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Relating Session Types and Behavioural
Contracts: the Asynchronous Case?

Mario Bravetti Gianluigi Zavattaro

Department of Computer Science and Engineering & Focus Team, INRIA
University of Bologna, Italy

Abstract. We discuss the relationship between session types and be-
havioural contracts under the assumption that processes communicate
asynchronously. We show the existence of a fully abstract interpretation
of session types into a fragment of contracts, that maps session subtyping
into binary compliance-preserving contract refinement. In this way, the
recent undecidability result for asynchronous session subtyping can be
used to obtain an original undecidability result for asynchronous contract
refinement.

1 Introduction

Session types are used to specify the structure of communication between the
endpoints of a distributed system or the processes of a concurrent program. In
recent years, session types have been integrated into several mainstream pro-
gramming languages (see, e.g., [18,28,29,21,27,1,26]) where they specify the pat-
tern of interactions that each endpoint must follow, i.e., a communication pro-
tocol. In this way, once the expected communication protocol at an endpoint
has been expressed in terms of a session type, the behavioural correctness of
a program at that endpoint can be checked by exploiting syntax-based type
checking techniques. The overall correctness of the system is guaranteed when
the session types of the interacting endpoints satisfy some deadlock/termination
related (see, e.g., [16,13]) compatibility notion. For instance, in case of binary
communication, i.e., interaction between two endpoints, session duality rules out
communication errors like, e.g., deadlocks: by session duality we mean that each
send (resp. receive) action in the session type of one endpoint, is matched by a
corresponding receive (resp. send) action of the session type at the opposite end-
point. Namely, we have that two endpoints following respectively session types
T and T ( T is the dual of T ) will communicate correctly.

Duality is a rather restrictive notion of compatibility since it forces endpoints
to follow specular protocols. In many cases, endpoints correctly interact even if
their corresponding session types are not dual. A typical example is when an
endpoint is in receiving state and has the ability to accept more messages than
those that could be emitted by the opposite endpoint. These cases are dealt
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with by considering session subtyping : an endpoint with session type T1 can
always be safely replaced by another endpoint with session type T2, whenever
T2 is a subtype of T1 (here denoted by T2 ≤ T1). In this way, besides being
safe to combine an endpoint with type T1 with a specular one with type T1, it
is also safe to combine any such T2 with T1. The typical notion of subtyping
for session types is the one by Gay and Hole [17] defined by considering syn-
chronous communication: synchronous session subtyping only allows for a sub-
type to have fewer internal choices (sends), and more external choices (receives),
than its supertype. Asynchronous session subtyping has been more recently in-
vestigated [25,24,15,8,6]: it is more permissive because it widens the synchronous
subtyping relation by allowing the subtype to anticipate send actions, under the
assumption that the subsequent communication protocol is not influenced by
the anticipation. Anticipation is admitted because, in the presence of message
queues, the effect of anticipating a send is simply that of enqueueing earlier, in
the communication channel, the corresponding message. As an example, a ses-
sion type ⊕{l : &{l′ : end}} with a send action on l followed by a receive action
on l′, is an asynchronous subtype of &{l′ : ⊕{l : end}} that performs the same
actions, but in reverse order. This admits the safe combination of two endpoints
with session types ⊕{l : &{l′ : end}} and ⊕{l′ : &{l : end}}, respectively,
because each program has a type which is an asynchronous subtype of the dual
type of the partner. Intuitively, the combination is safe in that the initially sent
messages are first enqueued in the communication channels, and then consumed.

Behavioural contracts [19,11,10,14,9] (contracts, for short) represent an al-
ternative way for describing the communication behaviour of processes. While
session types are defined to be checked against concurrent programs written in
some specific programming language, contracts can be considered a language in-
dependent approach strongly inspired by automata-based communication mod-
els. Contracts follow the tradition of Communicating Finite State Machines (CF-
SMs) [4], which describe the possible send/receive actions in terms of a labeled-
transition system: each transition corresponds with a possible communication
action and alternative transitions represent choices that can involve both sends
and receives (so called mixed-choices, which are usually disregarded in session
types). A system is then modeled as the parallel composition of the contracts of
its constituting processes. Also in the context of contracts, safe process replace-
ment has been investigated by introducing the notion of contract refinement : if
a contract C1 is part of a correct system, then correctness is preserved when C1

is replaced by one of its subcontracts C2 (written C2 � C1 in this paper). Obvi-
ously, different notions of contract refinement can be defined, based on possible
alternative notions of system correctness. For instance, for binary client/service
interaction where correctness is interpreted as the successful completion of the
client protocol, the server pre-order (see e.g. [3]) has been defined as a refine-
ment of server contracts that preserves client satisfaction. On the other hand,
if we move to multi-party systems, and we consider a notion of correctness,
called compliance, that requires the successful completion of all the partners, an
alternative compliance preserving subcontract relation [10] is obtained.



Given that both session types and behavioural contracts have been developed
for formal reasoning on communication-centered systems, and given that session
subtyping and contract refinement have been respectively defined to characterize
the notion of safe replacement, it is common understanding that there exists a
strong correspondence between these session subtyping and contract refinement.
Such a correspondence has been formally investigated for synchronous commu-
nication by Bernardi and Hennessy [3]: there exists a natural interpretation of
session types into a fragment of contracts where mixed-choice is disallowed, called
session contracts, such that synchronous subtyping is mapped into a notion of
refinement that preserves client satisfaction (but can be applied to both clients
and servers; and not only to servers as the server pre-order mentioned above).

The correspondence between session subtyping and contract refinement under
asynchronous communication is still an open problem. In this paper we solve
such a problem by identifying the fragment of asynchronously communicating
contracts for which refinement corresponds to asynchronous session subtyping:
besides disallowing mixed-choices as for the synchronous case, we consider a
specific form of communication (i.e., FIFO channels for each pair of processes
as in the communication model of CFSMs) and restrict to binary systems (i.e.,
systems composed of two contracts only).

In all, this paper contribution encompasses: (i) a new theory of asynchronous
behavioural contracts that coincide with CFSMs and includes the notions of
contract compliance (correct, i.e. deadlock free, system of CFSMs) and contract
refinement (preservation of compliance under any test); and (ii) a precise discus-
sion about the notion of refinement, showing under which conditions it coincides
with asynchronous session subtyping, which is known to be undecidable [7].

More precisely, concerning (ii), we show asynchronous subtyping over session
types to be encodable into refinement over binary and non mixed-choice asyn-
chronous behavioral contracts (CFSMs). This means that, for contracts of this
kind, refined contracts can anticipate outputs w.r.t. the original contract as it
happens in the context of session subtyping. Moreover we show that it is crucial,
for such a correspondence to hold, that, when establishing refinement between
two binary and non mixed-choice asynchronous behavioral contracts, only tests
that are actually binary (a single interacting contract) and non mixed-choice are
considered: if we also consider tests that are either multiparty (mutliple inter-
acting contracts) or mixed-choice, in general, a binary and non mixed-choice
contract C ′ that anticipates output w.r.t. a binary and non mixed-choice con-
tract C is not a subcontract of it. This observation has deep implications on
decidability properties in the context of general asynchronous behavioral con-
tracts (CFSMs): while compliance, i.e. (non) reachability of deadlocking global
CFSM states over asynchronous behavioral contracts (CFSMs) is known to be
undecidable [4], an obvious argument showing undecidability cannot be found for
the refinement relation: such a relation can be put in direct correspondence with
asynchronous session subtyping only for the restricted binary and non mixed-
choice setting (including also tests). Therefore, since in general an asynchronous
behavioral contract (CFSMs) C ′ that anticipates output w.r.t. a contract C is
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Fig. 1. Fragment of a UDP Server serving Write / WriteTo requests, with specu-
lar client and alternative client that records replies only after WriteTo requests.

not a subcontract of it, decidability of refinement over general asynchronous
behavioral contracts (CFSMs) remains, quite unexpectedly, an open problem.

Structure of the paper. In Section 2 we define our model of asynchronous be-
havioural contracts inspired by CFSMs [4]; we define syntax, semantics, cor-
rect contract composition, and the notion of contract refinement. In Section 3
we recall session types, focusing on the notion of asynchronous session subtyp-
ing [25,7]. In Section 4 we present a fragment of behavioural contracts and we
prove that there exists a natural encoding of session types into this fragment of
contracts which maps asynchronous session subtyping into contract refinement.
Finally, in Section 5 we report some concluding remarks.

2 Behavioural Contracts

In this section we present behavioural contracts (simply contracts for short), in
the form of a process algebra (see, e.g. [22,23,2]) based formalization of Commu-
nicating Finite State Machines (CFSMs) [4]. CFSMs are used to represent FIFO
systems, composed by automata performing send and receive actions having the
effect of introducing/retrieving messages to/from FIFO channel. One channel is
considered for each pair of sender/receiver automata.

As an example, we can consider a client/service interaction (inspired by the
UDP communication protocol) depicted in Figure 1. Communication protocols
are denoted by means of automata with transitions representing communication
actions: overlined labels denote send actions, while non-overlined labels denote
receive actions. The server is always available to serve both Write (w for short)
and WriteTo (wto) requests. In the first case, the server replies with OK (ok) or
DataTooLarge (dtl), depending on the success of the request or its failure due
to an exceeding size of the message. On the other hand, in case of WriteTo, the
server has a third possible reply, InvalidEndPoint (iep), in case of wrongly spec-
ified destination. We consider two possible clients: a client following a specular
protocol, and an alternative client that (given the connectionless nature of UDP)
does not synchronize the reception of the server replies with the corresponding
requests, but records them asynchronously after WriteTo requests only.

We now present contracts, that can be seen as a syntax for CFSMs. Dif-
ferently from the examples of communicating automata reported in Figure 1,



j ∈ I∑
i∈I αi.Ci

αj−→ Cj

C{recX.C/X} λ−→ C′

recX.C
λ−→ C′

Table 1. Semantic rules for contracts.

the send (resp. receive) actions will be decorated with a location identifying the
expected receiver (resp. sender) contract. This was not considered in the exam-
ple because, in case of two interacting partners, the sender and receiver of the
communication actions can be left implicit.

Definition 1 (Behavioural Contracts). We consider three denumerable sets:
the set N of message names ranged over by a, b, · · · , the location names Loc,
ranged over by l, l′, · · · , and the contract variables Var ranged over by X, Y ,
· · · . The syntax of contracts is defined by the following grammar:

C ::= 1 |
∑
i∈I αi.Ci | X | recX.C α ::= al | al

where the set of index I is assumed to be non-empty, and recX. is a binder for
the process variable X denoting recursive definition of processes: in recX.C a
(free) occurrence of X inside C represents a jump going back to the beginning of
C. We assume that in a contract C all process variables are bound and all re-
cursive definitions are guarded, i.e. in recX.C all occurrences of X are included
in the scope of a prefix operator

∑
i∈I αi.Ci. Following CFSMs, we assume con-

tracts to be deterministic, i.e., in
∑
i∈I αi.Ci, we have αi = αj iff i = j. In the

following we will omit trailing “ .1” when writing contracts.

We use α to range over the actions: al is a send action, with message a,
towards the location l; al is the receive of a sent from the location l. The contract∑
i∈I αi.Ci (also denoted with α1.C1+α2.C2+· · ·+αn.Cn when I = {1, 2, . . . , n})

performs any of the actions αi and activates the continuation Ci. In case there
is only one action, we use the simplified notation α.C, where α is such a unique
action, and C is its continuation. The contract 1 denotes a final successful state.

The operational semantics of contracts C is defined in terms of a transition
system labeled over {al, al, | a ∈ N , l ∈ Loc}, ranged over by λ, λ′, . . . , obtained
by the rules in Table 1. We use C{ / } to denote syntactic replacement. The first
rule states that contract

∑
i∈I αi.Ci can perform any of the actions αi and then

activate the corresponding continuation Ci. The second rule is the standard one
for recursion unfolding (replacing any occurrence of X with the operator recX.C
binding it, so to represent the backward jump described above).

The semantics of a contract C yields a finite-state labeled transition system,1

whose states are the contracts reachable from C. It is interesting to observe that
such a transition system can be interpreted as a communicating automaton of
a CFSM, with transitions al (resp. al) denoting send (resp. receive) actions.
The final contract 1 coincides with states of communicating automata that have

1 As for basic CCS [22] finite-stateness is an obvious consequence of the fact that the
process algebra does not include static operators, like parallel or restriction.



no outgoing transitions. Moreover, we have that each communicating automa-
ton can be expressed as a contract; this is possible by adopting standard tech-
niques [22] to translate finite labeled transition systems into recursively defined
process algebraic terms. Hence we can conclude that our contracts coincide with
the communicating automata as defined for CFSMs.

Example 1. As an example of contracts used to denote communicating automata,
the alternative client and the server in Figure 1 respectively correspond to the
following contracts:2

Client = recX.(w .X + wto.(ok .X + dtl .X + iep.X))

Server = recX.(w .(ok .X + dtl .X) + wto.(ok .X + dtl .X + iep.X))

Notice that we have not explicitly indicated the locations associated to the send
and receive actions; in fact interaction is binary and the sender and receiver of
each communication is obviously the partner location, and we leave it implicit.

We now move to the formalization of contract systems. A contract system
is the parallel composition of contracts, each one located at a given location,
that communicate by means of FIFO channels. More precisely, we use [C,Q]l
to denote a contract C located at location l with an input queue Q. The queue
contains messages denoted with al′ , where l′ is the location of the sender of
such message a. This queue should be considered as the union of many input
channels, one for each sender; in fact the FIFO order of reception is guaranteed
only among messages coming from the same sender, while two messages coming
from different senders can be consumed in any order, independently from the
order of introduction in the queue Q. This coincides with the communication
model considered in CFSMs.

Definition 2 (FIFO Contract Systems). The syntax of FIFO contract sys-
tems is defined by the following grammar:

P ::= [C,Q]l | P ||P Q ::= ε | al :: Q
We assume that every FIFO contract system P is such that: (i) all locations
are different (i.e. every subterm [C,Q]l occurs in P with a different location
l), (ii) all actions refer to locations present in the system (i.e., for every al or
al occurring in P , there exists a subterm [C,Q]l of P ), (iii) receive and send
actions executed by a contract consider a location different from the location of
that contract (i.e. every action al or al does not occur inside a subterm [C,Q]l
of P ), and (iv) messages in a queue comes from a location different from the
location of the queue (i.e. every message al does not occur inside the queue Q of
a subterm [C,Q]l of P ).

Terms Q denote message queues: they are sequences of messages a1l1 :: a2l2 ::
· · · :: anln :: ε,3 where “ε” denotes the empty message queue. Trailing ε are usually

2 The correspondence is as follows: the labeled transition systems of the indicated
contracts and the corresponding automata in Figure 1 are isomorphic.

3 As usual, we consider :: right associative.



C
al′−→ C′

[C,Q]l
al,l′−→ [C′,Q]l

[C,Q]l′
al,l′−→ [C,Q :: al]l′

P
al,l′−→ P ′ Q

al,l′−→ Q′

P ||Q τ−→ P ′||Q′

C
al−→ C′ l 6∈ Q

[C,Q :: al :: Q′]l′
τ−→ [C′,Q :: Q′]l′

P
λ−→ P ′

P ||Q λ−→ P ′||Q

Table 2. Asynchronous system semantics (symmetric rules for || omitted).

left implicit (hence the above queue is denoted with a1l1 :: a2l2 :: · · · :: anln). We
overload :: to denote also queue concatenation, i.e., given Q = a1l1 :: a2l2 :: · · · ::
anln and Q′ = b1l′1

:: b2l′2
:: · · · :: bml′m , then Q :: Q′ = a1l1 :: a2l2 :: · · · :: anln :: b1l′1

::

b2l′2
:: · · · :: bml′m . In the following, we will use the notation l 6∈ Q to state that if

al′ is in Q then l 6= l′, moreover we will use the shorthand [C] to stand for [C, ε].

The operational semantics of FIFO contract systems is defined in terms of a
transition system labeled over {al,l′ , al,l′ , τ | l, l′ ∈ Loc, a ∈ N}, also in this case
ranged over by λ, λ′, . . . , obtained by the rules in Table 2 (plus the symmetric
version for the first two rules of parallel composition). The first rule indicates
that a send action al′ executed by a contract located at location l, becomes an
action al,l′ : the two locations l and l′ denote the sender and receiver locations,
respectively. The second rule states that, at the receiver location l′, it is always
possible to execute a complementary action al,l′ (that can synchronize with al,l′)
whose effect is to enqueue, in the local queue, al: notice that only the sender
location l remains associated to message a. The third rule is the synchronization
rule between the two complementary labels al,l′ and al,l′ . The fourth rule is for
message consumption: a contract can remove a message al from its queue, only
if al is not preceded by messages sent from the same location l. This guarantees
that messages from the same location are consumed in FIFO order. The last rule
is the usual local rule used to extend to the entire system actions performed by
a part of it.

In the following, we call computation step a τ -labeled transition P
τ−→ P ′;

a computation, on the other hand, is a (possibly empty) sequence of τ -labeled

transitions P
τ−→
∗
P ′, in this case starting from the system P and leading to

P ′. To simplify the notation, we omit the τ labels, i.e., we use P −→ P ′ for
computation steps, and P −→∗ P ′ for computations.

We now move to the definition of correct composition of contracts. We take
inspiration from the notion of compliance among contracts as defined, e.g., by
Bernardi and Hennessy [3]. Informally, we say that a contract system is correct
if all its reachable states (via any computation) are such that: the system has
successfully completed or it is able to perform computation steps (i.e. τ transi-
tions) and after each step it moves to a system which is, in turn, correct. In other
terms, a system is correct if all of its maximal sequences of τ labeled transitions



either lead to a successfully completed system or are infinite (do not terminate).
The notion of successful completion for a system is formalized by a predicate
P
√

defined as follows:(
[C1,Q1]|| . . . ||[Cn,Qn]

)√
iff ∀i ∈ {1, . . . , n}. Ci = recX1 . . . recXmi .1∧Qi = ε

Notice that the predicate checks whether all input queues are empty and all
contracts coincide with the terminated contract 1 (possibly guarded by some
recursive definition).

We are now ready to define our notion of correct contract composition.

Definition 3 (Correct Contract Composition – Compliance). A system
P is a correct contract composition according to compliance, denoted P ↓, if for
every P ′ such that P −→∗ P ′, then either P ′ is a successfully completed system,
i.e. P ′

√
, or there exists an additional computation step P ′ −→ P ′′.

Example 2. As an example of correct system we can consider [Client ]c||[Server ]s
where Client is the contract defined in Example 1 above for the alternative client
in Figure 1 in which all actions are decorated with s, while Server is the contract
for the server in which all actions are decorated with c. In this system successful
completion cannot be reached, but the system never stucks, i.e., every system
reachable via a computation always has an additional computation step.

Notice that the above Client/Server system is a correct contract composition
even if the considered Client does not behave specularly w.r.t. the server. When
we replace a contract with another one by preserving system correctness, we say
that we refine the initial contract. As an example, consider the correct system
[bl′ .al′ ]l || [bl.al]l′ composed of two specular contracts. We can replace the con-
tract bl′ .al′ with al′ .bl′ by preserving system correctness (i.e. [al′ .bl′ ]l || [bl.al]l′ is
still correct). The latter differs from the former in that it anticipates the send ac-
tion al′ w.r.t. the receive action bl′ . This transformation is usually called output
anticipation (see e.g. [25]). Intuitively, output anticipation is possible because,
under asynchronous communication, its effect is simply that of anticipating the
introduction of a message in the partner queue. In the context of asynchronous
session types, for instance, output anticipation is admitted by the notion of ses-
sion subtyping [25,15] that, as we will discuss in the following sections, is the
counterpart of contract refinement in the context of session types.

We now formally define contract refinement and we observe that, differently
from session types, output anticipation is not admitted as a general contract
refinement mechanism.

Definition 4 (Contract Refinement). A contract C ′ is a refinement of a con-
tract C, denoted C ′ � C, if and only if, for all FIFO contract systems ([C]l||P )
we have that: if ([C]l||P )↓then ([C ′]l||P )↓.

In the following, whenever C ′ � C we will also say that C ′ is a subcontract of
C (or equivalently that C is a supercontract of C ′).

The above definition contains a universal quantification on all possible con-
tract systems P and locations l, hence it cannot be directly used to algorith-
mically check contract refinement. To the best of our knowledge, there exists



no general algorithmic characterization (or proof of undecidability) for such a
relation. Nevertheless, we can use the definition on some examples.

For instance, consider the two contracts C = bl′ .al′ and C ′ = al′ .bl′ discussed
above. We have seen that C ′ is a safe replacement of C in the specific context
[ ]l||[bl.al]l′ . But we have that C ′ 6� C because there exists a discriminating context
[ ]l||[bl.al + al]l′ . In fact, when combined with C ′, the contract in l′ can take the
alternative branch al, leading to an incorrect system where the contract at l
blocks waiting for a never incoming message bl′ .

The above example shows that output anticipation, admitted in the context
of asynchronous session types, is not a correct refinement mechanism for con-
tracts. The remainder of the paper is dedicated to the definition of a fragment of
contracts in which it is correct to admit output anticipation, but we first recall
session types and asynchronous subtyping.

3 Asynchronous Session Types

In this section we recall session types, in particular we discuss binary session
types for asynchronous communication. In fact, for this specific class of session
types, subtyping admits output anticipation.

We start with the formal syntax of binary session types, adopting a simplified
notation (used, e.g., in [7,8]) without dedicated constructs for sending an out-
put/receiving an input. We instead represent outputs and inputs directly inside
choices. More precisely, we consider output selection ⊕{li : Ti}i∈I , expressing an
internal choice among outputs, and input branching &{li : Ti}i∈I , expressing an
external choice among inputs. Each possible choice is labeled by a label li, taken
from a global set of labels L, followed by a session continuation Ti. Labels in a
branching/selection are assumed to be pairwise distinct.

Definition 5 (Session Types). Given a set of labels L, ranged over by l, the
syntax of binary session types is given by the following grammar:

T ::= ⊕{li : Ti}i∈I | &{li : Ti}i∈I | µt.T | t | end

In the sequel, we leave implicit the index set i ∈ I in input branchings and
output selections when it is already clear from the denotation of the types. Note
also that we abstract from the type of the message that could be sent over the
channel, since this is orthogonal to our results in this paper. Types µt.T and
t denote standard tail recursion for recursive types. We assume recursion to be
guarded: in µt.T , the recursion variable t occurs within the scope of an output or
an input type. In the following, we will consider closed terms only, i.e., types with
all recursion variables t occurring under the scope of a corresponding definition
µt.T . Type end denotes the type of a closed session, i.e., a session that can no
longer be used.

For session types, we define the usual notion of duality: given a session type
T , its dual T is defined as: ⊕{li : Ti}i∈I = &{li : T i}i∈I , &{li : Ti}i∈I = ⊕{li :
T i}i∈I , end = end, t = t, and µt.T = µt.T .



We now move to the session subtyping relation, under the assumption that
communication is asynchronous. The subtyping relation was initially defined
by Gay and Hole [17] for synchronous communication; we adopt a similar co-
inductive definition but, to be more consistent with the contract theory that we
will discuss in the next sections, we follow a slightly different approach, being
process-oriented instead of channel-based oriented.4 Moreover, following [25], we
consider a generalized version of unfolding that allows us to unfold recursions
µt.T as many times as needed.

Definition 6 (n-unfolding).

unfold0(T ) = T unfold1(⊕{li : Ti}i∈I) = ⊕{li : unfold1(Ti)}i∈I
unfold1(µt.T ) = T{µt.T/t} unfold1(&{li : Ti}i∈I) = &{li : unfold1(Ti)}i∈I
unfold1(end) = end unfoldn(T ) = unfold1(unfoldn−1(T ))

Another auxiliary notation that we will use is that of input context which
is useful to identify sequences of initial input branchings; this is useful because,
as we will discuss in the following, in the definition of asynchronous session
subtyping it is important to identify those output selections that are guarded by
input branchings.

Definition 7 (Input Context). An input context A is a session type with
multiple holes defined by the syntax:

A ::= [ ]n | &{li : Ai}i∈I
The holes [ ]n, with n ∈ N+, of an input context A are assumed to be consistently
enumerated, i.e. there exists m ≥ 1 such that A includes one and only one [ ]n

for each n ≤ m. Given types T1,. . . , Tm, we use A[Tk]k∈{1,...,m} to denote the
type obtained by filling each hole k in A with the corresponding term Tk.

As an example of how input contexts are used, consider the session type
&
{
l1 : ⊕{l : end}, l2 : ⊕{l : end}

}
. It can be decomposed as the input context

&
{
l1 : [ ]1, l2 : [ ]2

}
with two holes that can be both filled with ⊕{l : end}.

We are now ready to recall the asynchronous subtyping ≤ introduced by
Mostrous et al. [24] following the simplified formulation in [7].

Definition 8 (Asynchronous Subtyping, ≤). R is an asynchronous subtyp-
ing relation whenever (T, S) ∈ R implies that:

1. if T = end then ∃n ≥ 0 such that unfoldn(S) = end;
2. if T = ⊕{li : Ti}i∈I then ∃n ≥ 0,A such that

– unfoldn(S) = A[⊕{lj : Skj}j∈Jk ]k∈{1,...,m},
– ∀k ∈ {1, . . . ,m}. I ⊆ Jk and
– ∀i ∈ I, (Ti,A[Ski]

k∈{1,...,m}) ∈ R;
3. if T = &{li : Ti}i∈I then ∃n ≥ 0 such that unfoldn(S) = &{lj : Sj}j∈J ,

J ⊆ I and ∀j ∈ J. (Tj , Sj) ∈ R;
4. if T = µt.T ′ then (T ′{T/t}, S) ∈ R.
4 Differently from our definitions, in the channel-based approach of Gay and Hole [17]

subtyping is covariant on branchings and contra-variant on selections.



T is an asynchronous subtype of S, written T ≤S, if there is an asynchronous
subtyping relation R such that (T, S) ∈ R.

Intuitively, the above co-inductive definition says that it is possibile to play a
simulation game between a subtype T and its supertype S as follows: if T is the
end type, then also S is ended; if T starts with an output selection, then S can
reply by outputting at least all the labels in the selection (output covariance),
and the simulation game continues; if T starts with an input branching, then
S can reply by inputting at most some of the labels in the branching (input
contravariance), and the simulation game continues. The unique non trivial case
is the case of output selection; in fact, in this case the supertype could reply
with output selections that are guarded by input branchings. As an example
of application of this rule, consider the session type T = ⊕

{
l : &{l1 : end, l2 :

end}
}

. We have that T is a subtype of S = &
{
l1 : ⊕{l : end}, l2 : ⊕{l : end}

}
,

previously introduced. In fact, we have that the following relation

{ (T, S) , (&{l1 : end, l2 : end},&{l1 : end, l2 : end}) , (end, end) }

is an asynchronous subtyping relation. Rule 2 . of the definition is applied on the
first pair (T, S). The first item of the rule is used to decompose S (as discussed
above) as the input context &

{
l1 : [ ]1, l2 : [ ]2

}
with two holes both filled with

⊕{l : end}. The second item trivially holds because the output selection at
the beginning of T has only one label l, as also the output selections filling
the holes in the decomposition of S. Finally, the third item holds because of
the pair (&{l1 : end, l2 : end},&{l1 : end, l2 : end}) present in the relation.
The first element of the pair is obtained by consuming the output selection at
the beginning of T , while the second element by consuming the initial output
selection of the terms filling the holes of the considered input context.

The rationale behind asynchronous session subtyping is that under asyn-
chronous communication it is unobservable whether an output is anticipated
before an input or not. In fact, anticipating an output simply introduces in ad-
vance the corresponding message in the communication queue. For this reason,
rule 2 . of the asynchronous subtyping definition admits the supertype to have
inputs in front of the outputs used in the simulation game.

As a further example, consider the types T = µt.&{l : ⊕{l : t}} and S =
µt.&{l : &{l : ⊕{l : t}}}. We have T ≤S by considering an infinite subtyping
relation including pairs (T ′, S′), with S′ being &{l : S}, &{l : &{l : S}}, &{l :
&{l : &{l : S}}}, . . . ; that is, the effect of each output anticipation is that a new
input &{l : } is accumulated in the initial part of the r.h.s. It is worth to observe
that every accumulated input &{l : } is eventually consumed in the simulation
game, but the accumulated inputs grows unboundedly.

There are, on the contrary, cases in which the accumulated input is not
consumed, as in the infinite simulation game between T = µt.⊕{l : t} and S =
µt.&{l : ⊕{l : t}}, in which only output selections are present in the subtype,
and an instance of the input branching in the supertype is accumulated in each
step of the simulation game.



Example 3. As a less trivial example, we can express as session types the two
client protocols depicted in Figure 1:

SpecularClient = µt.⊕ {w .&{ok .t + dtl .t},wto.&{ok .t + dtl .t + iep.t}}
RefinedClient = µt.⊕ {w .t,wto.&{ok .t + dtl .t + iep.t}}

We have that RefinedClient ≤ SpecularClient because the subtyping simula-
tion game can go on forever: when RefinedClient selects the output w a input
branching is accumulated in front of the r.h.s. type (SpecularClient and its de-
rived types), while if wto is selected there is no new input accumulation as a
(contravariant) input branching follows such a selected output.

A final observation is concerned with specific limit cases of application of
rule 2 .; as discussed above, such a rule assume the possibility to decompose
the candidate supertype into an initial input context, with holes filled by types
starting with output selections. We notice that there exist session types that
cannot be decomposed in such a way. Consider, for instance, the session type
S = µt.&{l1 : t, l2 : ⊕{l : t}}. This session type cannot be decomposed as
an input context with holes filled by output branchings because, for every n,
unfoldn(S) will contain a sequence of input branchings (labeled with l1) that
terminate in a term starting with the recursive definition µt. . Our opinion is
that the definition of asynchronous subtyping does not manage properly these
limit cases. For instance, the above session type S could be reasonably considered
a supertype of µt. ⊕ {l : &{l1 : t, l2 : t}, that simply anticipates the output
selection with label l. Such a type has runs with more output selections, because
S has a loop of the recursive definition that does not include the output selection;
but this is not problematic because such outputs could be simply stored in the
message queue. Nevertheless, we have that such a session type is not a subtype
of S due to the above observation about the inapplicability of rule 2 .

For this reason, in the following, we will restrict to session types that do not
contain infinite sequences of receive actions. Formally, given a session type S
and a subterm µt.T of S, we assume that all free occurrences of t occur in T
inside an output selection ⊕{ }.

We conclude this section by observing that asynchronous session subtyping
was considered decidable (see [25]), but recently Bravetti, Carbone and Zavattaro
proved that it is undecidable [7].5

4 Mapping Session Types into Behavioural Contracts

In the previous sections we have defined a notion of refinement for contracts and
we have seen that output anticipation is not admitted as a general refinement
mechanism. Then we have recalled session types where, on the contrary, output
anticipation is admitted by asynchronous session subtyping. In this section we
show that it is possible to define a fragment of contracts for which refinement

5 Lange and Yoshida [20] independently proved that a slight variant of asynchronous
subtyping, called orphan-message-free subtyping was undecidable.



turns out to coincide with asynchronous session subtyping. More precisely, the
natural encoding of session types into contracts maps asynchronous session sub-
typing into refinement, in the sense that two types are in subtyping relation if
and only if the corresponding contracts are in refinement relation.

The first restriction that we discuss is about mixed-choice, i.e., the possibility
to perform from the same state both send and receive actions. This is clearly
not possible in session types having either output selections or input branchings.
But removing mixed-choice from contracts is not sufficient to admit output an-
ticipation. For instance, the system [bl2 .cl2 , ε]l1 || [(al3 .bl1 .cl1) + cl1 , ε]l2 || [al2 , ε]l3
is correct; but if we replace the contract at location l1 with cl2 .bl2 , that simply
anticipates an output, we obtain [cl2 .bl2 , ε]l1 || [(al3 .bl1 .cl1) + cl1 , ε]l2 || [al2 , ε]l3
which is no longer correct in that the alternative branch cl1 can be taken by
the contract in l2, thus reaching a system in which the contract at l1 will wait
indefinitely for bl2 .

For this reason we need an additional restriction on choices: besides imposing
that all the branchings should be guarded by either send or receive actions, we
impose all such actions to address the same location l. This is obtained by means
of a final restriction about the number of locations: we will consider systems
with only two locations, as our objective is to obtain a refinement which is fully
abstract w.r.t. subtyping as defined in Section 3, where we considered binary
session types (i.e. types for sessions between two endpoints). Given that there
are only two locations, each contract can receive only from the location of the
partner; hence all receives in a choice address the same location. In general, we
will omit the locations associated to send and receive actions: in fact, as already
discussed also in Example 1, these can be left implicit because when there are
only two locations all actions in one location consider the other location.

A final restriction follows from having restricted our analysis to session types
in which there are no infinite sequences of input branchings (see the discussion,
at the end of the previous section, about the inapplicability in these cases of rule
2 . of Definition 8). We consider a similar restriction for contracts, by imposing
that it is not possible to have infinite sequences of receive actions.

We are now ready to formally define the restricted syntax of contracts consid-
ered in this section; it coincides with session contracts as defined in [3] plus the
restriction on contracts that do not contain infinite sequences of receive actions.

Definition 9 (Session contracts). Session contracts are behavioural contracts
obtained by considering the following restricted syntax:

C ::= 1 |
∑
i∈I a

i.Ci |
∑
i∈I a

i.Ci | X | recX.C
where given a session contract recX.C, we have that all free occurrences of X
occur in C inside a subterm

∑
i∈I a

i.Ci. Notice that we omit the locations l
associated to the send and receive actions (which is present in the contract syntax
as defined in Definition 1). This simplification is justified because we will consider
systems with only two locations, and we implicitly assume all actions of the
contract in one location to be decorated with the other location.

In the remainder of this section we will restrict our investigation to FIFO
contract systems with only two locations and by considering only session con-



tracts. We will omit the location names also in the denotation of such binary
contract systems. Namely, we will use [C,Q]||[C ′,Q′] to denote binary contract
systems, thus omitting the names of the two locations as any pair of distinct
locations l and l′ could be considered.

In the restricted setting of binary session contracts, we can redefine the notion
of refinement as follows.

Definition 10 (Binary Session Contract Refinement). A session contract
C ′ is a binary session contract refinement of a session contract C, denoted with
C ′ �s C, if and only if, for all session contract D, if ([C]||[D])↓ then ([C ′]||[D])↓.

We now define a natural interpretation of session types as session contract;
we will subsequently show that this encoding maps asynchronous subtyping into
session contract refinement.

Definition 11. Let T be a session type. We inductively define a function [[T ]]
from session types to session contracts as follows:

– [[T = ⊕{li : Ti}i∈I ]] =
∑
i∈I li.[[Ti]]; [[T = &{li : Ti}i∈I ]] =

∑
i∈I li.[[Ti]];

– [[µt.T ]] = rec t.[[T ]]; [[t]] = t; [[end]] = 1.

We now move to our main result, i.e., the proof that given two session types
T and S we have that T ≤ S if and only if [[T ]] �s [[S]]. This result has two
main consequences. On the one hand, as a positive consequence, we can use the
characterization of session subtyping in Definition 8 to prove also session contract
refinement. For instance, if we consider the two session subtypes RefinedClient
and SpecularClient of Example 3, we can conclude that

recX.(w .X + wto.(ok .X + dtl .X + iep.X)) �s
recX.(w .(ok .X + dtl .X) + wto.(ok .X + dtl .X + iep.X))

because, these two contracts are the encodings of the two above session types
according to [[ ]] (notice that these two contracts coincide with the two clients rep-
resented in Figure 1). On the other hand, as a negative consequence, we have that
session contract refinement �s is in general undecidable, because asynchronous
subtyping ≤ is also undecidable as recalled in Section 3.

The first result is about soundness of the mapping of asynchronous session
subtyping into session contract refinement, i.e., given two session types T and S,
if T≤S then [[T ]] �s [[S]]. In the proof of this result we exploit an intermediary
result that simply formalizes the rationale behind asynchronous session subtyp-
ing that we have commented after Definition 8: given a correct session contract
system, if we anticipate an output w.r.t. a preceding input context, the obtained
system is still correct.

Proposition 1. Consider the two following session contract systems
P1 = [[[A[Sk]k∈{1,...,m}]],Q]||[D,Q′ :: l] and
P2 = [[[A[⊕{l.Sk}]k∈{1,...,m}]],Q]||[D,Q′]. If P2 ↓ then also P1 ↓.

Soundness is formalized by the following Theorem.



Theorem 1. Given two session types T and S, if T≤S then [[T ]] �s [[S]].

Proof. (Sketch) This theorem is proved by showing that the following relation

S = {
(

[[[S]],Q]||[D,Q′] , [[[T ]],Q]||[D,Q′]
)
| T≤S }

is such that if (P1, P2) ∈ S and P1 ↓, then also P2 ↓.
To prove this result it is sufficient to consider all possible computation steps

[[[T ]],Q]||[D,Q′] −→ P ′2 and show that there exists P ′1 such that P ′1 ↓ and
(P ′1, P

′
2) ∈ S. For all possible computation steps but one the proof of the above

result is easy because, thanks to the subtyping simulation game, the existence
of P ′1 is guaranteed by a corresponding computation step P1 −→ P ′1. The unique
non trivial case is for send actions executed by the contract [[T ]]. In this case
the existence of P ′1 is guaranteed by Proposition 1 applied to [[[S]],Q]: in fact,
[[S]] can have the corresponding output after some initial inputs, and P ′1 is ob-
tained by removing the output selections from [[S]] and introducing the selected
label directly in the partner’s queue. This term P ′1 is such that P1 ↓ thanks to
Proposition 1.

Given the above relation S, as a consequence of its properties we have that
if T≤S then [[T ]] is always a safe replacement for [[S]], in every context, hence
[[T ]] �s [[S]]. ut

A second theorem states completeness, i.e., given two session types T and S,
if [[T ]] �s [[S]] then T≤S. Actually, we prove the contrapositive statement.

Theorem 2. Given two session types T and S, if T 6≤S then [[T ]] 6�s [[S]].

Proof. (Sketch) The proof of this theorem is based on the identification of a
context that discriminates, in case T 6≤S, the two contracts [[T ]] and [[S]]. Such
a context exists under the assumption that T 6≤S. The context is obtained by
considering the encoding of the dual of S, i.e., the specular session type S. In fact,
we have that [[[S]]]||[[[S]]] ↓ because the two contracts follow specular protocols,
while [[[T ]]]||[[[S]]]↓ does not hold. This last result follows from T 6≤S; we consider
a run of the subtyping simulation game between T and S that fails (such a run
exists because T 6≤S). If the computation corresponding to this run is executed
by [[[T ]]]||[[[S]]], we have that a stuck system is reached, hence [[[T ]]]||[[[S]]] ↓ does
not hold. ut

As a direct corollary of the two previous Theorems we have the following full
abstraction result.

Corollary 1. Given two session types T and S, T≤S if and only if [[T ]] �s [[S]].

We conclude by discussing the “fragility” of this full-abstraction result; small
variations in the contract language, or in the notion of compliance, break such
a result. For instance, consider a communication model (similar to actor-based
communication) in which each location has only one input FIFO channel, instead
of many (one for each potential sender as for CFSMs). In this model, input
actions can be expressed simply with a instead of al, indicating that a is expected
to be consumed from the unique local input queue. Under this variant output
anticipation is no longer admitted. Consider, e.g., [a.bl2 ]l1 || [c.al1 .b]l2 || [cl2 ]l3 ,



which is a correct system. If we replace the contract at location l1 with bl2 .a,
that simply anticipates an output, we obtain [bl2 .a]l1 || [c.al1 .b]l2 || [cl2 ]l3 , which
is no longer correct, because in case message b (sent from l1) is enqueued at l2
before message c (sent from l3), the entire system is stuck.

Consider another communication model in which there are many input queues,
but instead of naming them implicitly with the sender location, we consider ex-
plicit channel names like in CCS [22] or π-calculus [23,5]. In this case, a send
actions can be written al,π, indicating that the message a should be inserted in
the input queue π at location l. A receive action can be written aπ, indicating
that the message a is expected to be consumed from the input queue π. Also
in this model output anticipation is not admitted. In fact, we can rephrase the
above counter-example as follows: [aπ1 .bl2,π2 ]l1 || [cπ2 .al1,π1 .bπ2 ]l2 || [cl2,π2 ]l3 .

Another interesting observation is concerned with the notion of compliance.
In other papers about asynchronous behavioural contracts [12], compliance is
more restrictive, in that it requires that, under fair exit from loops, the com-
putation eventually successfully terminates. Consider, for instance, the binary
system [recX.(a + b.X)] || [recX.(a + b.X)]. It satisfies the condition above be-
cause, if we consider only fair computations, the send action a will be eventually
executed thus guaranteeing successful termination. In this case, output covari-
ance, admitted by synchronous session subtyping, is not correct. If we consider
the contract recX.(b.X) having less output branches (hence following the output
covariance principle), and we use it as a replacement for the first contract above,
we obtain the system [recX.(b.X)] || [recX.(a + b.X)] that does not satisfy the
above definition of compliance because it cannot reach successful termination.

5 Related Work and Conclusion

In this paper we introduced a behavioural contract theory based on a defini-
tion of compliance (correctness of composition of a set of interacting contracts)
and refinement (preservation of compliance under any test, i.e. set of interact-
ing contracts): the two basic notions on which behavioural contract theories are
usually based [19,11,10,14]. In particular, the definitions of behavioural contracts
and compliance considered in this paper have been devised so to formally repre-
sent Communicating Finite State Machines (CFSMs) [4], i.e. systems composed
by automata performing send and receive actions (the interacting contracts)
that communicate by means of FIFO channels. Behavioural contracts with asyn-
chronous communication have been previously considered, see e.g. [12]; however,
to the best of our knowledge, this is the first paper defining contracts that for-
mally represent CFSMs. Concerning [12], where at each location an independent
FIFO queue of received messages is considered for each channel name “a” (en-
queuing only messages of type “a” coming from any location “l1”, “l2”,. . . ), here,
instead, we consider contracts that represent CFSMs, i.e. such that, at each lo-
cation, an independent FIFO queue of received messages is considered for each
sender location “l” (enqueuing only messages coming from “l” and having any
type “a” , “b”, . . . ). Moreover, while in this paper we make use of a notion of



compliance that corresponds to absence of deadlocking global CFSM states [4]
(globally the system of interacting contracts either reaches successful completion
or loops forever), in [12] a totally different definition of compliance is considered,
which requires global looping behaviours to be eventually terminated under a
fairness assumption.

Concerning previous work on (variants of) CFSMs, our approach has some
commonalities with [20]. In [20] a restricted version of CFSMs is considered
w.r.t. [4], by constraining them to be binary (a system is always composed of two
CFSMs only) and not to use mixed choice (i.e. choices involving both inputs and
outputs). A specific notion of compliance is considered which, besides absence
of deadlocking global CFSM states [4] (i.e. compliance as in this paper) also
requires each sent message to be eventually received. Thanks to a mapping from
the CFSMs of [20] to session types, compliance of a CFSM A with a CFSM
B is shown to correspond to subtyping, as defined in [15], between the mapped
session type T (A) and the dual of the mapped session type T (B), i.e. T (B). With
respect to the subtyping definition used in this paper, [15] adds a requirement
that corresponds to the eventual reception of sent messages considered in the
definition of compliance by [20]: the whole approach of [20] is critically based
on the dual closeness property, i.e. T ′ ≤ T ⇔ T ≤ T ′, enjoyed (only) by such a
variant of subtyping. Notice that, while [20] makes use of a notion of compliance,
it does not consider, as in this paper, a notion of refinement defined in terms of
compliance preserving testing (as usual in behavioural contract theories where
communicating entities have a syntax).

Concerning previous work on session types, our approach has some common-
alities with the above mentioned [15]. The above discussed subtyping variant
considered in [15] is shown to correspond to substitutability, in the context of
concurrent programs written in a variant of the π-calculus, of a piece of code
with session type T with a piece of code with session type T ′, while preserving
error-freedom. A specific error-freedom notion is formalized for such a language,
that corresponds to absence of communication error (similar to our notion of
compliance) plus the guaranteed eventual reception of all emitted messages (an
orphan-message-free property that we do not consider). While the program (con-
text) in which the piece of code is substituted can be seen as corresponding to
a test in contract refinement, the subtyping characterization in [15] is based
on a specific programming language, while in this paper we consider as tests a
generic, language independent, set of CFSMs and we discuss the conditions on
tests under which we can characterize asynchronous session subtyping.

In this paper we, thus, discussed the notion of refinement over asynchronous
behavioural contracts that formalize CFSMs, showing precisely under which con-
ditions it coincides with asynchronous session subtyping, which is known to be
undecidable. Under different conditions, e.g., not restricting to binary and non
mixed-choice contracts only, alternative notions of refinements are obtained on
which the already known undecidability results are not directly applicable. This
opens a new problem, concerned with the identification of possibly decidable
refinement notions for contracts/CFSMs.
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