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Abstract

Aggregate computing is an emerging approach to the engineering of complex
coordination for distributed systems, based on viewing system interactions in
terms of information propagating through collectives of devices, rather than in
terms of individual devices and their interaction with their peers and environ-
ment. The foundation of this approach is the distillation of a number of prior
approaches, both formal and pragmatic, proposed under the umbrella of field-
based coordination, and culminating into the field calculus, a universal func-
tional programming model for the specification and composition of collective
behaviours with equivalent local and aggregate semantics. This foundation has
been elaborated into a layered approach to engineering coordination of complex
distributed systems, building up to pragmatic applications through intermedi-
ate layers encompassing reusable libraries of program components. Further-
more, some of these components are formally shown to satisfy formal properties
like self-stabilisation, which transfer to whole application services by functional
composition. In this survey, we trace the development and antecedents of field
calculus, review the field calculus itself and the current state of aggregate com-
puting theory and practice, and discuss a roadmap of current research directions
with implications for the development of a broad range of distributed systems.
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1. Introduction

As computing devices continue to become cheaper and more pervasive, the
complexity of the distributed systems that run our world continues to increase.
Over the past several decades, we have moved from many people sharing a sin-
gle computer to a computer for each person to many, mostly embedded and
minimal-interface computing devices for each person. The only way to effec-
tively engineer and coordinate the operation of such systems is to program
and operate in terms of aggregates of devices rather than attempting to micro-
manage each individual device. Moreover, as devices become more numerous,
smaller, and more embedded, decentralisation brings new opportunities as well
as new challenges—not only in terms of pervasive sensing/actuation/computa-
tion abilities, but also of increasing requirements for resilience, efficiency, pri-
vacy, sustainability, and other non-functional requirements.

Aggregate computing is an emerging approach, developed significantly
within the coordination models and languages research community, that em-
braces this environment, and with the core idea of functionally composing collec-
tive behaviours to achieve effective and resilient complex behaviours in dynamic
networks. As an example, to provide smart-mobility services for pedestrians
in smart-cities [1], with aggregate computing one might first program a dis-
tributed building block to estimate crowded areas (e.g., reusing core library
blocks to compute distances, elect distributed leaders, and collect information
from regions to target nodes), and then functionally stack on top a service to
alert people in crowded areas, another to disperse them by suggesting steering
directions, and yet another to guide people to points of interest while circum-
venting those crowded areas.

Aggregate computing builds from a foundation of the field calculus, a func-
tional programming model for the specification and composition of collective
behaviours with formally equivalent local and aggregate semantics. Atop this
foundation, a layered approach has been constructed to engineering coordi-
nation of complex distributed systems in contexts such as smart-cities and
smart-environments, robot/drone swarms, and tactical networks. This has been
achieved by first considering challenges of resilience, then pragmatism in the
form of reusable libraries capturing common coordination patterns, and finally
applications across a number of different domains. As the research on aggre-
gate computing is becoming rather multi-faceted, we also envision a variety of
research directions of high importance for distributed systems and specifically
for coordination models and languages, in theory, in engineering methods and
tools, and in applications.

In this survey, an extended version of [2], we present a discussion of the past,
present, and future of aggregate computing (Figure 1). The paper expands on [2]
through a broader coverage of related works (including the pictorial overview in
Figure 2), formal properties studied, and current/future works in several areas
(platforms, security, applications); together with the addition of a section (Sec-
tion 3.3) presenting the denotational semantics for the first-order field calculus,
obtained by simplifying the semantics previously published for the higher-order
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Figure 1: This survey reviews the development of field calculus from its antecedents (left),
the current state of aggregate computing theory and practice as layered abstractions based on
field calculus (middle), and current research directions on stemming from field calculus and
aggregate programming (right).

version of the calculus.
Section 2 begins by tracing the development of aggregate computing through

its antecedents both in coordination research and in other areas, culminating
in the development of the field calculus. Section 3 then presents a detailed
review of field calculus, the formal foundation of aggregate computing, as well as
examples of aggregate programming. Section 4 discusses the current state of the
rest of aggregate computing theory and practice across its various abstraction
layers. Section 5 presents a roadmap of current research directions on top of field
calculus and with respect to challenges in coordination models and languages.
Finally, Section 6 summarises and concludes the paper.

2. Coordination, Self-Organisation, and Fields

In this section, we review and discuss the conceptual, but also technical
and technological, path that has brought traditional coordination models for
parallel computing, step-by-step to address the complexity of self-organising,
large-scale deployed systems (Section 2.1 and Section 2.2). We then describe
the emergence of field-based coordination (Section 2.3), and how, through the
interaction with research falling under the umbrella of space-based computa-
tion models (Section 2.4), this path has led to the development of the field
calculus and aggregate computing. A pictorial overview of the antecedents of
field calculus and aggregate computing discussed in this section is provided in
Figure 2.

2.1. Coordination towards Self-organisation

One of the key threads of antecedent research begins with simple coordina-
tion of parallel activities, then moves towards increasing intelligence in coor-
dination and distribution into increasingly complex self-organising distributed
coordination systems.
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Figure 2: Overview of research threads leading from coordination to field calculus and ag-
gregate computing, highlighting some bibliographic references. This summary—by no means
exhaustive—provides key highlights for the perspective discussed in this paper.
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Generative communication

Coordination models are rooted in the idea that interaction among multiple,
independent, and autonomous software systems (e.g., processes, components,
and so on, somewhat generically called agents henceforth) could be conceived
and designed as a space orthogonal to pure computation. Historically, many
coordination models reify this idea into a concept of shared data space, working
as a whiteboard, where processes of a parallel computing system can write and
read information [39], enabling so-called generative communication. Linda [3]
is broadly recognised as the ancestor of a number of approaches to generative
communication falling under the umbrella of tuple-based coordination models.
The foundational idea of Linda was to have processes (on a centralised system)
share information and synchronise by writing and retrieving, with a suspensive
semantics (the requester is blocked until the query is satisfiable), data in the
form of an ordered collection of possibly-heterogeneous knowledge chunks, i.e.,
tuples, from a shared (tuple-)space. Such data could be retrieved associatively,
by querying through partial representations of the structure and content match-
ing the desired piece of data (tuple template). The consequence is twofold: (i)
decoupling in communication is strongly promoted, since no information about
the sender, the space itself, and the tuple insertion time is required in order for
communication to happen; and (ii) coordination is still possible in environments
where information is vague, incomplete, inaccurate, or not entirely specified, due
to the possibility of synchronising over a partial representation of knowledge.

Programmable coordination rules

The vision of tuple-based coordination as a shared knowledge repository
used for agent coordination is further promoted by logical tuple-space mod-
els, where software agents coordinate through first-order logic tuples, and tuple
spaces can be programmed as first-order logic theories. A prominent example
of such approach is Shared Prolog [6], a framework for writing multi-processor
Prolog systems. More generally, this view promotes the idea of equipping the
shared space with some form of “intelligence”, e.g., in the form of an application
logic that can manipulate data in the shared space and the way that it can be
accessed. Several Linda-inspired approaches tackle this issue by enabling pro-
grammability at the tuple-space level in order to express rules of coordination,
and hence, pushing forward a notion of expressiveness of the coordination media
[40]. Among them, we find Law-Governed Interaction [7], which structures the
coordination logic within groups of agents by explicit “rules of engagement”;
MARS [8], whose tuple spaces can be programmed with stateful “reaction ob-
jects” triggered upon access patterns; and ReSpecT [9], where logic specification
tuples map events to transactional sequences of reactions, which are primitive
invocations of logic-based computations.

Distribution

All these approaches, however, do not explicitly focus on distributed sys-
tems, but on the coordination of centralised local components. As software
components become spread across the system network, so multiple tuple spaces
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can be distributed across the system environment, enabling distributed coordi-
nation abstractions, featuring mechanisms for event-based interactions, timing,
and advanced data representation. This is the case with industrial systems
like JavaSpaces [4], an API for distributed coordination through persistent,
shared spaces of objects, and TSpaces [5], which combines Linda-like spaces
with asynchronous messaging. Some middlewares take the approach a step fur-
ther, by dealing with location and mobility, and enabling expression of dynamic
environment topologies in a distributed setting, thus paving the way towards
application of coordination models to pervasive computing system scenarios.
For instance, LogOp [10] extends basic Linda with coordination primitives for
dynamically accessing multiple distributed tuple spaces based on logical expres-
sions. Scope [11] leverages distributed broadcasts for tuple placement and
migration. In Lime [13], mobile agents communicate with each other through
“transiently shared tuple spaces” whose content is dynamically reconfigured
based on the set of co-located agents. Another example is Klaim [12], which
exposes a programming paradigm of mobile processes and data where explicit
localities regulate the interaction protocol of located processes and types char-
acterise the intention of processes with respect to specific localities.

Self-organising coordination

As coordination abstractions of various sorts (e.g., tuple spaces, channels,
coordination artefacts [41, 42]) are available in distributed settings, one is di-
rectly faced with the problem of dealing with openness (hence, unexpectedness
of environment changes, faults, and interactions), large scale (possibly a huge
number of agents and coordination abstractions to be managed), and intrinsic
adaptiveness (such as the ability to intercept relevant events and react to them to
guarantee overall system resilience). This calls for an approach of self-organising
coordination [43], where coordination abstractions handle “local” interactions
only (and typically use stochastic mechanisms to keep the coordination process
always “up and running”), such that global and robust patterns of correct coor-
dination behaviour can emerge—achieved by trading off by-design adaptiveness
with inherent, automatic forms of adaptiveness.

Coordination models following this approach typically take their inspiration
from complex natural systems (from physics through chemistry, all the way to
ethology) and attempt to reuse the foundational mechanisms of such systems. A
primary source of inspiration for these systems is to be found in biology (social
animals, and insects in particular), whose foraging techniques inspire mecha-
nisms to regulate coordination [44, 15, 45]. For instance, SwarmLinda [15] is
a tuple-based middleware that brings the collective intelligence displayed by
swarms of ants to computational mechanisms aimed at guaranteeing efficient
retrieval of tuples. Tuples are handled as forms of pheromones or items that
ants (agents) continuously and opportunistically relocate. Chemical inspiration
is used in [46, 16] to regulate the “activity level” of tuples, which drives the
likelihood of their retrieval as well as their propagation rate. Ecological inspi-
ration is instead used in [47] to inject competition, composition, and disposal
behaviour in the context of coordination of pervasive computing services.
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2.2. Multi-Agent and Collective Adaptive Systems

The research line of Multi-Agent Systems (MAS) [48] inherently acknowl-
edges the key role of coordination [49] by focussing on the macro level of systems
of interacting autonomous agents. One key coordination challenge is to make
agents cooperate despite conflicting goals, e.g., through consistent multi-agent
planning and proper negotiation. The survey in [50] provides an account of re-
cent progress in distributed multi-agent coordination in the areas of consensus,
formation control, optimisation, task assignment, and estimation.

Additionally, MAS research recognises the importance that the organisa-
tional dimension [51] assumes in the realisation of system-level behaviour. In-
deed, the function of structure and order is to regulate interactions so as to
achieve static or dynamic goals. This significance has motivated the emer-
gence of frameworks and linguistic approaches (grouped under the notion of
organisation-oriented programming [52]) to model the organisational dimension
of MAS, such as e-institutions [32] and Moise+ [33]. The perspective of self-
organisation is particularly relevant in MAS [53], as it provides a way to deal
with change in the environment and system itself.

A closely related branch of research that focuses on macro-level behaviour,
especially in large-scale dynamic scenarios, is that of Collective Adaptive Sys-
tems (CAS) [54]. Decentralisation of control, non-synchronised operation, and
opportunistic interaction are often essential in this context to deal with the scale
and changes in both the system structure and environment. In this research
area, it is common to consider large, dynamic groups of devices as first-class
abstractions – sometimes called ensembles, collectives, or aggregates – and sup-
port interaction between (sub-)groups of devices by abstracting from certain
details (e.g., networking, or individual logical connections). For instance, in
Helena [29], components can dynamically participate in multiple ensembles ac-
cording to different roles. Similarly, DEECo [30] is another CAS model where
components can only communicate by dynamically binding together through
ensembles. The GCM/ProActive framework [31] supports the development of
large-scale ensembles of adaptable autonomous devices through a hierarchical
component model where components have a non-functional membrane and “col-
lective interfaces”, and a programming model based on active objects. SCEL [27]
is a kernel language to specify the behaviour of autonomic components, the logic
of ensemble formation, as well interaction through attribute-based communica-
tion (which enables implicit selection of a group of recipients). Carma [28] uses
attribute-based communication as well, to coordinate large ensembles of devices
via local broadcast operations. In these approaches, the ensemble abstraction
is dynamic—in order to cope with change—and hence provides a way to adapt
the coordination logic.

2.3. Field-based coordination

Another important natural source of inspiration comes from physics: a num-
ber of physics-inspired self-organising coordination systems rely on the notion
of “field” (gravitational field, electromagnetic field), which essentially provides
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a framework to handle (create, manipulate, combine) global-level, distributed
data structures.

A notion of coordination field (or co-field) was initially proposed in [55]
as a means to support self-organisation patterns of agent movement in complex
environments: it was used as an abstraction over the actual environment, spread
by both agents and the environment itself, and used by agents (which can locally
perceive the value of fields) to properly navigate the environment. Based on this
idea, the TOTA (Tuples On The Air) tuple-based middleware [17] was proposed
to support field-based coordination for pervasive-computing applications. In
TOTA each tuple, when inserted into a node of the network, is equipped with
a content (the tuple data), a diffusion rule (the policy by which the tuple has
to be cloned and diffused around), and a maintenance rule (the policy whereby
the tuple should evolve due to events or time elapsing).

The evolving tuples model, presented in [56], is an extension to traditional
Linda tuple spaces with the goal of supporting resource discovery in a pervasive
system, relying on ideas similar to those of TOTA. Evolution is firstly embedded
in tuples by adding, to each field of the tuple, a name and a formula that spec-
ifies the field behaviour over time. Formulas support the if-then-else construct
and arithmetic and boolean operators. Secondly, a new operation evolve() is
introduced in the tuple space, which is responsible for applying formulas to
tuples using contextual information.

One of the first works connecting field-based coordination with formalisation
tools typical of coordination models and languages (e.g., process algebras and
transition systems) is the στ -Linda model [14], where agents can inject into the
space “processes” that spread, collect and decay tuples, ultimately sustaining
fields of tuples.

2.4. Spatial computing approaches: towards the field calculus

More or less independently to the problem of finding suitable coordina-
tion models for distributed and situated systems, a number of works addressed
similar problems in the more general attempt of building distributed intelli-
gent systems by promoting higher abstractions of spatial collective adaptive
systems. Works such as [57, 58, 59, 60] survey from various different view-
points the many approaches that fall under this umbrella (including also some
of the above mentioned coordination models), and which mainly organise in
the following categories: methods that simplify programming of a collective
by abstracting individual networked devices (e.g., Hood [23], Abstract Re-
gions [24], Butera’s “paintable computing” [25], and Meld [26]), spatial pat-
terns and languages (e.g., Growing Point Language [21], geometric patterns in
Origami Shape Language [22], self-healing geometries [61], or universal pat-
terns [62]), tools to summarise and stream information over regions of space
and time (e.g., TinyDB [34], Cougar [35], TinyLime [36], and Regiment [37]),
and finally space-time computing models aiming at the manipulation of data
structures diffused in space and evolving with time, e.g., targeting parallel com-
puting (e.g., StarLisp [63], systolic computing [64]) and topological computing
(e.g., MGS [19, 20]). Among them, space-time computing models based on
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the notion of computational fields were initially proposed in [65] and [18] and
implemented in the Proto language [18]. Combining techniques coming from
the above approaches and generalising over Proto (which can be considered the
archetypal spatial computing language due to its expressiveness and versatility),
the field calculus has been proposed as a foundational model for the coordina-
tion of computational devices spread in physical environments, also known as
aggregate computing.

3. Field Calculus

In this section, we review the mathematical core of aggregate computing,
the field calculus language, together with its most relevant formalisations and
properties. We follow the goal of presenting the full spectrum of results achieved
while avoiding all deep technical details (which can be accessed if desired from
the references provided), though providing a full formalisation of its semantics.
First, we present the basic first-order calculus (Section 3.1) together with its
operational semantics, typing, basic properties (Section 3.2), and denotational
semantics (Section 3.3). We then discuss the behavioural properties that have
been studied for field calculus programs (Section 3.4). We conclude by discussing
the extension of the calculus to allow for higher-order functions (Section 3.5).

3.1. Basic calculus

The field calculus (FC) was introduced in [66] as a minimal core calculus
meant to capture the key ingredients of languages that make use of computa-
tional fields:2 functions over fields, functional composition with fields, evolution
of fields over time, construction of fields of values from neighbours, and restric-
tion of a field computation to a sub-region of the network.

The field calculus is based on the idea of specifying the aggregate system
behaviour of a network of devices, where a dynamic neighbouring relation (which
is application-dependent and represents physical or logical proximity) is used
to indicate the devices with which one can directly communicate3—e.g., in a
sensor network, those within the range of a broadcast communication. One
such specification is structured as a functional composition of operators that
manipulate (evolve, combine, restrict) computational fields.

A key feature of the approach is that a specification can be interpreted either
locally or globally. Locally, it can be seen as describing a computation on an
individual device, iteratively executed in asynchronous “computation rounds”
comprising reception of messages from neighbours, perception of contextual in-
formation through sensors, storing local state of computation, computing the
local value of fields, and spreading messages to neighbours. Globally, a field

2This is similar to how λ-calculus [67] captures the essence of functional computation and
FJ [68] the essence of class-based object-oriented programming.

3A device with no neighbours, e.g., would be one isolated (temporarily or permanently)
from the rest of the system.
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P ::= F e program

F ::= def d(x) {e} function declaration

e ::= x
∣∣ v

∣∣ f(e)
∣∣ if(e){e}{e}

∣∣ expression

nbr{e}
∣∣ rep(e){(x)=>e}

f ::= d
∣∣ b function name

v ::= `
∣∣ φ value

` ::= c(`) local value

φ ::= δ 7→ ` neighbouring field value

Figure 3: Abstract syntax of the field calculus, as adapted from [70]

calculus expression e specifies a mapping (i.e., the computational field) asso-
ciating each computation round of each device to the value that e assumes at
that space-time event. This duality intrinsically supports the reconciliation be-
tween the local behaviour of each device and the emerging global behaviour of
the whole network of devices [69, 66], as proved by the computational adequacy
and abstraction properties in [38], which relate operational and denotational
semantics.

Figure 3 gives an abstract syntax for field calculus, as presented in recent
works [70]. In this syntax, the overbar notation e indicates a sequence of el-
ements (i.e., e stands for e1, e2, . . . , en), and multiple overbars are expanded
together (e.g., δ 7→ ` stands for δ1 7→ `1, δ2 7→ `2, . . . , δn 7→ `n which is a
map associating local values to device identifiers). There are four keywords
in this syntax: def for function definition; if for (the field-based variation of)
branching expression; and rep and nbr for the two peculiar constructs of field
calculus, respectively responsible for evolution of state over time and for sharing
information between neighbours.

A field calculus program P consists of a sequence of function declarations F

followed by the main expression e, defining global (and also local) behaviour of
the aggregate system. An expression e can be:

• A variable x, e.g., a function parameter.

• A value v, which can be of the following two kinds:

– a local value `, defined via data constructor c and arguments `, such
as a Boolean, number, string, pair, tuple, etc;

– a neighbouring (field) value φ representing a collection of values from
nearby devices, in the form of a function that associates, for each
device, the set of neighbour devices δ (including the device itself) to
local values `, e.g., a map of neighbours to the distances to those
neighbours.

• A function call f(e) to either a user-declared function d (declared with the
def keyword) or a built-in function b, such as a mathematical or logical
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operator, a data structure operation, or a function returning the value of
a sensor.

• A branching expression if(e1){e2}{e3}, used to split a computation into
isolated sub-regions where (and when) e1 evaluates to True or False: the
result is computation of e2 in the former area, and e3 in the latter.

• The nbr{e} construct, which creates a neighbouring value mapping neigh-
bours to their latest available result of evaluating e. In particular, each
device δ:

1. shares its value of e with its neighbours, and

2. evaluates the expression into a neighbouring value φ, where φ is a
function that maps each neighbour δ′ of δ to the latest evaluation of
e that has been shared from δ′.

For instance, nbr{temperature()} (where temperature is a built-in sen-
sor estimating local temperature) would produce a neighbouring value φ
associating to each neighbour the temperature measured by that neigh-
bour. Note that in an if branch, sharing is restricted to occur between
devices within the same subspace of the branch (since devices in a different
subspace do not execute the same nbr{e} constructs).

• The rep(e1){(x)=>e2} construct, which models state evolution over time.
This construct retrieves the value v computed for the whole rep expres-
sion in the last evaluation round (the value produced by evaluating the
expression e1 is used at the first evaluation round) and updates it with the
value produced by evaluating the expression obtained from e2 by replacing
the occurrences of x by v.

Within this collection of operations, the nbr and rep constructs are special,
handling message exchanges respectively between devices and within rounds of
a single device. These constructs are assumed to be backed by a data gath-
ering mechanism accomplished through a process called alignment [71], which
ensures appropriate message matching, i.e., that no two different instances of
a nbr expression can inadvertently “swap” their respective messages, nor can
two different instances of a rep expression “swap” their state memory. This
has the notable consequence that the two branches of an if statement in field
calculus are executed in isolation: a device computing the “then” branch cannot
communicate with the “else” branch of a neighbour, and vice versa.

Example 3.1.1 (Distance Avoiding Obstacles). Consider Figure 4. Function
distanceTo takes as argument a field of Booleans source, associating true to
source nodes, and produces as result a field of reals, mapping each device to its
minimum distance to a source node, as computed by relaxation of the triangle
inequality; namely: repetitively, and starting from infinity (construct rep) ev-
erywhere, the distance on any node gets updated to 0 on source nodes (function
mux(c, t, e) is a purely functional multiplexer which chooses t if c is true, or
e otherwise), and elsewhere to the minimum (built-in minHood) of neighbours’
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// distance from source region with nbrRange metric
def distanceTo(source) {

rep (Infinity) { (dist) =>
mux ( source, 0, minHood(nbr{dist} + nbrRange()) )

}
}
// distance from source region, avoiding obstacle region
def distanceToWithObs(source, obstacle) {

if (obstacle) { Infinity }{ distanceTo(source) }
}
// main expression
distanceToWithObs(deviceId() == 0, senseObs())

Figure 4: Example field calculus code

distance (construct nbr) added with nbrRange, a sensor for estimated distances.
Function distanceToWithObs takes an additional argument, a field of booleans
obstacle, associating true to obstacle nodes; it partitions the space of devices:
on obstacle nodes it gives the field of infinity values, elsewhere it uses computa-
tion of distanceTo. Because of alignment, the set of neighbours considered for
distanceTo automatically discards nodes that evaluate the other branch of if,
effectively making computation of distances circumvent obstacles. Finally, the
main expression calls distanceToWithObs to compute distances from the node
with deviceId equal to 0, circumventing the devices where senseObs gives true.

Example 3.1.2 (Monitor). Consider the following field calculus expression.

if ( fail() ) { rep (0) {(x) => x-1} } { sumHood(nbr{1}) }

This expression represents a simple monitor, for which higher values indicate
a good situation, while lower (negative) values signal problematic situations.
In devices where fail is true, the number of consecutive rounds of failure is
counted with negative numbers by the rep expression. Non-failing devices in-
stead compute sumHood(nbr1) (isolated from failing devices) which (i) builds
a neighbouring field φ mapping each non-failing neighbour to 1; (ii) sums ev-
ery value in the range of φ (except that for the current device) with built-in
sumHood, obtaining the (non-negative) total number of non-failing neighbours.

3.2. Operational semantics, typing and basic properties

The distinguished interaction model of this approach has been first for-
malised in [66] (see also [69]) by means of a small-step operational semantics
modelling single device computation (which is ultimately responsible for the
whole network execution). The main technical novelty in this formalisation is
that device state and message content are represented in an unified way as an
annotated evaluation tree θ. Field construction, propagation, and restriction
are then supported by local evaluation “against” the collection Θ of evaluation
trees received from neighbours. The alignment mechanism to ensure appro-
priate message matching is then implemented by operations navigating these
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trees, and discarding them whenever different branches are taken (to prevent
unwanted communication between nbr constructs in different branches of an if

expression).
Recent work models single device computation by a big-step operational

semantics [70], expressed by the judgement δ; Θ;σ ` emain ⇓ θ, to be read
“expression emain evaluates to θ on device δ with respect to environment Θ and
sensor state σ”. The overall network evolution is then formalised by a small-step

operational semantics as a transition systemN
act−−→ N on network configurations

N , in which actions act can either be environment changes or single device
computations (in turn modelled by the big-step semantics). For the purpose
of this survey, it is key to convey the overall behaviour of a field computation
(modelled by the denotational semantics formalised in the next section), but
there is no need to provide the full details of the operational semantics, since
they pertain to a specific implementation “template” for node computational
rounds—the interested reader may find it in [70, Online Appendix C].

The work in [69] presents a type system used to intercept ill-formed field-
calculus programs. Figure 5 presents this system (adapted to the syntax in
Figure 3), which builds on the Hindley-Milner type system [72] for ML-like
functional languages, as a set of syntax-directed type inference rules. Being
syntax-directed, the rules straightforwardly specify a variant of the Hindley-
Milner type inference algorithm [72]. Namely, an algorithm that, given a field
calculus expression and type assumptions for its free variables, either fails (if
the expression cannot be typed under the given type assumptions) or returns
its principal type, i.e., a type such that all the types that can be assigned to an
expression by the type inference rules can be obtained from the principal type
by substituting type variables with types.

Types are partitioned in two sets: types for expressions T and type schemes
for functions FS (constructors, built-in operators and user-defined functions)—
this reflects the fact that the base field calculus does not support higher order
functions (i.e., functions are not values). Expression types are further parti-
tioned in two sets:

• types for local values L, including Booleans and other built-in types such
as numbers, strings, pairs, tuples, etc;

• types for neighbouring values F, e.g., the values produced by nbr-
expressions.

These sets also include two kinds of type variables t and l (similar to how the
Standard ML type system features equality and non-equality type variables
[73]). This allows functions to behave polymorphically while enforcing ad-hoc
restrictions necessary to guarantee the properties discussed at the end of this
section.

Type environments, ranged over by A, collect type assumptions x : T for
program variables. Function-type-scheme environments, ranged over by D, col-
lect the function type schemes f : ∀tl.(T) → T for the data constructors and
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Types:

T ::= t
∣∣ L

∣∣ F expression type

L ::= l
∣∣ bool

∣∣ . . . local type

F ::= field(L) field type

Function type schemes:

FS ::= ∀tl.(T)→ T function type scheme

Expression typing: D;A ` e : T

[T-VAR]

D;A, x : T ` x : T

[T-DAT]
D0; ∅ ` ` : L c : ∀l.(L

′
)→ L′ ∈ D0

L = L
′
[l := L

′′
] L = L′[l := L

′′
]

D;A ` c(`) : L

[T-APP]
D;A ` e : T f : ∀tl.(T

′
)→ T′ ∈ D

T = T
′
[t := T

′′
, l := L

′′
] T = T′[t := T

′′
, l := L

′′
]

D;A ` f(e) : T

[T-IF] D;A ` ec : bool D;A ` eT : L D;A ` eF : L
D;A ` if(ec){eT }{eF } : L

[T-REP] D;A ` e1 : L D;A, x : L ` e2 : L
D;A ` rep(e1){(x)=>e2} : L

[T-NBR] D;A ` e : L
D;A ` nbr{e} : field(L)

Function typing: D ` F : FS

[T-FUNCTION] D, d : ∀tl.(T)→ T; x : T ` e : T

D ` def d(x) {e} : ∀tl.(T)→ T

Program typing: D0 ` P : T

[T-PROGRAM]

Fi = (def di( ) ) Di−1 ` Fi : FSi Di = Di−1, di : FSi (i ∈ 1..n)
Dn; ∅ ` e : T

D0 ` F1 · · · Fn e : T

Figure 5: Hindley-Milner typing for field calculus, as adapted from [69]

built-in functions together with the function type schemes inferred for the user-
defined functions. In particular, the distinguished built-in function-type-scheme
environment D0 associates a function type scheme to each data constructor c

and built-in function b.
The typing judgement for expressions is of the form “D;A ` e : T”, to be

read: “e has type T under the function-type-scheme assumptions D and the type
assumptions A”. The typing judgement for function declarations “D ` F : FS ”
and programs “D0 ` P : T ” are read analogously. We say that a program P is
well-typed to mean that D0 ` P : T holds for some type T.
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The typing rules are given in Figure 5 (bottom). Rules [T-VAR], [T-DAT], [T-

APP], [T-FUNCTION], and [T-PROGRAM] are almost standard. Rule [T-NBR] requires
the argument of an nbr construct to be local, in order to prevent the creation
of a field of fields, which would be computationally expensive. Rules [T-IF] and
[T-REP] require the type of their arguments to match and to be local, since rep or
if constructs of field type would violate the domain alignment property. In fact,
this type system is proved to guarantee the following two valuable properties
for field calculus:

• Domain alignment: On each device, the domain of every neighbouring
value arising during the reduction of a well-typed expression consists of
the identifiers of the aligned neighbours and of the identifier of the device
itself. In other words, information sharing is scoped to precisely implement
the aggregate abstraction.

• Type soundness: The reduction of a well-typed expression does not get
stuck.

Example 3.2.1 (Typing). Consider the Examples 3.1.1 and 3.1.2. The type
system assigns the following types to the involved built-in functions, user-defined
functions, and main expressions.

// minHood, sumHood : (bool) -> num
// nbrRange : () -> field(num)
def distanceTo(source) ... // (bool) -> num
def distanceToWithObs(source, obstacle) ... // (bool, bool) -> num
distanceToWithObs(deviceId() == 0, senseObs()) // num
if ( fail() ) { rep (0) {(x) => x-1} } { sumHood(nbr{1}) } // num

3.3. Denotational semantics

The operational semantics corresponds to the local interpretation of the field
calculus: it specifies details concerning how a device internally processes a round,
what information fills the message sent to neighbours, and which information
persists on a node across time. Such a specification is, of course, abstract, as a
compliant implementation can apply optimisation techniques (size of messages
and of state information) that need not be specified into an operational seman-
tics. A further, more abstract formalisation of field calculus can be given by
a denotational semantics focussing on the global interpretation of field expres-
sions, namely, as functions from (space-time) fields to fields. As advocated in
[38], this allows one to focus on the semantics of field constructs in a way that
completely abstracts from local interpretation of expressions, i.e., considers only
their global effect. Ideally, this is the semantics one has in mind when design-
ing complex specifications, whereas operational semantics is more a concern of
designers of field calculus support (interpreters, platforms). Accordingly, and
as a novel contribution of this paper, in this section we present a denotational
semantics for the field calculus (summarised in Figure 7), obtained by adapting
the denotational semantics of the higher-order field calculus (Section 3.5) given
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past future

ǫ

Figure 6: Example of a space-time event structure, comprising events (circles) and neighbour
relations (arrows). Colours indicate causal structure with respect to event ε, splitting events
into causal past (red), causal future (green), and concurrent (non-ordered, in black). Figure
adapted from [74].

in [38]. The resulting first-order version is much simpler4 and therefore more
suitable for a survey paper.

In this semantics, each round of computation happening on a device is rep-
resented by an event ε, and the collection of all such executions across space
(i.e., across devices) and time (i.e., over multiple rounds) forms an event struc-
ture E [75], representing the overall execution of a single aggregate machine.
Note that we rely on a true-concurrent semantics, which is more faithful to
the intended real-world applications of the field calculus. Each event structure
is assumed to be equipped with a neighbouring relation  guided by message
exchanges, so that ε1  ε2 iff a message sent in ε1 was taken into account in
ε2. This relation provides a topology for E, and its transitive closure forms
the irreflexive causality partial order <5. Figure 6 shows an example of such an
event structure, showing how these relations partition events into “causal past”,
“causal future”, and non-ordered “concurrent” subspaces with respect to any
given event ε. Interpreting this in terms of physical devices and message passing,
a physical device is instantiated as a chain of events connected by  relations
(representing evolution of state over time with the device carrying state from
one event to the next), and any  relation between devices represents informa-

4In particular, the denotation of function types is greatly simplified by omitting name tags
and referring to the local behaviour instead of the global one, rules for denoting functions are
not needed and the denotation of function applications is simplified by substituting nested
limits with a single global limit on a stack trace length parameter.

5We require the past of each event {ε′ ∈ E : ε′ < ε} to be finite (i.e., every computation
has a start), even though the overall set of events may be infinite (eternal computations).
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tion exchange from the tail neighbour to the head neighbour. Notice that this
is a very flexible and permissive model: there are no assumptions about syn-
chronisation, shared identifiers or clocks, or even regularity of events (though of
course these things are not prohibited either).

We assume that each ε incorporates all the relevant information about the
corresponding event, e.g., the involved device δε and its sensor state at the time
the event happened. For all ε and δ, we define εδ as the latest event at δ that
ε can be aware of, namely the one6 satisfying δ = δεδ and εδ  ε if δ 6= δε, or

εδ = ε in case δ = δε. We also define E
−
(ε) where ε ∈ E ⊆ E as the set of devices

δ such that εδ exists in E. Finally, we use ε− to denote the previous event of ε
at the same device if it exists, and E0 to denote the set of initial events (ε ∈ E
such that ε− does not exist).

In the remainder of this section, we use the convention that a partial function
λx ∈ X.φ(x) is defined only on the elements x for which each subformula of φ(x)
is defined, and thus propagate undefinedness implicitly.

Figure 7 (top frame) presents the interpretation T JTK of types and T JFSK
of function type schemes, as the set of possible values. We assume that the
interpretation of local types is given, and define the interpretation of field types
field(L) as partial functions7 from device identifiers D to the corresponding lo-
cal type interpretation T JLK. Function type schemes are interpreted as functions
between the corresponding interpretations, after applying any of the allowed
substitutions of the type variables tl.

The interpretation of type schemes is used to define the interpretation of
built-in functions and constructors (middle frame), through the interpretation
function BJ·K, which we assume to be given. The main objects of the deno-
tational semantics are space-time values, which are partial maps from a given
set of events E (implicitly equipped with a neighbouring relation  ) to values
taken from the interpretation of the corresponding type. The interpretation of
expressions EJeKEX produces a space-time value, and is performed with respect
to a subset E ⊆ E and to a variable environment X, which is a map from
variable names (we use X for the set of possible variable names) to space-time
values of the corresponding type.

Figure 7 (bottom frame) defines the interpretation of expressions, as a limit
on a parameter n that is to be understood as a maximum allowed recursive
depth. The interpretation of variables directly exploits the parameter X. The
interpretation of the application of built-in functions and constructors is directly
delegated to the built-in interpretation function BJ·K. The interpretation of the
application of defined functions returns an empty space-time value when the
recursive depth is exhausted (n = 0). Given a positive recursive depth n+ 1, it
instead corresponds to the interpretation of the body with a reduced recursion
depth n, using additional assumptions for the function parameters8 (calculated

6We require that E is such that εδ is always unique (if it exists).
7We write the set of partial functions from A to B as A 7→ B.
8We assume that the arguments of defined functions d are implicitly renamed to avoid
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Denotation of types and type schemes: T JTK, T JFSK
T JLK given

T Jfield(L)K = D 7→ T JLK
T J∀ • .(T)→ TK = (T JTK)→ T JTK
T J∀tl.(T)→ TK =

⋃
T
′
L
′ T J∀ • .((T)→ T)[t := T

′
, l := L

′
]K

Interpretation functions:

BJbK ∈ T JFSK where b : FS built-in interpretation

BJcK ∈ T JFSK where c : FS constructors interpretation

VJTK = E 7→ T JTK space-time values

EJeKEX ∈ VJTK where e : T under x : T expression interpretation

X ∈ X→ ⋃
T VJTK variable environment

Denotation of expressions: EJeKEX
EJeKEX = limn EJeKE,nX

EJxKE,nX = λε ∈ E.X(x)(ε)

EJc(`)KE,nX = λε ∈ E.BJcK(EJ`KE,nX (ε))

EJb(e)KE,nX = λε ∈ E.BJbK(EJeKE,nX (ε))

EJd(e)KE,0X = ∅
EJd(e)KE,n+1

X = λε ∈ E.EJbody(d)KE,n
X∪args(d)7→EJeKE,n+1

X

EJif(ec){eT }{eF }KE,nX = EJeT KETrue,n
X ∪ EJeF KEFalse,n

X

where E` = {ε ∈ E : EJecKE,nX (ε) = BJ`K()}
EJnbr{e}KE,nX = λε ∈ E.λδ ∈ E−(ε).EJeKE,nX (εδ)

EJeKE,nX = limkRk JeKE,nX where e = rep(e1){(x) => e2} and

R0 JeKE,nX = ∅
Rk+1 JeKE,nX = EJe2KE,nX∪x7→shift(Rk JeKE,nX ,EJe1KE,nX (ε))

Figure 7: Denotational semantics of the field calculus

at the same recursive depth n+ 1).
The interpretation of branching statements is produced by adjoining the in-

terpretation of its two branches, each performed within the sole events on which
the condition produced the corresponding (true or false) result. The interpre-
tation of nbr{e} expressions produces in each event ε ∈ E a neighbouring field

value associating to each δ ∈ E−(ε) the interpretation of e in εδ. Finally, the in-
terpretation of e = rep(e1){(x) => e2} statements is defined as a limit of partial

clashes with existing variables in X whenever needed.
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interpretations Φk = Rk JeKE,nX , defined for events with at most k predecessors
on the same device. When k = 0, the interpretation is an empty space-time
value. For positive values k + 1, the interpretation of e corresponds to the in-
terpretation of e2 with the additional assumption that x is shift(Φk,Φ

′), where
Φ′ is the interpretation of e1 and

shift(Φ,Φ′) = λε ∈ E.
{

Φ′(ε) ε ∈ E0

Φ(ε−) otherwise

“pushes” each value in Φ to the next future event, while falling back to Φ′ for
initial events.

We remark that the field calculus, according to the given semantics, is Turing
universal for distributed computations as shown in [74]. More precisely, field
calculus programs can simulate the behaviour of any Turing machine TMcone

that receives in each event ε the collection of all data available in each past
event {ε′ ∈ E : ε′ < ε} and correspondingly produces an output value.

Example 3.3.1 (Monitor Semantics). In order to showcase the denotational se-
mantics at work, consider the field calculus expression of Example 3.1.2.

if ( fail() ) { rep (0) {(x) => x-1} } { sumHood(nbr{1}) }

The denotational semantics of this expression is summarised in Figure 8, on a
sample event structure E consisting of 21 events occurring on 4 devices, among
which device 2 had a reboot after its first two rounds of failure (represented
by the missing link between consecutive events). The variable environment is
initially empty X = ∅ and the recursive depth n is irrelevant as no function
calls are considered. The denotation of the whole expression e is first split into
two sub-networks ETrue, EFalse depending on the value returned by the built-in
function fail.

The denotation of the then branch er is obtained as a limit of partial ap-
proximations: the first R0 JerK∅ is defined only on initial events (as the result of
x− 1 assuming that x is 0 on those events), and the following ones are defined
on more events until the limit is reached with R3 JerK.

The denotation of the else branch es is obtained in steps. First, the denota-
tion of 1 (top right) is used to compute the denotation of nbr{1} (middle right),
producing in each event a neighbouring field value φ associating 1 (shown as
edge label) to each neighbour device. Finally, such neighbouring field values are
summed up by the built-in function sumHood (bottom right).

3.4. Behavioural properties

The field calculus is designed as a general-purpose language for spatially
distributed computations. Thus, regularity properties have been isolated and
studied for subsets of the core language. Among them, the established notion
of self-stabilisation to correct states for distributed systems [76, 77, 78] plays a
central role. This notion, defined in terms of properties of the transition system
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Figure 8: Example of denotational semantics of an expression as it is built up from sub-
expressions. Events not included in the current reference event structure are greyed out,
while events on which the denotation is undefined are marked in blue.
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N
act−−→ N of network evolution (cf. Section 3.2), ensures that both (i) the evalu-

ation of a program on an eventually constant input converges to a limit value in
each device in finite time; (ii) this limit only depends on the input values, and
not on the transitory input values that may have happened before that. When
applied in a dynamically evolving system, a self-stabilising algorithm guaran-
tees that whenever the input changes, the output reacts accordingly without
spurious influences from past values.

In [79] (an extended version of [80]), a first self-stabilising fragment is iso-
lated through a spreading operator, which minimises neighbour values as they
are monotonically updated by a diffusion function. This pattern can be com-
posed arbitrarily with local operations, but no explicit rep and nbr expressions
are allowed: nonetheless, several building blocks can be expressed inside this
fragment, such as classic distance estimation and broadcast (specific instances
of operator G in Figure 12).

More self-stabilising programs and existing “building block” implementa-
tions are covered by the larger self-stabilising fragment introduced in [70] (an
extended version of [81]). This fragment restricts the usage of rep statements to
three specific patterns: converging, acyclic, and minimising rep. They roughly
correspond to the three main building blocks proposed, G, C and T: G is a
generalisation of distance estimation, which spreads a spanning tree from a
source region based on a given metric, and use it to compute values outward; C
conversely collects values inward a spanning tree (typically produced by G) ag-
gregating them “en route” so as to summarise a final result into a target node;
and finally T is a local operator to temporally evolve a value until reaching
a fixpoint—see Figure 12). Furthermore, a notion of equivalence and substi-
tutability for self-stabilising programs is examined: on the one hand, this notion
allows for practical optimisation of distributed programs by substitution of rou-
tines with equivalent but better-performing alternatives; on the other hand,
this equivalence relation naturally induces a limit viewpoint for self-stabilising
programs, complementing and integrating the two general (local and global)
viewpoints by abstracting away the transitory characteristics and isolating the
input-output mapping corresponding to the distributed algorithm. These view-
points effectively constitute different semantic interpretations of the same pro-
gram: operational semantics (local viewpoint), denotational semantics (global
viewpoint), and eventual behaviour (limit viewpoint).

A fourth “continuous” viewpoint is considered in [82]: as the density of
computing devices in a given area increases, assuming that each device takes
inputs from a single continuous function on a space-time manifold, the output
values may converge towards a limit continuous output. Programs with this
property are called consistent, and have a “continuous” semantic interpretation
as a transformation of continuous functions on space-time manifolds. Taking
inspiration from self-stabilisation, this notion is relaxed for eventually consistent
programs, which are only required to continuously converge to a limit except
for a transitory initial period, provided that the inputs are constant (except
for a transitory initial period). Eventual consistency can then be proved for
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all programs expressible in the GPI (gradient-following path integral) calculus,
which is a restriction of the field calculus where the only coordination mechanism
allowed is the GPI operator, a generalised variant of the distance estimation
building block.

Finally, a recent thread of work [83] has begun considering the transient
behaviour of field calculus programs, by providing real-time guarantees on pro-
gram performance. In these results, a bounded amount of error with respect
to ideal values is proved to hold after a predictable set-up (or reconfiguration)
time.

Up to this point, hence, validation of behavioural properties is mostly ad-
dressed “by construction”, namely, proving properties on simple building blocks
or restricting the calculus to fragments. It is a future work to consider the ap-
plicability of techniques such as the formal basis in [77], or model-based analysis
such as [84].

3.5. Language extension: the higher-order field calculus

The higher-order field calculus (HFC) [38, 85] is an extension of the field
calculus with first-class functions. Its primary goal is to allow programmers
to handle functions just like any other value, so that code can be dynamically
injected, moved, and executed in network (sub)domains. Namely, in HFC:

• Functions can take functions as arguments and return a function as result
(higher-order functions). This is key to define highly reusable building
block functions, which can then be fully parametrised with various func-
tional strategies.

• Functions can be created “on the fly” (anonymous functions). Among
other applications, such functions can be passed into a system from the
external environment, as a field of functions considered as input coming
from a sensor modelling addition of new code into a device while the
system is operating.

• Functions can be moved between devices (via the nbr construct) and the
function to be executed can be remembered and changed over time (via
the rep construct), which allows one to express complex patterns of code
deployment across space and time.

• A field of functions (possibly created on the fly and then shared by move-
ment to all devices) can be used as an “aggregate function” operating over
a whole spatial domain.

In considering fields of function values, HFC takes an approach in which making
a function call acts as a branch, with each function in the range of the field
applied only on the subspace of devices that hold that function. When the field
of functions is constant, this implicit branch reduces to be precisely equivalent
to a standard function call. This means that we can view ordinary evaluation of
a function name (or anonymous function) as equivalent to creating a function-
valued field with a constant value, then making a function call applying that
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field to its argument fields. This elegant transformation is one of the key insights
of HFC, enabling first-class functions to be implemented with relatively minimal
complexity.

In [85] the operational semantics of HFC is formalised, for computation
within a single device, by a big-step operational semantics where each expres-
sion evaluates to an ordered tree of values tracking the results of all evaluated
sub-expressions. Moreover, [85] also presents a formalisation of network evolu-
tion, by a transition system on network configurations—transitions can either
be firings of a device or network configuration changes, while network config-
urations model environmental conditions (i.e., network topology and inputs of
sensors on each device) and the overall status of devices in the network at a
given time. In the extension of this work in [38] the formalisation of HFC is
carried on by providing a denotational semantics, which is proved to correspond
to the operational semantics through computational adequacy and abstraction
results. Furthermore, a refined type system is presented that is able to guar-
antee domain alignment, i.e., that the domain of any expression of field type
equals the set of neighbours that computed the same expression.

4. From Field Calculus to Aggregate Computing

In this section, we discuss the current state of the art in practical aggregate
computing, without going into deep technical details—the reader can access code
examples and tutorials from the references provided. We begin by discussing the
construction of implementations of field calculus as supported by the domain
specific language Protelis (Section 4.1) and the ScaFi API for Scala (Section
4.2). We then discuss the layered abstractions of aggregate programming built
upon these foundations, from resilient operators to pragmatic libraries (Section
4.3). Note that as far as current implementations are concerned, field calculus
is supported in its higher-order version, hence in the following we sometimes
generally refer to field calculus even if higher-order capabilities are concerned.

4.1. Protelis: a DSL for field calculus

The concrete usage of field calculus in application development is dependent
on the availability of practical languages, which provide an interpreter or com-
piler, as well as handling runtime aspects such as communication, interfacing
with the operating system, and integration with existing software. Protelis [86]
provides one such implementation, including: (i) a concrete syntax; (ii) an in-
terpreter and a virtual machine; (iii) a device interface abstraction and API;
and (iv) a communication interface abstraction and API.

In Protelis, the parser translates a Protelis source code file into a valid
representation of HFC semantics. This translated program, along with an exe-
cution context, is fed to a virtual machine that executes the Protelis interpreter
at regular intervals. The execution context API defines the interface towards
the operating system, including (with ancillary APIs) an abstraction of the
device’s capabilities and communication system. This architecture has been
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demonstrated to make the language easy to port across diverse contexts, both
simulated (Alchemist9 [87] and NASA World Wind [88]) and real-world [89].

The entire Protelis infrastructure is developed in Java and hosted on the
Java Virtual Machine (JVM). The motivation behind this choice is twofold:
first, the JVM is highly portable, being available on a variety of architectures
and operating systems; second, the Java world is rich in libraries that can be
directly used within Protelis, with little or no need for writing new libraries for
common tasks.

The model-to-model translation between the Protelis syntax and the HFC in-
terpreter is implemented using the Xtext framework [90]. Along with the parser
machinery, this framework is also able to generate most of the code required for
implementing Eclipse plug-ins: one such plug-in is available for Protelis, assist-
ing the developer through code highlighting, completion suggestions, and early
error detection.

The language syntax is designed with the goal of lowering the learning curve
for the majority of developers, and as such it is inspired by languages of the
C-family (C, C++, Java, C#, ...), with some details borrowed from Python.
Code can be organised in modules (or namespaces) whose name must reflect
the directory structure and the file name. Modules can contain functions and a
main script. The code snippet in Figure 9 offers a sampler of both the ordinary
and field-calculus-specific features of Protelis, including importing libraries and
static methods, using functions as higher-order values in let constructs and by
apply, tuple and string literals, lambdas, built-ins (e.g., minHood, and mux),
and the field calculus constructs rep and nbr.

Function definitions are prefixed by the def keyword, and they are visible
by default only in the local module. In order for other modules to access them,
the keyword public must be explicitly specified. Other modules can be im-
ported, as well as Java static methods. Types are not specified explicitly: in
fact, Protelis is duck-typed—namely, type-checked at run-time through reflec-
tion mechanisms. The language offers literals for commonly used numeric values,
tuples, and strings. Instance methods can be invoked on any expression with
the same “dot” syntax used in Java. Higher order support includes a compact
syntax for lambda expressions, closures, function references, functions as pa-
rameters, and function application. Lastly, context properties, including device
capabilities, are accessible through the self keyword. Environment variables
can be accessed via the short syntax env.

Another relevant asset of Protelis is its recently developed library “protelis-
lang” [91], streamlining the implementation of a number of algorithms found in
the distributed systems literature. Among others, it includes several implemen-
tations of self-stabilising building block functions [92, 70], such as distanceTo to
estimate distances, broadcast to send alerts, summarize to perform distributed
sensing, and so on. Notably, the library also includes meta-machinery for “align-

9Alchemist is released as open source and available at http://alchemistsimulator.
github.io
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import protelis:coord:spreading // Import other modules
import java.lang.Math.sqrt // Import static Java methods
def privateFun(my, params) {

my + params // Infix operators, duck typing
}
public def availableOutside() { // externally visible

privateFun(1, 2); // Function call
let aFun = privateFun; // Variable definition, function ref
aFun.apply("a", "str"); // String literals, application
let tup = [NaN, pi, e]; // Tuple literals, built-in numbers
// lambda expressions, closures, method invocation:
let inc3 = v -> {privateFun(v, tup.size())}

}
// MAIN SCRIPT
let myid = self.getDeviceUID(); // Access to device info
if (myid < 1000) { // Domain separation

rep (x <- self.nextRandomDouble()) {// Stateful computation
// Java static method call
mux (sqrt(x) < 0.5) { // mux executes both branches
// Library call, field gathering and reduction
minHood(nbr(env.has("source")))

} else { Infinity }
} < 10

} else { // Mandatory else: every expression returns a value
false // booleans

}

Figure 9: Example Protelis code showcasing a sampler of language features.

ing” aggregate computing programs along arbitrary keys, separating and mixing
domains in a finer way than the if construct allows. These constructs, based on
the alignedMap primitive of Protelis, enable highly dynamic meta-algorithms
to be written, that open up new possibilities such as multiInstance [91], or
allow for increased resilience and adaptation as in the case of timeReplicated
[93].

Protelis is released as open source, and instructions on how to use it are
available at http://www.protelis.org.

4.2. ScaFi: an API for the Scala programming ecosystem

From a pragmatic viewpoint, it is highly desirable to bridge the gap be-
tween field calculus-based DSLs and mainstream programming platforms and
languages that embody, among other things, the functional, object-oriented, and
actor-based paradigms (i.e., reference styles for in-the-small, in-the-large, and
concurrent/distributed programming, respectively). Indeed, this may be criti-
cal to foster adoption, reducing accidental complexity through coherent syntax,
semantics, and toolset, and paving the way to a more integrated programming
experience.

External DSLs such as Protelis, despite the aid provided by DSL frameworks
like Xtext [90], can require a lot of development and maintenance effort, since
they must cover aspects ranging from language design to typing, and proper
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trait FieldCalculus {
def nbr[A](expr: => A): A
def rep[A](init: => A)(fun: (A) => A): A
def foldhood[A](init: => A)(aggr: (A, A) => A)(expr: => A): A
def aggregate[A](f: => A): A

// The following abstract access to the platform
def mid(): ID
def sense[A](name: String): A
def nbrvar[A](name: String): A

}

Figure 10: ScaFi interface to the field calculus [94, 97].

tooling must be provided to enable full interoperability with the target platform
in static, runtime, and debugging contexts. By contrast, internal DSLs are an
interesting alternative, for they are expressed in the host language and are de
facto equivalent to an API: they more seamlessly interoperate, and reuse the
syntax, semantics, typing, and tools of their host language, at the expense of
reduced flexibility due to the constraints exerted by the host environment.

Such considerations of pragmatism, reuse, and interoperability motivate
ScaFi (Scala Fields) [94], an aggregate computing framework including a field-
calculus DSL internal to the Scala programming language [95], also integrated
into the Alchemist meta-simulator [96], as well as an actor-based platform for
distributed aggregate systems [97, 98]. The choice of Scala as the host language
was inspired by its (i) interoperability across the JVM platform, (ii) seamless
integration of the object-oriented and functional paradigms, with support for
lightweight component-based programming (cf., traits and self-types), (iii) ad-
vanced features for type-safe library development (cf., implicits, generic type
constraints), (iv) syntax flexibility and sugar (cf., by-name arguments), allow-
ing creation of fluent DSL-like APIs; and (v) prominent role in the scene of
distributed computing frameworks (cf., Akka [99], Kafka [100], Spark [101]).

Complementarily, from the platform perspective the use of actor-based ab-
stractions is instrumental to the integration of aggregate-level functionality into
existing distributed systems (e.g., developed with more traditional techniques),
by exposing collective coordination events and data through message or event-
like interfaces [97].

In ScaFi, the field calculus is modelled through a Scala trait (i.e., an inter-
face) like the one reported in Figure 10—where type parameters are specified in
square brackets; syntax =>T denotes by-name parameters; syntax T=>R denotes
function types; syntax (.,.) denotes tuples; and methods can be specified
with multiple parameter lists. Interestingly, fields do not emerge at the type
level. Indeed, with respect to HFC, ScaFi provides a slightly different semantics
where neighbouring fields are substituted by a notion of “computation against a
neighbour”, which is carried out by “folding” over the set of aligned neighbours
through a foldhood operation; coherently, nbr expressions can only be used
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within the expr expression of the fold.
In practice, writing an aggregate program is as simple as subclassing

AggregateProgram and defining a main method which represents the entry point
of the round logic. Operationally, an AggregateProgram instance acts simply
as a function from an abstract Context to an Export. Hence, for a platform
to support local execution of field computations it is just a matter of instanc-
ing an aggregate program (possibly mixing in components to provide access to
platform-level functionality), preparing contextual information (i.e., previous
state, sensor data, and messages from neighbours), and running a computation
round according to the device lifecycle.

Working with a general-purpose, multi-paradigm programming language like
Scala can give developers quite a lot of flexibility and power with regards to the
design and implementation of field libraries and programs. Indeed, generic,
object-oriented, and modular programming techniques are used within ScaFi
and its standard library to provide type-safe, expressive, reusable functionality.

Figure 11 shows an example of programming in ScaFi, including the defi-
nition of a reusable block G (extending distance calculation [1, 70]), the import
of functionality through mix-ins (with), the use of type-class-style assumptions
on arguments via context bound “[V: Bounded]” for implicit resolution [102],
and pattern matching “case...=>...”. Despite this power, some care has
to be taken when mixing standard Scala features with ScaFi code: because field
computations build on a notion of alignment [71] for correct composition, their
operation can be disrupted by features that locally affect or alter the abstract
position of field construct calls in the program, such as by-need constructs, con-
trol structures like Scala’s if, iterative constructs, and operations on collections
(especially when these are lazy).

In addition to the DSL, ScaFi also provides an actor-based platform [97],
implemented on top of the Akka toolkit [99], to ease the development of dis-
tributed aggregate systems. It currently supports two architectural styles [98]:
(i) a fully peer-to-peer style, where individual devices have everything they need
to make up a system through decentralised interaction; and (ii) a client-server
style, where device-to-device interaction leverages a central server as an inter-
mediary.

ScaFi is released as open source, with instructions on how to obtain and
use it available at http://scafi.github.io.

4.3. Aggregate Programming

Building upon these theoretical and pragmatic foundations, aggregate pro-
gramming [1] elaborates a layered architecture that aims to dramatically sim-
plify the design, creation, and maintenance of complex distributed systems.
This approach is motivated by three key observations about engineering com-
plex coordination patterns:

• composition of modules and subsystems must be simple and transparent;

• different subsystems need different coordination mechanisms for different
regions and times;
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trait BlockG { // Component
self: FieldCalculus with StandardSensors => // Dependencies

// Generic function with type-class constraint on V
def G[V: Bounded](source: Boolean,

field: V,
acc: V => V, // Function type
metric: => Double // By-name parameter
): V = // Return type

rep((Double.MaxValue, field)) {
case (dist, value) => // Function by pattern matching
mux(source) {

(0.0, field) // Tuple syntax sugar for Tuple2(_,_)
}{

minHoodPlus { // Requires (Double,V) to be Bounded
(nbr { dist } + metric, acc(nbr { value }))

}
}

}._2 // Selects 2nd element of tuple
}

class Program extends AggregateProgram
with StandardSensors with BlockG { // Mixins

def main: Double = // Program entry point
distanceTo(isSource)

def isSource = sense[Boolean]("source")

def distanceTo(source: Boolean): Double =
G(source, 0.0, _ + nbrRange, nbrRange)

}

Figure 11: Example of ScaFi DSL code.

• mechanisms for robust coordination should be hidden by abstractions,
such that programmers are not required to interact with the details of
their implementation.

Field calculus (along with its language incarnations) provides mechanisms for
the first two, but is too general to guarantee resilience and too mathematical and
succinct in its syntax for direct programming to be simple: some methodology
is needed to properly scale with complexity.

Aggregate programming thus proposes two additional abstraction layers, as
illustrated in Figure 12, for hiding the complexity of distributed coordination in
complex networked environments. First, the “resilient coordination operators”
layer plays a crucial role both in hiding the complexity and in supporting ef-
ficient engineering of distributed coordination systems. First proposed in [92],
it is inspired by the approach of combinatory logic [103], the catalogue of self-
organisation primitives in [104], and work on self-stabilising fragments of the
field calculus [79, 70, 80]. Notably, three key operators within this self-stabilising
fragment cover a broad range of distributed coordination patterns: operator G is
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Figure 12: Aggregate programming abstraction layers. The software and hardware capabilities
of particular devices are used to implement aggregate-level field calculus constructs. These
constructs are used to implement a limited set of building-block coordination operations with
provable resilience properties, which are then wrapped and combined together to produce a
user-friendly API for developing situated IoT (Internet-of-Things) systems. Figure adapted
from [1].

a highly general information spreading and “outward computation” operation,
C is its inverse, a general information collection operation, and T implements
bounded state evolution and short-term memory.

Above the resilience layer, aggregate programming libraries [91, 81] cap-
ture common patterns of usage and more specialised and efficient variants of
resilient operators to provide a more user-friendly interface for programming.
This definition of well-organised layers of abstractions with predictable compo-
sitional semantics thus aims to foster (i) reusability, through generic compo-
nents; (ii) productivity, through application-specific components; (iii) declar-
ativity, through high-level functionality and patterns; (iv) flexibility, through
low-level and fine-grained functions; and (v) efficiency, through multiple com-
ponents with coherent substitution semantics [70, 81].

Within these two layers, development has progressed from an initial model
built only around the spreading of information to a growing system of com-
posable operators and variants. The first of these operator/variant families to
be developed centred around the problems of spreading information, since in-
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teraction in aggregate computing is often structured in terms of information
flowing through collectives of devices. A major problem thus lies in regulating
such spreading, in order to take into account context variation, and in rapidly
adapting the spreading structure in reaction to changes in the environment and
in the system topology. Here, the gradient (i.e., the field of minimum distances
from source nodes) in its generalised form in the G operator is what captures, in
a distributed way, a notion of “contextual distance” instrumental for calculating
information diffusion, and forms the basis for key interaction patterns, such as
outward/inward bounded broadcasts and dynamic group formation, as well as
higher-level components built upon these.

The widespread adoption of gradient structures in algorithms stresses the
importance of fast self-healing gradients [105], which are able to quickly recover
good distance estimates after disruptive perturbations, and more “dependable”
gradient algorithms in which stability is favoured by enacting a smoother self-
healing behaviour [106]. Several other alternative gradient algorithms have also
been developed, addressing two main issues. Firstly, the recovery speed after an
input discontinuity, which has first been bounded to O(diameter) time by the
CRF (constraint and restoring force) gradient algorithm [105], further improved
to optimal for algorithms with a single-path communication pattern by the
BIS (bounded information speed) gradient algorithm [107, 108], and refined to
optimality for algorithms with a multi-path communication pattern by the SVD
(stale values detection) gradient algorithm [109]. Secondly, the smoothness and
resilience to noise in inputs, first addressed by the FLEX (flexible) gradient
algorithm [106] and then refined and combined with improved recovery speed
by the ULT (ultimate) gradient algorithm [109].

To empower the aggregate programming tool-chain, other building blocks
have been proposed and refined in addition to gradients: consensus algorithms
[110], centrality measures [111], leader election and partitioning [92], and most
notably, collection [70, 81]. The collection building block C progressively aggre-
gates and summarises values spread throughout a network into a single value,
e.g., their sum or other meaningful statistics. Based itself on distance esti-
mation through gradients, a general single-path collection algorithm has been
proposed in [92] granting self-stabilisation to a correct value, then multi-path
collection has been developed for improved resiliency in sum estimations [70],
and finally refined to weighted multi-path collection [112] and its parametric
extension [113], which is able to maintain acceptable whole-network sums and
maxima even in highly volatile environments. A different approach to collec-
tion has also proved to be effective for minimum/maximum estimates: overlap-
ping replicas of non-self-stabilising gossip algorithms [93] (with an appropriately
tuned interval of replication), thus combining the resiliency of these algorithms
with self-stabilisation requirements.

In sum, the current state of aggregate computing features pragmatic im-
plementations of field calculus well-integrated into modern languages. These
in turn support an expanding library of resilient building blocks with various
tradeoffs in their dynamical behaviour, and which can be used as the basis for
implementation of a wide variety of distributed applications.
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5. Perspectives and Roadmap

Over the past decade, aggregate computing has moved from a fragmented
collection of ideas and tools to a stable core calculus and a coherent layered
framework for the engineering of distributed systems. Thus, even as the under-
lying theory continues to be developed, as shown in [114], a significant portion
of research and development can shift to more pragmatic issues linked to ap-
plications and higher levels of the aggregate computing stack. In this section,
we review a number of such research directions, which include elaboration of
libraries (Section 5.1), techniques to control dynamics (Section 5.2), manage-
ment of mobile devices and processes (Section 5.3), development of software
platforms (Section 5.4), addressing non-functional requirements such as safety
and security (Section 5.5), and applications (Section 5.6).

5.1. Elaboration of Libraries

The most immediate and incremental line of future development for aggre-
gate computing is the elaboration of the existing collection of libraries, to form
a more broadly applicable and easier to use interface at the top of the aggregate
computing stack. One of the key directions for such additions and refinements
will be the development of alternative implementations of core resilient building
block algorithms. The current resilient building block algorithms were selected
to be both simple, in order to make composition proofs more tractable, and
highly general, which comes at a cost of being unable to make assumptions about
application needs or network conditions. As such, these algorithms are also of-
ten much lower performance than they might be, and in most circumstances a
software engineer would prefer to be able to use more sophisticated and/or more
specialised alternatives. Development of such alternatives has already begun as
described above (e.g., [113, 108, 93]), but there is much opportunity for further
development and for adaptation of existing high-performance algorithms into
the aggregate programming framework.

Complementarily, despite the breadth of the core building blocks, there are
also many distributed algorithms whose behaviour cannot be reasonably ex-
pressed in terms of these building blocks. Another direction of future library
elaboration will thus be the incorporation of a larger range of widely used dis-
tributed algorithms (e.g., those in [115] and [76]). Similarly, particular ap-
plication domains will suggest adaptation or development of more specialised
collections that capture the common design patterns and necessary functional-
ities peculiar to a domain. Adapting pre-existing algorithms into an aggregate
programming context will often pose some challenges, however, as most prior
distributed algorithms are not self-stabilizing and/or have not been designed
with composition in mind.

Overall, the process of library elaboration is expected to follow a natural
incremental progression of ongoing maturation and professionalisation, driven
by issues discovered as the other lines of future development outlined below
exercise the existing libraries to expose their current shortcomings and needs
for enhancement.

31



5.2. Understanding and Controlling Dynamics and Feedback

Much of the work to date on aggregate computing has focused on the con-
verged properties of a system, such as self-stabilisation [76, 70] and eventual
consistency [82]. These theoretical approaches, however, assume that the net-
work of devices is often in a persistent quasi-stable state in which the set of
devices, their connections to one another, and their environment all do not
change for a significant length of time. In large scale systems, however, such
quasi-stable states are typically rare and short-lived: there is almost always
something changing with respect to some device, thus constantly injecting per-
turbations into the system. Prior compositional safety analysis regarding self-
stabilisation and eventual consistency also does not apply in the case of systems
involving feedback, and many applications do require feedback either directly
between building blocks or indirectly via interactions with the environment.

The control theory literature has many well-developed tools for analysing
the response of complex systems under perturbation and in the presence of
feedback, including Lyapunov stability theory [116], passivity theory [117, 118,
119], center manifold theory [120, 121], the Perron-Frobenius Theorem [122],
and small-gain stability [123, 124, 125]. The mathematical frameworks for such
tools are not straightforward to adapt for application to aggregate computing
building blocks. With careful work, however, they may often still be applied,
e.g., through identification of appropriate Lyapunov functions to bound the
convergence behaviour of a building block.

Early work in this area shows promise, enabling analysis and prediction of
aggregate computing systems with feedback between building blocks [126, 127]
and providing stability analysis and tight convergence bounds for particular
applications of the G operator [128, 129] and C operator [130]. An important
area for future development is thus to expand these results to cover a large
sublanguage of aggregate computing systems and to apply them in order to
refine and improve the dynamical performance of building blocks.

A potential complementary approach to these problems is to instead apply
runtime verification techniques in order to control the behaviour of an aggregate
system, possibly exerting some kind of corrective action or feedback to maintain
a given quality of service. Early work in this area [131] shows that the field cal-
culus is a promising language for expressing runtime properties to be monitored
(which may in turn be expressed either in field calculus or in other formalisms).
The recent development of the share construct for optimal state diffusion [132]
further supports this claim, by providing means to check temporal properties
without delays. Notably, runtime verification methods are often too expensive
to be used on the complex state spaces of distributed systems, leading to the de-
velopment of state-reduction methods like mean-field approximation [133, 134];
field calculus may provide an alternative method for state reduction that is more
readily able to be applied to a broader class of systems. Future developments
may provide automatic translations of properties expressed in spatio-temporal
logics into field calculus, possibly improving over existing similar approaches in
the field of runtime verification of distributed systems.
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5.3. Mobility of Devices and Processes

Another key area for expansion of aggregate computing, both in theory and
practice, is better handling of mobility, both of devices and of processes dis-
persed through networks of devices. From a theoretical perspective, this is
closely interwoven with the need for a deeper understanding of convergence
dynamics, as systems with mobile devices or processes typically do not ever
achieve the quasi-stable states required for self-stabilisation to hold. Work to
date, however, has instead typically depended on the informal observation that
“slow enough” mobility does not disrupt commonly used self-stabilising building
blocks—an assumption called into question by the results in [130]. Theoretical
work is needed to predict and bound regions of stability and effects of pertur-
bation, as well as to develop improved building block alternatives for conditions
where the identified dynamics are unsatisfactory. There is also a need to expand
the existing building block libraries to support applications involving mobility.
For controlling the physical motion of devices, a number of building blocks have
been demonstrated or proposed throughout the swarm robotics and multi-agent
systems literature, including a number already formulated as building blocks for
aggregate computing (e.g., [135, 136, 137]).

Complementarily, another direction deserving exploration concerns the abil-
ity of the field calculus to effectively express a dynamical collection of concurrent
field computations with possibly dynamic domains. In this case, it is not the
device that is the focus of mobility, but instead code and processes that dy-
namically deploy, migrate, upgrade, and terminate during system operation,
as considered for example in [1, 138, 93] [139]. To effectively support mobil-
ity in aggregate computing, the large volume of prior work on algorithms and
strategies for such systems needs to be systematised and organised, analysed
for compositional safety and bounds on convergence, and adapted for use in
aggregate computing based on the results of analysis.

While some initial work has been reported in [91], there is need for devel-
opment of a reasoned stack, from fine-grained alignment primitives to meta-
algorithms, that neatly increases the practical expressiveness of the field calcu-
lus and better captures the dynamism, transitoriness and opportunistic traits
of forthcoming IoT scenarios [140] [141]. Moreover, novel support for the meta-
management of field computation domains could help in defining dynamic coali-
tions or teams [51] of devices—i.e., short-lived, goal-directed groupings attempt-
ing to maximise individual or group utility, respectively.

5.4. Software Platforms

Aggregate computing targets a broad range of application scenarios, gen-
erally characterised by inherent distribution, heterogeneity, mobility, and lack
of stable infrastructure (including computation, storage, and networking me-
dia). Development, deployment, and runtime management of such applications
can be greatly facilitated by development of middleware or similar software plat-
forms [98]. Middleware is a long-established approach to injection of abstraction
layers between application software and underlying software, hardware, or net-
work challenges [142], providing a means of sharing and layering functionality to
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assist with distributed systems challenges such as security and authentication,
privacy and information management, run-time monitoring, fault tolerance, etc.
Middleware does not solve or isolate these problems, particularly with where it
regards security and safety, but provides a means of at least sharing and reusing
patterns and means of addressing them.

Though middleware is used throughout the world of distributed comput-
ing, there are some issues (e.g., those discussed in this section, like mobility
and control) and opportunities specifically related to aggregate computing and
coordination that deserve attention. In particular, note that the aggregate pro-
gramming model is partially declarative in that it abstracts over a number of
details such as, for instance, the specifics of neighbourhood-based communica-
tion and the order and frequency of micro-level activities sustaining application
execution—details that can be delegated to corresponding platform services for
topology management, scheduling, and round execution. This abstraction pro-
vides a high degree of flexibility for the actual platform implementation, which is
free to apply optimisations of various sorts, from simpler (e.g., avoiding broad-
casting redundant messages) to more complex ones (e.g., mixing of different
communication modes).

Indeed, the entire aggregate computing system can be run according to
varying strategies, depending on the pragmatics of communication and under-
lying hardware [98]. At one extreme, programs may be executed in a fully
distributed peer-to-peer environment, where end-devices directly communicate
to peer neighbours and each runs its own fragment of aggregate logic. At the
other extreme are completely centralised solutions where end-devices act only
as managers for sensors and actuators, sending perceptions upstream to one or
more servers that run computations on their behalf and ultimately propagate
actuation data downstream.

Crucially, this flexibility suggests that aggregate computing may enable de-
velopment of a more principled spectrum for transitioning between cloud sys-
tems and distributed systems, embracing as well the emerging domains of edge
and fog computing [143, 144, 145] [146]. Aggregate computing may thus enable
adaptive adjustment of systems for opportunistic and QoS-driven exploitation
of available infrastructural resources, as well as to the intrinsic adaptation re-
quired to deal with emerging IoT scenarios. For instance, an aggregate system
specification can be mapped to a system of actors [97] where each actor is re-
sponsible for a specific aspect of the overall computation and communication
and can be migrated to different machines while preserving coordination by au-
tomatically adapting the bindings [98]. Much work remains, however, to further
develop both the theory of adaptive execution and to put such execution into
practice.

5.5. Non-functional requirements

In real-world engineering efforts, the effort required to make a system that
addresses core functional requirements is often heavily outweighed by the effort
required to deal with additional considerations such as safety, security, privacy,
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and sustainability. The success or failure of aggregate programming as an ap-
proach to distributed systems engineering is thus likely to depend strongly on
whether its implementation is sufficiently able to either help address such non-
functional requirements or at least not interfere with other efforts to address
them.

5.5.1. Safety

Safety in software usually concerns protections included in software to pre-
vent, intercept, and react to unintentional harm. In the context of aggregate
programming, safety is relevant at several levels: platform-level safety, language-
level safety, algorithmic safety, and compositional safety.

Platform safety is not a property of aggregate programming itself, but rather
is inherited from specific implementation and deployment. As discussed in Sec-
tion 5.4, in fact, aggregate programming abstracts away from the middleware
in charge of allowing network communications. Such middleware, however, will
in the end be part of the deployed system, and its safety properties (including
possible issues) will propagate to the aggregate system.

Language safety refers on the safety of the specific implementation of field
calculus. One key element of field calculus is alignment [38, 71], which deter-
mines whether or not two devices belong to the same domain at some specific
point during the execution. Practical implementations must deal with align-
ment [71]. The issue is usually tackled by annotating shared values in such a
way that the same computation path allows reconstruction of the annotation.
However, both the existing implementations have potential issues due to their
hosting platform: in Protelis, alignment is not applied when Java code is called
from within the DSL, as Java libraries are not aware of the requirement to
build annotations; in ScaFi, the primitive construct aggregate must be used
to wrap lambdas to turn them into “aggregate functions”, i.e., function objects
that are “tagged” with unique identifiers when they are created and hence re-
spect alignment when invoked (by adding a corresponding labelled node to the
evaluation tree). These aspects call for additional care when designing inter-
action between aggregate programming languages and their host platform, and
might be further improved in future implementations. Language safety also in-
cludes language features that help developers write correct programs, such as
type checking, debugging tools, null safety, and so on.

Algorithmic safety is related to the guarantees that algorithms offer, es-
pecially those more frequently used and those included in standard libraries.
Eventual consistency [82], self-stabilisation [70], and self-adaptation to device
distribution [147] are good examples of algorithmic safety guarantees. Further
relevant algorithmic safety information includes behaviour with respect to time,
which is particularly relevant for hard real-time systems [83]. One promising
research line to obtain further safety information of existing and novel aggre-
gate algorithms is analysis conducted through the tools classically leveraged by
control theory [126, 128, 129, 130], as described in Section 5.2.

Compositional safety, finally, refers to the conservation of safety proper-
ties when algorithms are combined. Existing work has identified a collection
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of fundamental building blocks that propagate their algorithmic safety proper-
ties when combined in non-cyclic constructions [92]. Current work, however,
provides little in the way of compositional safety guarantees regarding time or
systems involving feedback mechanisms.

5.5.2. Security

Security refers to the ability of the system to prevent, detect, monitor, and
react to intentional malicious attacks. Security is a critical concern in computer
science in general and especially in open environments, such as those envisioned
in pervasive computing and IoT scenarios involving vast numbers of devices
administered by individuals and organisations with no particular knowledge
of security. This problem is multifaceted and requires carefully thought, full-
stack solutions that also consider orthogonal requirements, such as the cost of
security-related computational tasks in resource-constrained devices.

Similarly to safety issues, security issues arise at every level of the computing
platform: a hypothetical perfectly secure aggregate language used to write only
demonstrably secure programs can still be exploited by attackers if the platform
hosting the computation (virtual or hardware) or enabling communication is
not secure. At the same time, a perfectly secure middleware does not guarantee
security at the higher abstraction levels, since the mechanics of the aggregate
system or implementation shortcomings could be leveraged to induce unwanted
behaviours.

Regarding application-level interaction, since coordination activity in ag-
gregate computing is substantially based on a premise of cooperation between
the participating entities, it is often sensitive to attacks that may trigger epi-
demic deviation. That is, what is the extent to which agents and their data can
be trusted? In order to assess and mitigate the impact of voluntary or invol-
untary misbehaviour, adoption of computational trust has proven useful [148]
and applicable even in decentralised settings, in which no central authority is
available to certify recipients and endpoints, and in scenarios where seamless op-
portunistic interaction is the norm. The proposed system provides some degree
of protection from malicious attackers with minimal requirements (i.e., without
any infrastructural service or assumption about other devices), but also requires
special, trust-aware versions of algorithms, as well as a non-trivial parameter
tuning process. Combined, these restrictions limit the applicability of the pro-
posed techniques.

Aggregate computing security at the language and language implementa-
tion level is, to the best of our knowledge, currently unexplored. One possible
approach to tackling the issue is by performing design and code level hard-
ening [149], which would require a specific analysis phase oriented to threat
identification and risk calculation, before the design of potential countermea-
sures.

A number of security issues, not strictly related to coordination but of promi-
nent importance in real-world, trustworthy systems, can be addressed in the
middleware layer and through proper deployment solutions. For example, sup-
port is needed to enable safe code mobility and execution, as proposed in [85],
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which may be required in scenarios characterised by significant dynamicity re-
quirements or demands for automatic deployment of new functionality. Addi-
tionally, despite the decentralised and inherently scalable nature of aggregate
systems, availability issues need to be considered, according to the specifics
of applications, especially with respect to nodes playing a crucial role in al-
gorithms (e.g., sources, hubs, collectors, region leaders). Security at the plat-
form level is usually delegated almost entirely to the platform itself. However,
some specific security features of specific platforms may have relevant conse-
quences for aggregate software executing on them. For instance, in [150] a
number of attacks are designed to compromise an aggregate program executing
a trust-aware [148] version of an aggregate algorithm. Interestingly, a class of
attacks known as Byzantine behaviours [151], which include selective attacks
(sending data only to selected targets, or sending different information to differ-
ent neighbours), masquerade attacks (imitating the identity of another device),
and Sybil attacks (faking multiple identities) could actually exploit the trust-
based protection mechanism via carefully crafted messages in order to impair
the aggregate system. A possible solution is leveraging the BlockChain tech-
nology [152] at the middleware level to provide transparent protection (i.e.,
without impact on application logic) from Byzantine attacks. Unfortunately,
permissioned BlockChains require certification authorities to provide identities
and roles, hence reducing system openness, while permissionless BlockChains
pose serious limitations on throughput (of transactions corresponding to coor-
dination messages, and hence to system reactivity).

As practical aggregate programming platforms come to target embedded
devices (as they are likely to do in future), more focus will be required on
lower level platform issues, especially if the protection layer usually offered by
the operating system will not be available or will be subject to more severe
limitations due to efficiency requirements. In this context, even “close-to-metal”
attacks such as Meltdown [153], Spectre [154], and (Th)Rowhammer [155, 156]
will need to be taken into account when selecting or designing the execution
platform.

5.5.3. Privacy

Another related theme is privacy and confidentiality of information. The
privacy properties of the data propagated and collected by aggregate programs
needs to be understood and guaranteed, or else participation may be hindered.
Privacy concerns have not, so far, been strongly considered in designing and
implementing aggregate programming languages or programs. In many ways,
these concerns overlap with security: for example, the attacks mentioned in
Section 5.5.2 have the potential not just to disrupt computations, but to be used
to maliciously extract data not meant to be available. Another issue that must
be tackled in the future includes adequate encryption not just of data exchanged
between communicating devices (an issue that could arguably be tackled at the
platform level), but of unauthorised access to some portions of this data. Due
to alignment, there may be some portions of a collection of data that are sent
to all neighbours, but are meant to be accessed only by a subset of them, due to
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domain separation induced by a distributed branching construct. Currently, in
existing practical aggregate languages, nothing prevents legitimate participants
to the system, even running on some theoretical perfectly secure platform, from
accessing all of the data shared by any of the neighbours. Adequate protection
of confidentiality at this level will require novel research and careful thought.

5.5.4. Efficiency and sustainability

Efficiency of computing is already a major concern for platforms with con-
strained energy budgets (e.g., those powered by batteries and/or energy harvest-
ing), and sustainability is becoming of increasing concern as a non-functional
requirement for computing systems [157]. Sustainability and efficiency, which
are closely related, are pervasive issues requiring special attention, as they can
pose limitations to the techniques that can be deployed in order to satisfy both
functional and other non-functional requirements. For example, encryption
techniques intended for tackling privacy and security issues may require the
use of computational resources that may imply unacceptably high battery con-
sumption. Moreover, network and power efficiency concerns are often among
the elements that are simplified away in simulated models, shifting the burden
down the line to deployment and implementation. As discussed for safety in
Section 5.5.1, efficiency should also be considered as a cross-cutting concern
throughout the whole stack of aggregate computing. Besides algorithmic effi-
ciency, which has a great deal of impact, there are also a number of concerns
related to language and platform efficiency.

Although some of the antecedents of aggregate computing have been quite
energy efficient [158], the increased generality and functionality of recent plat-
form implementations has as a byproduct resulted in less efficient implemen-
tations. Aggregate programming has been recently experimented with in con-
junction with long-range, low-power communication devices (LoRaWAN [159]),
yielding mixed results and suggesting future research directions [160]. One rele-
vant issue for integration in such networks is the fact that both existing practical
implementations of the field calculus require a Java Virtual Machine to execute,
which is far above the computational resources of small microcontrollers such
as those commonly found in LoRa nodes. Consequently, such nodes were used
as long range networking interfaces for more computationally capable devices;
such a configuration, however, would make sense only for a narrow range of
applications, where either battery power is not a relevant concern, or the com-
putation and communication system power consumption is only a small frag-
ment of the overall consumption (e.g., with self-propelled mobile devices), and
would likely complicate the deployment of self-powered LoRa systems [161].
Future efforts devoted to providing highly efficient implementations of the field
calculus targeting microcontrollers, however, could possibly once again make
aggregate programming of ensembles of low power devices feasible. A second
relevant factor limiting the adoption of aggregate programming over long range
networks is its use of network capacity: unlike the antecedent implementations
in Proto [18], current field calculus implementations do not have bandwidth
capacity saving systems in place (such as a mechanism not to send identical
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messages in sequence), nor do they focus on reducing message size. At present,
the produced packet size produced is large enough to prevent any non-trivial ag-
gregate programming application from using long-range, low-power communica-
tion [160], particularly if packets contain Java objects transmitted with default
serialization. Unfortunately, optimisations focused on reducing message size
often conflict with optimisations oriented at improving simulation performance
and accessibility of debugging information, as well as frequently conflicting with
privacy and security requirements. The issue might be mitigated in a number
of ways, however, including isolating the construction of network packets and of
the annotations used to fetch data based on the current computation, and by
providing multiple implementations that target different efficiency tradeoffs.

5.6. Applications and Pragmatics

Finally, the core goal for the aggregate computing research thrust has al-
ways been to enable simpler, faster development of more resilient distributed
applications. Having developed both its theoretical foundations and the layered
system of algorithms and libraries exploiting those foundations, one of the ma-
jor directions of current and future work is indeed to apply these developments
to real-world problems across a variety of domains.

5.6.1. Pervasive computing, IoT, smart-cities

One key application area, previously discussed in [1] and other works, is per-
vasive or IoT scenarios in dense urban environments. As the density of commu-
nicating devices increases, their interactions put pressure on the available fixed
infrastructure and the opportunities for local interaction increase [162]. This is
particularly acute during transient events when demand and the available infras-
tructure become mismatched, such as during festivals or sporting events when
the number of people packed into an area spikes, or during natural disasters
and other emergencies when the available infrastructure may be degraded. One
of the critical challenges for such applications is simply to access the potential
peer-to-peer capabilities of devices, which are often closed platforms and are
currently typically configured primarily for asymmetrical communication with
fixed infrastructure or individually connected personal networks. These con-
straints are both loosening over time as app infrastructures continue to spread
and develop on many platforms. Finally, the benefits of distribution must be
effectively balanced with tight energy budgets on many devices and the contin-
uous value of non-local interactions enabled by cloud connections.

A closely related research problem revolves around the coordination of com-
putation activities across the edge, fog, and cloud layers. Edge and fog com-
puting are emerging paradigms that complement traditional cloud services—
provided by massive, remote data centres—with elastic resource provisioning
“at the edge of the network” [163, 164], close to where computation inputs
are taken and computation outputs are needed (i.e., to users). The problem
forces that have motivated this evolution are essentially the same as those that
originated the spatial computing movement [57]. Namely, at their basis is the
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realisation of the key role of physical locality, as location in space affects both
the performance and the feasibility of computation—cf., latency-sensitive ap-
plications, connectivity limitations. The combined action of miniaturisation,
dense deployments, and heterogeneity promotes a vision where more and more
resource-constrained devices offload computations locally, rather than through
global connectivity. Arguably, by its intrinsically spatial nature [165] and its
declarativity [98], aggregate computing may help to define edge/cloud comput-
ing ecosystems where both locality and increasingly non-local aspects are taken
into account [146, 141].

5.6.2. Robot swarms, unmanned aerial vehicles

Another important emerging application area is control of drones and other
unmanned vehicles, driven by the rapidly increasing availability of high-quality
platforms at various levels of cost and capability. With the emergence of highly
capable autopilots, the need for detailed human control is decreased and it be-
comes desirable to shift from the current typical practice of multiple people
commanding a single platform toward a single person controlling many plat-
forms. Aggregate computing is a natural fit for approaching multi-platform
control, using paradigms such as those discussed in [135] and [136]. In imple-
mentation, however, the challenges of mobility become acute as one considers
rapid physical movements. Likewise, a better understanding of convergence
dynamics and feedback will be needed. Work in this space will also demand
significant elaborations in aggregate computing libraries, adapting manoeuvres
from the applicable literature and doctrine into additional composable building
block components. Finally, there are also major pragmatic issues to be ad-
dressed in platform interfaces, including a plethora of standards, safety issues,
and appropriate incorporation of resource and manoeuvring constraints.

5.6.3. Agent-based planning

Agent-based planning uses similar principles, computing plans for future ac-
tions over an aggregate of agents. This generalisation, however, typically also
connects representations of future plans, tasks, goals, and environment into the
aggregate [138], as some combination of additional virtual devices in the ag-
gregate and virtual fields that devices can interact with. Examples include the
poly-agent approach to modelling and planning [166] and agent-based sharing
of airborne sensors [167, 168]. When agent-based planning is centralised, man-
aging projections and tasks is straightforward; when distributed across physical
agents, however, there are important questions to be addressed regarding where
projections and tasks should be hosted, to what degree they should be dupli-
cated, and how to synchronise information between duplicates.

5.6.4. Networked systems management

Aggregate computing can also be applied to more conventional networked
systems. In this case, the links between neighbours are defined by (not partic-
ularly spatial) physical network connections, virtual network relationships such
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as in an overlay network, or else logical relationships such as interaction pat-
terns between services. As long as the number of such neighbours is relatively
constrained, such that sending regular updates to neighbours is not problematic,
many of the same sorts of coordination approaches that work in other applica-
tion areas can work in areas such as these as well. Examples of applications in
this space include coordinating recovery operations for networks of enterprise
services [89], coordinating a checkpoint-based “rewind and replay” across in-
teracting services to undo the effects of a cyber-attack [169], and integrating
applications across intermittently connected distributed cloud nodes [169]. In
this domain, in most cases it is not cost-effective to try to write or refactor entire
services and applications into an aggregate computing paradigm. Instead, ag-
gregate computing appears better used as a meta-level coordination and control
service, helping to determine things like when and where to migrate services
across machines, how many instances of a service should be used, how to ren-
dezvous between services that need to communicate, and so on. Future work in
this space is thus likely to focus on extending libraries to better support vari-
ous coordination paradigms, particularly with distributed graph algorithms for
supporting coordination regarding dependencies and information flows, and on
the pragmatics of interfacing with complex legacy applications.

5.6.5. Other application domains

In addition to the domains presented here, aggregate computing offers po-
tential value in many other application domains as well: it is likely to offer value
in any domain with an increasing number and potential volatility in collections
of devices capable of communicating locally. The ongoing continuation of minia-
turisation and embedding of computational devices means this is likely to apply
in most areas of human endeavour, to one degree or another. Across all such
domains, just as in the four domains described in detail, it is likely to be the
case that aggregate computing will not be the focus of the system but rather,
much like any other specialised library, used as a modular component: and most
specifically, as a component providing a coordination service. A critical chal-
lenge for the future, then, will be to continue shaping and improving libraries
and interface patterns in response to the needs of these application domains,
in order to allow aggregate computing to become as invisible as possible in the
actual process of systems engineering.

6. Conclusions

Aggregate computing is a potentially powerful approach to the engineering
of distributed systems, emerging from the distillation of a wide variety of ap-
proaches to coordination into the field calculus. This mathematical core then
serves as the basis for a layered approach to pragmatic development of compos-
able and resilient distributed systems. The future of aggregate programming
involves both continued development of its core theoretical tools as well as work
to realise its potential across a wide range of important application domains.
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