully-Distributed Nonlinear Optimal Control

Sara Spedicato, Sarnavi Mahesh and Giuseppe Notarstefano

Abstract— In this paper we deal with distributed optimal
control for nonlinear dynamical systems over graph, that is
large-scale systems in which the dynamics of each subsystem
depends on neighboring states only. Starting from a previous
work in which we designed a partially distributed solution based
on a cloud, here we propose a fully-distributed algorithm. The
key novelty of the approach in this paper is the design of a
sparse controller to stabilize trajectories of the nonlinear system
at each iteration of the distributed algorithm. The proposed
controller is based on the design of a stabilizing controller for
polytopic Linear Parameter Varying (LPV) systems satisfying
nonconvex sparsity constraints. Thanks to a suitable choice of
vertex matrices and to an iterative procedure using convex
approximations of the nonconvex matrix problem, we are able
to design a controller in which each agent can locally compute
the feedback gains at each iteration by simply combining
coefficients of some vertex matrices that can be pre-computed
offline. We show the effectiveness of the strategy on simulations
performed on a multi-agent formation control problem.

I. INTRODUCTION

Nonlinear optimal control of network systems is a chal-
lenging problem with applications in several control areas
as cooperative robotics, smart grids or spatially distributed
control systems. The large-scale nature and nonconvexity of
the optimization problem are the main challenges that need
to be taken into account in addressing the solution of these
optimal control problems in a distributed way.

Distributed optimal control over networks has been mainly
investigated for linear (time-invariant) systems, [1]–[4], so
that the resulting optimization problem is convex. While
the approaches developed for convex problems are fully
distributed, in the few methods proposed for nonlinear,
nonconvex problems, [5], [6], only part of the computation
is performed locally by the agents. In our previous work
[7] we have proposed a cloud-assisted distributed algorithm
to solve (nonconvex) optimal control problems for nonlinear
dynamics over graph [8], i.e., large-scale systems character-
ized by a dynamic coupling (modeled by a graph) among
subsystems. The algorithm proposed in [7] combines dis-
tributed computation steps with centralized steps performed
by a cloud. A key distinctive feature of the optimal control
strategy in [7] and its distributed version proposed in this
paper, is that at each iteration agents compute a trajectory of
the dynamical system, i.e., a state-input curve satisfying the
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dynamics. This feature is extremely important in realtime
control schemes (as, e.g., Model Predictive Control ones)
since it allows agents to stop the algorithm at any iteration
and yet have a (suboptimal) system trajectory. This property
is guaranteed through a nonlinear feedback controller acting
as a projection operator, [9], that at each iteration of the algo-
rithm projects infeasible state-input curves into trajectories of
the system (satisfying the dynamics). Here, we are interested
in designing a distributed projection operator, [7], as a sparse
feedback matrix that exponentially stabilizes the linearization
of the system at a given trajectory. The design of sparse
controllers for network systems, which allows for distributed
control laws, has been investigated in the literature mainly
for linear systems. The works in [10]–[15] address the design
of a sparse static feedback for linear time-invariant systems.
Dynamic controllers are instead considered in [16]–[19].
Among these works, [16] deals with time-varying systems
while [17]–[19] consider LPV systems.

The main contributions of this paper are as follows. We
propose a variation of the strategy introduced in [7] that
allows agents to solve nonlinear optimal control problems for
dynamics over graph in a fully-distributed way, i.e., without
requiring the presence of a cloud. In the strategy in [7]
the cloud computes, at each iteration of the algorithm, a
new stabilizing feedback matrix for the current trajectory. In
this paper we remove this centralized step, so that both the
implementation of the control law and its design are purely
distributed at each iteration of the optimal control algorithm.
The main idea is to split the design of the time-varying
(and iteration dependent) feedback controller in two parts:
a computationally expensive step performed offline before
the optimal control algorithm starts, and a computationally
inexpensive one that agents perform at each iteration in
a completely distributed way. Specifically, we are able to
express each sparse time-varying, and iteration dependent,
feedback matrix as a convex combination of given vertex
matrices of a polytopic LPV system. By simultaneously
imposing suitable sparsity structures on the vertex matrices
and stability conditions for polytopic systems, we are able
to obtain time and iteration dependent feedback matrices:
(i) exponentially stabilizing the trajectories of the nonlinear
system, and (ii) whose (time and iteration dependent) convex
combinators can be computed locally by agents. In order to
obtain vertex matrices satisfying the required stability and
sparsity conditions, we propose an iterative algorithm, based
on the convexification of the nonconvex sparsity constraint,
inspired by the one proposed in [20] for linear time-invariant
systems. We extend the approach in [20] to polytopic LPV



systems and properly tailor it to distributed controllers for
network systems. Also, as opposed to [17]–[19], our con-
troller is static and can be implemented via an online step
with precomputed vertex matrices.

The paper is organized as follows. In Section II we
describe the nonlinear optimal control problem addressed in
the paper and recall our cloud-assisted distributed algorithm
proposed in [7]. In Section III we present our strategy for the
computation of the distributed projection operator over graph
by means of a sparse polytopic LPV controller, while in
Section IV we show how the strategy is used to obtain a fully
distributed optimal control algorithm. Finally, in Section V
we provide numerical computations.

II. PROBLEM SET-UP AND
CLOUD-ASSISTED ALGORITHM

A. Distributed Nonlinear Optimal Control over Graph

Nonlinear dynamics over graph consist of N subsys-
tems whose local dynamics depend only on neighboring
subsystems. The neighboring structure is modeled by a
fixed, connected and undirected graph G = {{1, . . . , N}, E},
with E being the set of edges. We let Ni := {j ∈
{1, . . . , N}|(i, j) ∈ E} be the set of neighbors of node i,
and let Adj ∈ RN×N denote the adjacency matrix associated
to G. We will consider the evolution of the dynamics over
a time horizon T . For 0 ≤ t1 ≤ t2 ≤ T we define
T[t1,t2] := {t1, . . . , t2}. For such a dynamical system we
want to solve the nonlinear optimal control problem

min
xi,1,...,xi,T
ui,0,...,ui,T−1

i∈{1,...,N}

N∑
i=1

( T−1∑
t=0

(
`i(xi,t, ui,t)

)
+mi(xi,T )

)
, (1)

subj. to xi,t+1 = fi(xNi,t, ui,t), t ∈ T[0,T−1], (2)
i ∈ {1, ..., N},

where xi,t ∈ R, ui,t ∈ R are, respectively, the state and
input of agent i at time t, xi,0 is a (given) initial condition,
xNi,t ∈ R|Ni|, where |Ni| is the cardinality of Ni, is a
vector with components xj,t, j ∈ Ni, `i : R × R → R,
mi : R → R are cost functions, and fi : R|Ni| × R → R
is the local state function of agent i. The functions `i(·, ·),
mi(·) and fi(·, ·), for all i ∈ {1, . . . , N}, are continuously
differentiable functions. In order to simplify the presentation
of the LPV-based controller technique in Section III, we
suppose that the gradient of the function fi(·, ·) with respect
to the input ui,t does not depend on time t, for all i.

A trajectory of (2) consists of states and inputs, respec-
tivelly xi,t, t ∈ T[0,T ], i ∈ {1, . . . , N} and ui,t, t ∈
T[0,T−1], i ∈ {1, . . . , N}, that satisfy the dynamics (2).
Since the problem (1)-(2) is nonconvex we seek for tra-
jectories, namely x∗i,t, t ∈ T[0,T ], u

∗
i,t, t ∈ T[0,T−1],

i ∈ {1, . . . , N}, satisfying the dynamics, together with
Lagrange multipliers p∗i,t, t ∈ T[1,T ], i ∈ {1, . . . , N}, all
satisfying the first-order necessary conditions for optimality.
In our distributed scenario, agent i only knows its functions
`i(·, ·),mi(·) and fi(·, ·), has computation capabilities and
communicates only with its neighbors j ∈ Ni. We aim to

design a distributed algorithm to solve problem (1)-(2), in
which each agent i aims to locally compute its own x∗i,t,
t ∈ T[0,T ], u∗i,t, t ∈ T[0,T−1], p∗i,t, t ∈ T[1,T ].

B. Cloud-assisted distributed algorithm

In [7] we have introduced a cloud-assisted distributed
algorithm to solve problem (1)-(2). In order to understand
how such an algorithm can be fully distributed, we briefly
recall its main idea and its steps.

The algorithm is a descent method in which at each
iteration agents find a local descent direction (a state-input
curve) and compute a new trajectory (satisfying the system
dynamics) through a feedback controller. The distributed
controller, which we called distributed projection operator
over graph, is a key element of the method (inspired by
the centralized approach in [9]) since it guarantees to obtain
a trajectory (satisfying the dynamics) at each iteration. Let
αi,t ∈ R, t ∈ T[0,T ], µi,t ∈ R, t ∈ T[0,T−1], i ∈ {1, . . . , N},
be a generic state-input curve (not satisfying the dynamics
in general) which lies in a neighborhood of a trajectory
x̃i,t, t ∈ T[0,T ], ũi,t, t ∈ T[0,T−1], i ∈ {1, . . . , N}, of
the nonlinear system (2). A distributed projection operator
over graph, mapping the curve αi,t, µi,t, for all i and t, into
a trajectory xi,t, ui,t, for all i and t, of (2), is defined as the
feedback system, with xi,0 = αi,0,

xi,t+1 = fi(xNi,t, ui,t),

ui,t = µi,t +

N∑
j=1

kt(i,j)

(
αj,t − xj,t

)
,

(3)

for all i ∈ {1, ..., N} and t ∈ T[0,T−1], where kt(i,j) ∈ R is
the element i, j of a controller matrix Kt ∈ RN×N with the
following features. First, it has a stabilizability-like property,
namely it exponentially stabilizes the trajectory x̃i,t, t ∈
T[0,T ], ũi,t, t ∈ T[0,T−1], i ∈ {1, . . . , N}, as T → ∞.
Second, it satisfies the sparsity condition kt(i,j) = 0 if j /∈
Ni, for all i ∈ {1, . . . , N} and t ∈ T[0,T−1].

In order to use a compact notation, let us denote a state-
input trajectory as (x, u), where x ∈ RN(T+1) and u ∈ RNT
are respectively the stacks of xi,t and ui,t, for all i and t.
Consistently we will use the notation (α, µ) for a state-input
curve. A trajectory (x, u) of (2) can be written, by means of
(3), as a function of a curve (α, µ), i.e.,

x = ϕ(α, µ), u = γ(α, µ), (4)

with suitably defined functions ϕ(·, ·) and γ(·, ·). By means
of (4) and defining

g(x, u) :=

N∑
i=1

( T−1∑
t=0

(
`i(xi,t, ui,t)

)
+mi(xi,T )

)
,

the dynamically constrained problem (1)-(2) can be written
as the unconstrained problem

min
α,µ

g(ϕ(α, µ), γ(α, µ)). (5)

The cloud-assisted distributed algorithm in [7], recalled in
the next table (Algorithm 1) from the perspective of agent i,



is based on a steepest descent method for the unconstrained
problem (5) in which trajectories are obtained through the
projection operator (designed by the cloud at each iteration).

Algorithm 1 Cloud-assisted distributed algorithm [7]

Require: x0j,t, u0i,t, for all t, for j ∈ Ni, such that (x0, u0)
is a trajectory of (2)
for k = 0, 1, 2 . . . do

Send2Cloud(xki,t, t ∈ T[0,T ], u
k
i,t, t ∈ T[0,T−1])

ReceiveFromCloud(kkt(i,j), k
k
t(j,i), j∈Ni, t∈ T[0,T−1])

set pki,T = ∇mi(x
k
i,T )

for t = T − 1, . . . , 0 do

vki,t = −
(
`ku,i,t + b(i,i) p

k
i,t+1

)
(6)

receive akt(j,i), b(j,j), v
k
j,t, `

k
u,j,t, p

k
j,t+1, j ∈ Ni\{i}

zki,t = −
∑
j∈Ni

(
kkt(j,i)v

k
j,t

)
pki,t =

∑
j∈Ni

((
akt(j,i) − b(j,j)kkt(j,i)

)
pkj,t+1−kkt(j,i) `ku,j,t

)
+`kx,i,t

(7)

Send2Cloud(zki,t, t ∈ T[0,T ], v
k
i,t, t ∈ T[0,T−1])

ReceiveFromCloud(βk)
for t = 0, 1, . . . , T − 1 do

receive zkj,t, x
k+1
j,t , j ∈ Ni \ {i},

update curve

αk+1
j,t = xkj,t + βkzkj,t, j ∈ Ni
µk+1
i,t = uki,t + βkvki,t

(8)

update trajectory

uk+1
i,t = µk+1

i,t +
∑
j∈Ni

kkt(i,j)

(
αk+1
j,t − x

k+1
j,t

)
xk+1
i,t+1 = fi(x

k+1
Ni,t

, uk+1
i,t )

(9)

Let, for a generic scalar function h(·, ·), ∇xh(xk, yk) and
∇yh(xk, yk) respectively denote the gradients with respect to
x and y evaluated at xk, yk. At each iteration k, agent i per-
forms the following steps. First, it computes its components
zki,t, v

k
i,t, t ∈ T[0,T−1], of the whole descent direction via (6)-

(7), where the scalars `kx,i,t, `
k
u,i,t, a

k
t(i,j), b(i,i) are defined as

`kx,i,t :=∇xi,t
`i(x

k
i,t, u

k
i,t), `

k
u,i,t :=∇ui,t

`i(x
k
i,t, u

k
i,t),

akt(i,j) := ∇xj,t
fi(x

k
Ni,t, u

k
i,t),

b(i,i) := ∇ui,t
fi(x

k
Ni,t, u

k
i,t).

(10)

Second, agent i performs a local curve update in which
it only computes αk+1

j,t , j ∈ Ni, µk+1
i,t , for all t, of the

overall new curve iterate αk+1, µk+1 via (8), where βk is
a stepsize computed by the cloud. Third, agent i executes a
local trajectory update via (9), in which only the i-th states
xk+1
i,t and inputs uk+1

i,t , for all t, are computed by means
of the distributed projection operator. The descent direction
(6)-(7) and the trajectory update (9) require, respectively, the
elements kkt(j,i), j ∈ Ni, and kkt(i,j), j ∈ Ni, of the matrix

Kk
t , which is computed, at each iteration k, by the cloud.

The cloud receives the current xki,t, u
k
i,t, for all t, from all the

N agents and sends back to each agent the corresponding
elements kkt(j,i), k

k
t(i,j), j ∈ Ni, of the matrix Kk

t , t ∈
T[0,T−1]. Send2Cloud(·) and ReceiveFromCloud(·) indi-
cate the communication between each agent i and the cloud.

III. SPARSE POLYTOPIC LPV CONTROLLER

In this section we propose a novel distributed strategy
to compute, at each iteration k of Algorithm 1, a feedback
matrix Kk

t , t ∈ T[0,T−1], in a neighborhood of the trajectory
iterate xki,t, u

k
i,t, for all i and t. We recall that, for each

iteration k, the feedback matrix Kk
t , t ∈ T[0,T−1], has

to: (i) stabilize the trajectory xki,t, u
k
i,t (for all i and t)

of (2) as T → ∞, and (ii) satisfy the sparsity condition
kkt(i,j) = 0, if j /∈ Ni, i ∈ {1, . . . , N}, t ∈ T[0,T−1].

In order to satisfy (i), we use the following property. A
feedback that exponentially stabilizes the linearization of
the system at a given trajectory also locally exponentially
stabilizes the trajectory of the nonlinear system. As for (ii),
let Adjc := 1 − Adj, with 1 the matrix with all entries
equal to one and Adj the adjacency matrix, with elements
adj(i,j) = 1 if j ∈ Ni and 0 otherwise. The sparsity condition
(ii) can be written compactly as Kk

t ◦ Adjc = 0, t ∈
T[0,T−1], where ◦ denotes element-wise multiplication.

We can, thus, pose the problem of designing Kk
t , t ∈

T[0,T−1], satisfying (i) and (ii) as follows. Let us consider the
linearization of the nonlinear dynamics (2) at the trajectory
xki,t, u

k
i,t, for all i and t, i.e.,

∆xt+1 = Akt∆xt +B∆ut, t ∈ T[0,T−1], (11)

where, ∆xt ∈ RN and ∆ut ∈ RN are, respectively, state
and input of the linearization system at time t, Akt ∈ RN×N
and B ∈ RN×N are, respectively, the matrices with non
zero elements akt(i,j), i ∈ {1, . . . , N}, j ∈ Ni, and
b(i,i), i ∈ {1, . . . , N}, defined in (10). We aim to design,
at each iteration k of the algorithm, a control law

∆ut = −Kk
t ∆xt, t ∈ T[0,T−1], (12)

that stabilizes the k-th system (11) as T →∞ and satisfies
the sparsity condition

Kk
t ◦Adjc = 0, t ∈ T[0,T−1]. (13)

Remark 1: We consider, for simplicity a constant B but
the strategy we propose can be applied with suitable modi-
fications to the case of a time-dependent matrix. �

A. Main idea for the controller design

The main idea to compute feedback matrices Kk
t , t ∈

T[0,T−1] at each iteration k of the algorithm is the following.
First, in Section III-B, we show that system (11) can

be written as a polytopic LPV system. That is, Akt , t ∈
T[0,T−1], for all k, can be written as

Akt =

P∑
p=1

θkp,tÃp, (14)



where P is the number of vertices of the polytope, θkp,t ∈
R, p = 1, . . . , P , are suitable vertex coefficients satisfying,

θkp,t ≥ 0, and
P∑
p=1

θkp,t = 1, (15)

and Ãp ∈ RN×N , p = 1, . . . , P, are suitable vertex matrices.
Second, based on this polytopic structure of the system,

we consider polytopic LPV controllers of the form

Kk
t =

P∑
p=1

θkp,tK̃p, (16)

where K̃p ∈ RN×N , p = 1, . . . , P, are vertex matrices. In
Section III-C, we show how to design these vertex matrices
so that the stabilizability and sparsity conditions are satisfied.

As we will show later, a polytopic LPV controller, with
the ad-hoc sparsity conditions imposed on each K̃p, for all
p, enables us to divide the computation of Kk

t , t ∈ T[0,T−1],
for all k, into an offline step and a distributed online one,
thus making the optimal control algorithm fully distributed.

B. Polytopic LPV system and sparsity of the controller

First, we show how to compute vertex matrices and
coefficients, respectively, Ãp and θkp,t, for all p, such that Akt
can be written as in (14)-(15). The proposed polytopic LPV
representation of system (11) is a slightly modified version
of the one in [21]. Let us consider the following assumption.

Assumption 1: Every nonzero element of Akt in (11) sat-
isfies akt(i,j) ∈ [aminij , amaxij ], for all t ∈ T[0,T−1], with given
aminij ∈ R and amaxij ∈ R. �

Then, let us associate an index s = 1, . . . , S, where S :=∑N
i=1 |Ni|, to each nonzero element of Akt . In the following,

we will write akt(s) when we use the index s or akt(i,j) when
we use the index i, j. Moreover, we will use amins and amaxs

to indicate the corresponding aminij and amaxij , respectively.
Proposition 1: Let Akt , t ∈ T[0,T−1], satisfy Assumption 1

for all k, then it can be written as in (14)-(15) with P = 2S,

θkp,t =


1

S

amaxp − akt(p)
amaxp − aminp

, p = 1, . . . , S,

1

S

(
1−

amaxp−S − akt(p−S)
amaxp−S − aminp−S

)
, p = S + 1, . . . , 2S,

(17)

and

Ãp =

{
Ap, p = 1, . . . , S,

Āp−S , p = S + 1, . . . , 2S,
(18)

where As ∈ RN×N , Ās ∈ RN×N , s = 1, . . . , S, are matrices
with all zeros except the elements indexed by s, which are

as(s) := Samins and ās(s) := Samaxs . �
We now show how the sparsity condition on Kk

t , t ∈
T[0,T−1], for all k, can be obtained by means of sparsity
conditions imposed on each K̃p, for all p.

Proposition 2: Let the vertex matrices K̃p, p = 1, . . . , P,
satisfy, for all k, the sparsity condition

K̃p ◦Adjcp = 0, p = 1, . . . , P, (19)

where Adjcp := 1 − Adjp and Adjp ∈ RN×N , p =
1, . . . , P , is defined as a matrix, with the same sparsity of
the corresponding Ãp, such that

adjp(i,j) =

{
0, if ãp(i,j) = 0,

1, if ãp(i,j) 6= 0.

Then, for all k, matrix Kk
t , t ∈ T[0,T−1], as in (16), satisfies

the sparsity condition in (13). �

C. Computation of vertex feedback matrices with sparsity
and stability properties

In order to obtain stabilizing controller matrices, we
consider the necessary and sufficient condition for polytopic
LPV systems, presented in [22]. This condition only guaran-
tees the stabilizing property of the controller, without taking
into account the sparsity condition (13).

Theorem 1 ( [22]): System (11), (14), with output yt ∈
RN such that yt = C∆xt + D∆ut, t ∈ T[0,T−1], where
C ∈ RN×N and D ∈ RN×N are given matrices, is uniformly
asymptotically stabilizable with a given performance ν, by
a control law (12), (16), if and only if there exists matrices
Sp ∈ RN×N , Gp ∈ RN×N and Rp ∈ RN×N , p = 1, . . . , P ,
satisfying for all p = 1, . . . , P, q = 1, . . . , P ,Gp +G>p − Sp 0> (ÃpGp −BRp)> (CGp −DRp)>

0 νI 0 0

ÃpGp −BRp 0 Sq 0
CGp −DRp 0 0 νI

 > 0,

Sp = S>p , Sp > 0.
(20)

The stabilizing controller Kk
t , t ∈ T[0,T−1], is given by (16)

with K̃p = RpG
−1
p , for all p. �

To obtain both sparse and stabilizing controllers Kk
t ,

we thus need to design vertex controllers K̃p with these
properties, i.e., K̃p ◦Adjcp = 0 and K̃p = RpG

−1
p , for all p.

Notice that,

RpG
−1
p ◦Adjcp = 0, (21)

is a nonconvex constraint, so that the controller computation
turns out to be a challenging problem.

Thus, by taking inspiration from [20], we propose a novel
algorithm (Algorithm 2) for the computation of the vertex
matrices K̃p, p = 1, . . . , P . We consider the conditions (20)
together with the sparsity condition (21), where the matrices
Gp, for all p, are replaced by an estimate Ĝp, thus getting the
conditions (22). We initialize Ĝp = I, p = 1, . . . , P , where
I is the identity matrix. Then, at iteration h, we compute
the matrices Ghp , R

h
p , S

h
p , for all p, satisfying (22) and we

set Ĝp = Ghp , until we reach a good approximation of the
matrices Gp via Ĝp, for all p, and the sparsity condition is
satisfied with a given tolerance. When the latter conditions
are reached, we get the vertex matrices of the controller as
K̃p = RhpG

h−1

p , p = 1, . . . , P . By using this strategy, we
get a sequence of convex feasibility problems that can be
solved at each iteration via available numerical toolboxes.



Algorithm 2 Computation of K̃p, p = 1, . . . , P,

Require: Ãp, Ĝp = I , for all p, B,C,D, ν, ε > 0

for h = 0, 1, . . . do

find Gh
p , R

h
p , S

h
p , p = 1, . . . , P, satisfying

Gp +G>p − Sp 0> (ÃpGp −BRp)> (CGp −DRp)>

0 νI 0 0

ÃpGp −BRp 0 Sq 0
CGp −DRp 0 0 νI

 > 0,

Sp = S>p , Sp > 0,

RpĜ
−1
p ◦Adjcp = 0, p = 1, . . . , P, q = 1, . . . , P

(22)

if ||Ĝp −Gh
p ||< ε, ||Rh

pG
h−1

p ◦Adjcp|| < ε, for all p, then
K̃p = Rh

pG
h−1

p , for all p, and return
else

set Ĝp = Gh
p , for all p

IV. FULLY-DISTRIBUTED ALGORITHM
FOR NONLINEAR OPTIMAL CONTROL

In this section we show how to obtain a fully-distributed
version of the cloud-assisted distributed algorithm, [7], re-
called in Section II-B.

Once vertex matrices K̃p, for all p, are computed by means
of Algorithm 2, a sparse stabilizing Kk

t , t ∈ T[0,T−1], can
be obtained by means of (16). We now show how agent i
can compute the elements kkt(j,i), k

k
t(i,j), j ∈ Ni, via the

only information of neighbors. By defining

Ks := K̃s, K̄s := K̃s+S , s = 1, . . . , S, (23)

and using (16) and (17), the controller Kk
t can be written as

Kk
t =

S∑
s=1

( 1

S

( amaxs − akt(s)
amaxs − amins

)
Ks+

1

S

(
1−

amaxs − akt(s)
amaxs − amins

)
K̄s

)
.

Comparing the definitions of As (resp. Ās) with Ks (resp.
K̄s), it follows that they have the same sparsity. In par-
ticular, each one of them has only one nonzero element,
specifically the element ks(s) (resp. k̄s(s)). The nonzero
elements ks(s), k̄s(s) for all s = 1, . . . , S can be equivalently
indexed by i, j instead of the s and written as kij(i,j), k̄ij(i,j),
correspondingly. They can be computed as

kkt(i,j)=
1

S

((
amaxij − akt(i,j)
amaxij − aminij

)
kij(i,j)+

(
1−

amaxij − akt(i,j)
amaxij − aminij

)̄
kij(i,j)

)
,

for all i = 1, . . . , N , j ∈ Ni. Clearly, each agent i can
compute this expression in a completely distributed way.

In the next table (Algorithm 3) our fully-distributed algo-
rithm is presented from the perspective of agent i. Differently
from the cloud-assisted distributed algorithm, agent i com-
putes by means of (24) the gains kkt(j,i), j ∈ Ni, that are
used for the descent direction in (7), and by means of (25)
the gains kkt(i,j), j ∈ Ni, used for the trajectory update in
(9). No central unit is used for the controller computation.

Algorithm 3 Fully-distributed version of Algorithm 1

Require: x0j,t, u0i,t, for all t, j ∈ Ni, with (x0u0)
a trajectory of (2), constant step-size β, aminij , amaxij ,
kij(i,j), k̄ij(i,j), a

min
ji , amaxji , kji(j,i), k̄ji(j,i), j ∈ Ni

for k = 0, 1, 2 . . . do
set pki,T = ∇mi(x

k
i,T )

for t = T − 1, . . . , 0 do
compute vki,t via (6)
receive akt(j,i), b(j,j), v

k
j,t, `

k
u,j,t, p

k
j,t+1, j∈Ni\{i}

compute, for all j ∈ Ni,

kkt(j,i)=
1

S

((
amax
ji − akt(j,i)
amax
ji − amin

ji

)
kji(j,i)+

(
1−

amax
ji − akt(j,i)
amax
ji − amin

ji

)
k̄ji(j,i)

)
,

(24)

compute zki,t, p
k
i,t via (7)

for t = 0, 1, . . . , T − 1 do
receive zkj,t, x

k+1
j,t , j ∈ Ni \ {i}

compute αk+1
j,t , j ∈ Ni, µ

k+1
i,t via (8), with βk = β

compute, for all j ∈ Ni,

kkt(i,j)=
1

S

((
amax
ij − akt(i,j)
amax
ij − amin

ij

)
kij(i,j)+

(
1−

amax
ij − akt(i,j)
amax
ij − amin

ij

)
k̄ij(i,j)

)
,

(25)

compute uk+1
i,t , xk+1

i,t+1 via (9)

V. SIMULATIONS

In this section we present a numerical example to show
the effectiveness of the proposed strategy for the design
of sparse stabilizing controllers. We consider a multi-agent
system implementing a (distributed) formation control law
based on virtual potential functions, see, e.g., [23], and equip
agents with an additional input. Specifically, the local state
function of the nonlinear dynamics over graph (2), for each
agent i = 1, . . . , N , is given by

fi(xNi,t, ui,t) = xi,t

− Ts(‖xi,t − xi+1,t‖2 − d2i,i+1)(xi,t − xi+1,t)

− Ts(‖xi,t − xi−1,t‖2 − d2i,i−1)(xi,t − xi−1,t) + Tsc ui,t,

where xi,t ∈ R2 is the position vector and ui,t ∈ R2 is
the input vector of agent i at time instant t. The parameters
di,i+1 and di,i−1 represent distances between agents i and
i + 1, and agents i and i − 1, respectively, in the desired
formation. The parameter c is an input coefficient, while Ts
is the sampling time used for the discretization in time. Here
we are considering N = 6 agents interacting according to a
cycle graph, so that x0,t = xN,t and xN+1,t = x1,t. We set
Ts = 10−2 and c = 10. The target formation of the multi-
agent system is a hexagon with side length of 4m, so that we
set di,i+1 = di,i−1 = 4m. We design the sparse polytopic
LPV controller by using ν = 0.05, C = I and D = 10−5I .

We generated the vertex matrices according to Algo-
rithm 2, chose a trajectory to be stabilized (by simply inte-
grating the open-loop system), and thus generated the (time-
varying) stabilizing feedback Kt for the given trajectory.



In Figure 1, we depicted the values of Kt for the first
(position) component of agents 1 and 2. In particular, to
highlight the sparsity of the controller, for each agent i = 1, 2
we plotted the values kt(i,j) (first component), t = 1, . . . , 10,
(circles of different colors) with respect to j = 1, . . . , 6. As
expected the weights kt(i,j) with j /∈ Ni are zero for all t.
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Fig. 1: Gain values kt(i,j) (first component) for agents i = 1
(left) and i = 2 (right) plotted with respect to j = 1, . . . , 6.

In Figure 2, we show the evolution of the position error
with respect to the desired trajectory xdesi for the two
components (xi)1 and (xi)2 of all agents i = 1, . . . , N .
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Fig. 2: Error with respect to the desired trajectory xdesi for
all agents i = 1, . . . , 6.

VI. CONCLUSIONS

In this paper we have proposed a fully-distributed strategy
to solve nonlinear optimal control problems over networks.
The strategy extends the one proposed in our previous
work [7] in which a cloud was used together with distributed
computation. The main distinctive feature of the new algo-
rithm is the design of a sparse stabilizing controller allowing
agents to stabilize system trajectories (at each iteration of
the optimal control algorithm) in a distributed way. By
relying on polytopic LPV systems, we proposed a two step
procedure for the controller design. First, we proposed an
iterative algorithm, to be performed offline, to compute
“stabilizing” vertex feedback matrices satisfying nonconvex
sparsity constraints. Second, we showed how at each iteration
nodes can compute feedback gains stabilizing the current
trajectory in a fully-distributed way. The controller was tested
in simulation on a multi-robot formation control problem.
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